

COMMUNITY DEVELOPMENT

333 Broadalbin Street SW, PO Box 490, Albany, Oregon 97321-0144 | BUILDING & PLANNING 541-917-7550

Staff Report

Tentative Subdivision Plat Review and Cluster Development Review SD-02-23

December 11, 2023

Summary

The proposal is to subdivide approximately 35.32 acres of land into 176 lots for future residential development. The site is located on the east side of Lochner Road SE, south of the Greater Albany Public School property and railroad tracks, west of a manufactured home development (Columbus Greens), east of the Oak Creek Youth Correctional Facility, and north of Oak Creek. A location map is included as Attachment A. The site is located within the South Albany Area Plan (SAAP) and the Trails Framework Plan, adopted as part of the SAAP.

The project is proposed to be a five-phase cluster development with Phase One consisting of 30 lots the creation of Tracts A, B, C, and D; Phase Two consisting of 30 lots; Phase Three consisting of 30 lots; Phase Four consisting of 34 lots; and Phase Five consisting of 52 lots. The development will include public street right-of-way construction of Blue Jay Avenue, Nighthawk Street, Blackbird Avenue, Finch Street, Harrier Street, Flicker Street, Junco Street and Nuthatch Street and four public alleys; with two connections to Lochner Road SE. All proposed street names have been approved by the Albany Fire Department. Open space lots will also be provided that will be used for stormwater detention and preservation of existing wetlands. The proposed Tentative Plat is shown on Attachment B.

The following review criteria are applicable for this project: Tentative Plat Review under Albany Development Code (ADC) 11.180 and Cluster Development under ADC 11.400-11.530. These criteria are addressed in this report and must be satisfied to grant approval of this application.

Application Information

Type of Application: Tentative Subdivision Plat for a Cluster Development of a 176-lot residential

subdivision.

Review Body: Staff Review (Type III)

Property Owner: Loren and Lois Gerig Revocable Living Trust; 3795 Lochner Road SE,

Albany, OR 97322

Applicant: Hayden Homes; C/O Brian Thoreson; 2464 SW Glacier Place Suite 110,

Redmond, OR 97756

Applicant's Agent: A & O Engineering, LLC; C/O Scott Morris; 380 Q Street Suite 200,

Springfield, OR 97477

Address/Location: Unassigned; Lochner Road SE

Map/Tax Lot: Linn County Assessor's Map No. 11S-03W-20; Tax Lot 606

cd.cityofalbany.net

Zoning: Residential Single Dwelling (RS-6.5)

Overlay District: Floodplain (/FP); Riparian Corridor (/RC); South Albany Area Plan (SAAP)

Total Land Area: 35.32 acres

Prior Land Use Approvals: SD-04-21 (Cluster Subdivision); AN-03-20 (Annexation), ZC-04-20 (Zone

Change). Prior to Annexation, a two-lot partition was processed and recorded with Linn County Oregon, Partition Plat 2020-70, C.S. 26931.

Appeals

Any person who submitted written comments during a comment period or testified at the public hearing has standing to appeal the Type III staff decision to the City Council by filing a Notice of Appeal and associated filing fee within ten days from the date the City mails the Notice of Decision.

Neighborhood Meeting

As required by ADC Table 1.100-1 and 1.140 of the July 1, 2023, Development Code in effect at the time, a neighborhood meeting for the proposal was held on August 10, at 5:00 p.m. at the Albany Main Public Library. Notice was mailed to the property owners within 1,000 feet of the subject property's property boundaries. The neighborhood meeting had five attendees including the applicant, the applicant's representatives, and city staff (see Attachment D).

Notice Information

A Notice of Filing was mailed on November 27, 2023, to owners of property located within 1,000 feet of the subject property in accordance with ADC 1.220. As of the writing date of this staff report, December 4, 2023, no comments had been received.

Staff Analysis

The Albany Development Code (ADC) includes the following review criteria for land divisions and cluster development which must be met for these applications to be approved. Code criteria are written in **bold italics** and are followed by findings and conclusions.

Tentative Plat Review Criteria (ADC 11.180)

Tentative Plat Review Criteria. Approval of a tentative subdivision or partition plat will be granted if the review body finds that the applicant has met all of the following criteria which apply to the development:

Criterion (1)

The proposal meets the development standards of the underlying zoning district, and applicable lot and block standards of this Article.

Findings of Fact

- 1.1 Zoning. The applicant has applied for a Tentative Subdivision Plat Review and a Cluster Development to create a 176-lot residential subdivision to be completed in five phases. The subject property is located on the east side of Lochner Road SE and consists of approximately 35.32 acres in size. The property is currently located within Residential Single Dwelling (RS-6.5) zoning district.
- 1.2 Residential Single Dwelling (RS-6.5) is intended primarily for low- to moderate-density residential development, which permits a detached, single residential dwelling unit, a duplex, or a triplex on lots 5,000 square feet or larger. Fourplexes and cluster developments are permitted on lots 7,000

- square feet or larger. A location map is included as Attachment A, and the proposed Tentative Plat Maps are shown on Attachment B.
- 1.3 Lot Sizes. The ADC Table 3.190-1 contains the minimum lot size requirements for properties within the RS-6.5 zoning district. The applicant requesting the proposed subdivision be reviewed as a five-phased cluster development pursuant to the criteria and standards found in ADC 11.400-11.530. Cluster development is intended to protect and/or restore natural and other special features in the development of a site. Cluster development may provide greater flexibility, reduced and/or varied lot sizes, and more variety in permitted uses. Residential density may be transferred within the development in exchange for restoring degraded or marginal quality resources located in a Significant Natural Resource overlay district or for protecting natural or other special features of the site. The applicant has submitted a wetland study with mapped wetlands upon the site and is included as Attachment E.
- 1.4 The development standards in Table 11.495-1 supersedes the development standard in Table 3.190-1. Based upon Table 11.495-1 the RS-6.5 zoning district does not have a minimum lot size, width, or depth. Article 11.500 "Perimeter Lot Compatibility" contains standards unique to the perimeter lots in a cluster development and are addressed later in this report and included here by reference.
- 1.5 <u>Lot and Block Standards.</u> The lot and block standards under ADC 11.090 are addressed later in this report and are met with conditions. Those findings and conclusions are included here by reference.
- 1.6 <u>Development Standards.</u> No development is proposed with this application; however, according to the submittal, the applicant intends to develop each lot with a residential dwelling unit.
- 1.7 At the time of building permit processing, setback, lot coverage, and height standards will be applied to ensure construction of new dwellings meet the applicable development standards of the underlying zoning district.

- 1.1 Based on the factors above, the proposal meets the applicable development standards of a cluster development within the underlying zoning district and the applicable lot and block standards of Article 11.
- 1.2 This criterion is met.

Criterion (2)

Development of any remainder of property under the same ownership can be accomplished in accordance with this Code.

<u>Findings of Fact</u>

- 2.1 The subject property is located on the east side of Lochner Road SE, directly north of 3795 Lochner Road SE. The parcel is identified upon the Linn County Assessor's Map as 11S-03W-20; Tax Lot 606. The land is owned in its entirety by Loren and Lois Gerig Revocable Living Trust.
- 2.2 The site consists of approximately 35.32 acres and is currently undeveloped as shown on the Tentative Plat (Attachment B).
- 2.3 The applicant proposes to develop the site through a residential cluster development which requires a minimum of 20 percent of the site to be preserved for wetland protection/enhancement, and open space (ADC 11.450). The tentative site map indicates two separate open space/wetland areas totaling 554,834 square feet (approximately 12.74 acres) to be conveyed to the future Homeowners Association (HOA). ADC 11.470(2) requires all natural areas to be subject to a restrictive covenant prohibiting further development. This standard is addressed later in this staff report and is included here by reference.

- 2.4 The applicant proposes a stormwater facility totaling 36,157 square feet to be conveyed to the City. The remainder of the land will be used for utilities such as a public roadway, sidewalks, multi-use trails, and bike easements. This comprises the entirety of the 35.32 acres, therefore there is no remaining land to be developed.
- 2.5 As proposed, there is no remaining land to develop. The subdivision does not create any remainder property.

- 2.1 All property included in this subdivision is under the same ownership, and there is no remainder of land to consider with this application.
- 2.2 This criterion is met.

Criterion (3)

Adjoining land can be developed or is provided access that will allow its development in accordance with this Code.

Findings of Fact

- 3.1 ADC 12.060 requires that development have frontage on or approved access to a public street currently open to traffic. This review criterion has been interpreted by the city council to require only that adjoining land either have access or be provided access to public streets. The property currently has frontage on Lochner Road SE.
- 3.2 As shown on the Tentative Plat (Attachment B), the proposed development would develop two new roads, Blue Jay Avenue and Blackbird Avenue, to connect to Lochner Road SE. The development also proposes to develop six additional interior roads designated as Finch Street, Harrier Street, Flicker Street, Junco Street, Nuthatch Street, and Nighthawk Steet, and four public alleys, which will connect to Blackbird Avenue and Blue Jay Avenue. Nighthawk Avenue extends as a future connection to the property directly south of the site.
- 3.3 The property directly south of the site, 3795 Lochner Road SE has frontage onto Lochner Road SE, but currently gains access to Lochner Road SE via an easement through the subject property. The Tentative Plat shows the creation of Tract D to preserve this existing driveway through the subject property to serve the property at 3795 Lochner Road SE. As a condition of approval, Tract D must be conveyed to the property identified at 3795 Lochner Road SE at the time of recording the Final Plat for Phase One.
- 3.4 <u>Property to the north:</u> North of the subject property is a 29.46-acre property that is undeveloped and held by the Linn Benton School District 8J. This property has frontage onto Lochner Road SE. The subject property's northern property line contains a Bonneville Power Administration (BPA) corridor and high voltage transmission lines. The proposed land division does not affect future development of this lot.
- 3.5 Property to the south: South of the subject property are two properties totaling 42.87 acres and are held by Loren and Lois Gerig Revocable Living Trust. Tax lot 600 is developed with one single dwelling unit and has frontage to Lochner Road SE. Tax lot 607 is currently landlocked and developed with an accessory building. While Tax Lot 600 has frontage onto Lochner Road SE the property has historically accessed Lochner through an existing driveway which traverses the subject property. The Tentative Plat proposes modifying the existing driveway by re-directing the access to Blue Jay Avenue which will connect to Tract D which currently exists as part of the driveway serving Tax Lot 600. Tax Lot 607 will have new access via the newly proposed right-of-way, Nighthawk. The proposed land division does not affect the future development of these properties.

- 3.6 Property to the east: East of the subject property is an existing manufactured dwelling development, Columbus Greens, that already has street access to Columbus Street SE via Cascade Drive. Therefore, no additional access to this existing development is required from this project. The proposed land division does not affect the existing or future development of these lots.
- 3.7 <u>Property to the west</u>: West of the subject property is the Cox Creek Youth Correctional Facility and Sno Temp Cold Storage. Both properties have access to Lochner Road SE and/or Marion Street SE. This proposed land division does not affect the existing or future development of this property.
- 3.8 The subject property is located within the South Albany Area Plan (SAAP), which has a network of future road connections. The location of the subject property does not contain any proposed future road connections as outlined in the SAAP (Attachment I).

- 3.1 All adjoining properties have access to public streets through the existing transportation system, and the proposed subdivision plan will not remove that access.
- 3.2 As proposed, the new street network will connect and provide access to adjacent undeveloped land, thereby facilitating future development of those properties.
- 3.3 Based upon the site plan the applicant proposed to convey an existing driveway (Tract D) from future public right-or-way Blue Jay Avenue to serve the property at 3975 Lochner Road SE. The conveyance of Tract D is required at the recording of the Final Plat for Phase One.
- 3.4 This criterion is met with the following condition.

Condition

Condition 1 The applicant shall convey Tract D to the property at 3795 Lochner Road SE at the time of recording the Final Plat for Phase One.

Criterion (4)

The Public Works Director has determined that transportation improvements are available to serve the proposed subdivision or partition in accordance with Article 12 or will be made available at the time of development.

Findings of Fact

- 4.1 The proposed development is a five-phase subdivision that will result in the creation of 176 residential lots and four tracts.
- 4.2 The development is located on the east side of Lochner Road SE, north of 3795 Lochner Road SE. Access to the site will be provided via two new street connections to Lochner Road SE, Blue Jay Avenue and Blackbird Avenue.
- 4.3 Lochner Road is classified as a minor arterial road and, with the exception of sidewalk, is constructed to city standards along the frontage of the site. Exiting street improvements consist of curb and gutter; sidewalk on the west side of the street; a vehicle travel lane in each direction; dedicated left turn pockets at the site's north connection point, and on-street bike lanes.
- 4.4 The applicant submitted a traffic impact analysis with the application. The analysis was performed by Sandow Engineering and is dated August 25, 2023. At full buildout the development was estimated to generate 169 vehicle trips during the PM peak traffic hour.
- 4.5 Albany requires that level of service (LOS) "D" or better be maintained at signalized and all-way stop controlled intersections. The performance of two-way stop-controlled intersections is evaluated based upon the worst-case movement and not the "average" of all movements. At

- two-way stop-controlled intersections, the City's minimum performance standard for the worst-case movement is a volume to capacity ratio (v/c) of 0.85.
- 4.6 The Sandow Engineering study assumed the development would be built out in year 2030 and evaluated impacts on the public street system at year 2024, 2025, and year 2030 for both the AM and PM peak hour. The evaluation included a projection of LOS and v/c for all study intersections. The study evaluated the development's impact on the operation of the following intersections:
 - 34th Avenue/Marion Street this intersection is controlled by a traffic signal. The intersection was projected to operate at LOS "B" by the year 2024 during both the AM and PM peak hour. At year 2030 the intersection was projected to operate at LOS "C" during the AM peak hour and LOS "B" during the PM peak traffic hour.
 - Marion Street/Lochner Road The intersection is a two-way stop-controlled intersection. At year 2024 the worst-case movement was projected to operate with a v/c ratio of 0.11 in the AM peak hour, and 0.12 in the PM peak hour. At year 2030 the worst-case movement was projected to operate with a v/c ratio of 0.17 in the AM peak hour, and 0.17 in the PM peak hour.
 - Lochner Road/North Site Access The intersection was assumed to be stop controlled. At year 2024 the worst-case movement was projected to operate with a v/c ratio of 0.05 in the AM peak hour, and 0.03 in the PM peak hour. At year 2030 the worst-case movement was projected to operate with a v/c ratio of 0.10 in the AM peak hour, and 0.09 in the PM peak hour.
 - Lochner Road/South Site Access The intersection was assumed to be stop controlled. At year 2024 the worst-case movement was projected to operate with a v/c ratio of 0.02 during the AM hour and 0.01 during the PM peak hour. At year 2030 the worst-case movement was projected to operate with a v/c ratio of 0.04 during the AM peak hour and 0.03 during the PM peak hour.
- 4.7 The Sandow engineering study concluded that with the development all study intersections would meet or exceed City performance standards through the year 2030.
- 4.8 ADC 12.040 and 2.050 require that public street and other infrastructure comply with adopted master plans and allow for conditions requiring infrastructure implementing those plans to be placed on new development.
- 4.9 ADC 12.060 requires that all streets interior and abutting new development be improved to city standards, and AC 12.210 requires that local streets have a centerline radius of at least 200 feet. The applicant's proposed tentative subdivision plan includes several locations where the proposed centerline radius of interior streets does not meet the 200-foot design standard.
- 4.10 Albany has two adopted plans that identify transportation projects within and adjacent to the subject property. Albany's Transportation System Plan (TSP) and the South Albany Area Plan (SAAP) both include projects that are either within or border this site.
 - The SAAP includes a multi-use path of regional benefit. The path alignment is located within Tract A and extends from the southeast corner of this site to the BPA easement and then west along the BPA easement to Lochner Road. The path is not included in the TSP and has no identified construction funding.
 - The TSP and SAAP both include a multi-use of reginal benefit along the north side of Oak Creek within the riparian buffer bordering an established significant wetland. Two isolated sections of the path alignment are on this site along its south boundary and are within Tracts B and C. Those two small segments are separated by a longer gap where the path alignment will be on the adjoining parcel to the south. The south parcel is not part of this application

- and has not yet been annexed into the City. Construction of the path is eligible for a Transportation System Development Charge (TSDC) funding/credit.
- The TSP includes a design for Lochner Road that provides for a multiuse path on the east side of the road along the frontage of this site. This section of Lochner Road has, however, previously been improved to urban city standards and includes conventional on street bike lanes
- 4.11 The SAAP multi-use path systems that border and cross the site are part of a regional looped system intended to provide both recreational and transportation functions for the entire SAAP study area. A condition imposed on any one development site to dedicate land and construct a segment of the path would need to comply with legal requirements regarding nexus and proportionality. In the case of this development the nexus requirement is probably met; portions of the path alignments are on the site, the development will have access and connect to the path systems, and future residents of the site can reasonably be expected to make use of the system. The proportionality requirement, however, would be difficult to meet for the path system in Tract A that lacks a TSDC funding component. Requiring one development to fully fund construction of an improvement with regional benefit would fail a proportionality test.
- 4.12 ADC 12.040 and 12.050 require that public street and other infrastructure comply with adopted master plans and allow for conditions requiring infrastructure implementing those plans to be placed on new development.
- 4.13 The applicant has agreed to provide an easement over Tract A to allow for the future construction and maintenance of a multi-use path. The easement would allow for future construction and operation of the path in the SAAP that extends from the southeast corner of this site north to the BPA easement and then west to Lochner Road.
- 4.14 Tract B of the development includes water quality features and will be dedicated to the City. The applicant has submitted a design proposal for both tracts showing they can also accommodate installation of the multi-use path identified in the SAAP and TSP along the north side of Oak Creek. A condition has not been imposed on this development for construction of path improvements on either tract. Determination of the precise alignment of the path and its construction can occur in the future at a time of city choosing as part of a larger path project involving use of TSDC funding. This development will be paying TSDC fees with individual lot development and thereby contribute to the future construction of the path improvements.

- 4.1 The development is for a five-phase subdivision that will create 176 residential lots.
- 4.2 The applicant submitted a traffic study with the application. The study evaluated the impact of traffic generated by the development would have on the transportation system. The study concluded that with the development all intersections will meet or exceed the City's performance standards at project build out in 2024 through full development at year 2030.
- 4.3 The improvement of public streets adjoining a new development are requirements of ADC 12.060. The development has frontage on Lochner Road. Lochner Road is classified as a minor arterial road and is improved to city standards, with the exception of sidewalk. The applicant has proposed dedication of 10 feet of right-of-way along the northern portion of the site and construction of sidewalk along the site's full street frontage.
- ADC 12.040 and 12.050 require that new development comply with adopted master and infrastructure plan. The TSP and SAAP both include projects that either abut or are interior to this site:
 - The SAAP includes a multi-use path project located within Tract A of this development. The path is not in the TSP, is not eligible for TSDC funding or credit, and has no identified source

- of city financial participation. The applicant has agreed to provide an easement over Tract A that will allow for the future construction, operation, and maintenance of the path.
- The SAAP and TSP both include a multi-use path within a riparian buffer along the south boundary of this site. Two small sections of the path alignment on are this site, and the balance is located on the parcel to the south that is outside the city limits. The on-site areas of the path alignment are on tracts that will be dedicated to the City and can accommodate path improvements. Construction of the path can occur in the future as part of a larger path improvement with a TSDC funding component. This development will contribute to that project through payment of TSDC fees with individual lot development.
- The TSP includes a multi-use path along the east side of Lochner Road along the frontage of this development. The multi-use path along this section of Lochner Road is intended to link the off-road paths shown in the SAAP along the BPA easement and Oak Creek. Neither of those paths currently exist or will be constructed with this development. The development's frontage on the road has, however, been improved to urban city standards and includes onstreet bike lanes. Conversion to a design with a multi-use path would require elimination of the existing northbound bike lane and reconstruction of the existing curb, gutter, and storm drainage system along the east side of the road. The cost to convert this section of Lochner Road from an on-street bike lane to a multi-use path would be substantial and of limited benefit because the off-street paths at each end of the development are not yet constructed. The right of way along Lochner Road being dedicated with this development will provide the City with the option of converting to a multi-use path along east side of the road with a future rehabilitation project.
- 4.5 The development will create two new local street connections to Lochner Road. Lochner Road is classified as a minor arterial street. In order to provide for the safe and efficient circulation of traffic and pedestrian movements the new approaches will need to be stop-controlled at Lochner Road and include marked crosswalks across the minor street approach.
- 4.6 Compliance with ADC 12.210 will require that the minimum centerline radius for interior local streets have a centerline radius of at least 200 feet.

Conditions

- Condition 2 The applicant shall construct, to city standards, all public streets interior to the development. The right-of-way widths shall be 54 feet and the curb-to-curb widths 30 feet as identified on the Tentative Plat Map. The minimum center line radius for interior local streets shall be 200 feet.
- Condition 3 Project phasing and interior street construction must demonstrate compliance with applicable Fire Code requirements relating to the need for secondary access and access point spacing.
- Condition 4 Prior to the development of Phase One:
 - The applicant shall dedicate 10 feet of public right-of-way along the site's 705 feet of frontage along Lochner Road as shown on Tentative Plat Map.
 - The applicant shall construct a 6-foot public setback sidewalk along the site's frontage on Lochner Road.
 - The applicant shall install stop signs and striped crosswalks at the two new local street connections to Lochner Road.
 - The applicant shall dedicate to the City a multi-use path over Tract A for the path identified in the South Albany Area Plan (SAAP) that extends from the southeastern corner of the site north to the BPA easement, and along the BPA easement to

Lochner Road. The precise location of the easement over that alignment shall be non-specific in order to allow for flexibility in path design and alignment and allow for a path for up to 12 feet in width.

Criterion (5)

The Public Works Director has determined that public facilities and utilities are available to serve the proposed subdivision or partition in accordance with Article 12 or will be made available at the time of development.

Findings of Fact

Sanitary Sewer:

- 5.1 City utility maps show a 12-inch public sanitary sewer main in Lochner Road along the northernmost 175 feet of property frontage. A 24-inch force main runs along the south boundary of the BPA easement in the northern portion of the site. The subject property has never been connected to the public sewer system.
- 5.2 Oregon Revised Statutes (ORS) 92.090 states no subdivision plat shall be approved unless sanitary sewer service from an approved sewage disposal system is available to the lot line of every lot depicted in the proposed subdivision plat.
- 5.3 Albany Municipal Code (AMC) 10.01.010 (1) states the objective of the Albany Municipal Code requirements pertaining to public sanitary sewers is to facilitate the orderly development and extension of the wastewater collection and treatment system, and to allow the use of fees and charges to recover the costs of construction, operation, maintenance, and administration of the wastewater collection and treatment system.
- 5.4 ADC 12.490 states sewer collection mains must be extended along the full length of a property's frontage(s) along the right(s)-of-way or to a point identified by the City Engineer as necessary to accommodate likely system expansion. ADC 12.510 requires main extensions through the interior of a property to be developed where the City Engineer determines that the extension is needed to provide access to the public system for current or future service to upstream properties. Extension of the sewer across the frontage and/or through the interior of a property makes the system available to adjacent properties. Then, when the adjoining property connects, that property owner must extend the sewer in a similar manner, making the sewer available to the next properties. In this way, each property owner shares proportionately in the cost of extending sewer mains.
- 5.5 The property to the south of the subject property is within the Urban Growth Boundary and is expected to develop at some point in the future. In order for this property to develop, public sewer must be made available to serve the site. A public sewer main extension must be provided to the property to the south. The portion(s) of public sanitary sewer main that will be extended to serve the property to the south must be constructed at maximum depth to accommodate service to future development on the property.
- 5.6 AMC 15.30.010 states that a Connection Charge shall be due and payable when accessing the City's sanitary sewers from or for the benefit of any real property against which no assessment has previously been levied or for which the cost of constructing the sanitary sewer has not been paid by the property owner or predecessor thereof.
- 5.7 The minimum size of the public sanitary sewer main to be installed must be eight inches in diameter where a larger size is not needed to provide an adequate system, conform with the size of existing mains, meet future needs, or conform to the size specified by the utility's sewer system facility plan (AMC 10.01.110(2)(a)).

- 5.8 All sewer mains intended to serve multiple properties must be public, installed in public rights-of-way or public utility easements. The normal routing for the sewer main extension shall be in a dedicated street right-of-way (AMC 10.01.110(2)(b)).
- 5.9 The applicant's preliminary utility plan shows the extension of sanitary sewer main to serve the subdivision. Before any work is done on or around a public sanitary sewer main the applicant must obtain a Site Improvement Permit from the City's Engineering Division.

Water:

- 5.10 City utility maps show a 16-inch public water main in Lochner Road along the northernmost 155 feet of property frontage. The subject property has never been connected to the public water system. The City's Water Facility Plan calls for an extension of the 16-inch main in Lochner Road.
- 5.11 ORS 92.090 states no subdivision plat shall be approved unless water service from an approved water supply system is available to the lot line of each and every lot depicted in the proposed subdivision plat.
- 5.12 ADC 12.410 requires all new development to extend and/or connect to the public water system if the property is within 150 feet of an adequate public main.
- 5.13 ADC 12.450 requires that all new development within the City, where appropriate, provide for the extension of existing water lines serving the surrounding area.
- AMC 11.01.120(2)(e) states all required public water main extensions must extend to the furthest property line(s) of the development or parcel. Main extensions may be required through the interior of a property to be developed where the City Engineer determines that the extension is needed to provide current or future looping of water mains, or to provide current or future service to adjacent properties. When the owner of a property is required to connect to the public water system, the water main must be extended across the property's entire frontage and/or through the interior of the property. Extension of the water across the property's frontage and through the interior of the property makes the system available to adjacent properties. Then, when the adjoining property connects, that property owner must extend the water mains in a similar manner, making the water available to the next properties. In this way, each property owner shares proportionately in the cost of extending water mains.
- 5.15 AMC 11.01.120(2)(c) states the City shall have the sole right to determine size, location, and type of facility to be constructed. All engineering of public water facilities shall be based on both domestic and fire protection design criteria, and in accordance with the City's water facility plan. All public water system improvements to be built under a private contract require that the developer obtain a Permit for Private Construction of Public Improvements.
- 5.16 AMC 11.01.120(2)(h) states all public main extensions must include fire hydrants and other appurtenances in a manner consistent with the recommendations of the water system facility plan, the Standard Construction Specifications, and/or the Fire Marshal.
- 5.17 AMC 11.01.120(2)(b) states all public water system improvements must be installed in public rights-of-way or public utility easements. The normal location for the public water main extensions will be in a dedicated street right-of-way.
- 5.18 A Connection Charge shall be due and payable when accessing the City's water distribution facilities from or for the benefit of any real property against which no assessment has previously been levied or for which the cost of constructing the water facilities has not been paid by the property owner or predecessor thereof (AMC 15.30.010)
- 5.19 The applicant's preliminary utility plan shows the extension of the 16-unch water main in Finch Street through the subdivision and extended to the property's southern property line in and eight-inch mains

along the other internal streets of the development. Before any work is done on or around a public water main the applicant must obtain a Site Improvement Permit from the City's Engineering Division.

Stormwater Drainage:

- 5.20 City utility maps show a 42-inch public storm drainage main in Lochner Road along the entire frontage of the subject property. These public storm drainage facilities were installed as part of the Lochner Road improvements constructed in 1996. Because the subject property was in the county at the time these improvements were made, the property owners did not participate in the cost of constructing the storm drainage improvements.
- 5.21 It is the property owner's responsibility to ensure any proposed grading, fill, excavation, or other site work does not negatively impact drainage patterns to, or from, adjacent properties. In some situations, the applicant may propose private drainage systems to address potential negative impacts to surrounding properties. Private drainage systems that include piping will require the applicant to obtain a plumbing permit from the Building Division prior to construction. Private drainage systems crossing multiple lots will require reciprocal use and maintenance easements and must be shown on the final plat. In addition, any proposed drainage systems must be shown on the construction drawings. The type of private drainage system, as well as the location and method of connection to the public system must be reviewed and approved by the City of Albany's Engineering Division.
- 5.22 ADC 12.530 states a development will be approved only where adequate provisions for storm and flood water run-off have been made, as determined by the City Engineer. Roof drains shall be discharged to a collection system approved by the City Engineer. Also, no storm water may be discharged to the public sanitary sewer system.
- 5.23 ADC 12.580 states all new development within the City must, where appropriate, provide for the extension of existing storm sewer lines or drainageways serving surrounding areas. Extensions may be required along all frontages and/or through the interior of a property to be developed where the City Engineer determines that the extension is needed to provide service to upstream properties.
- 5.24 ADC 12.550 states any public drainage facility proposed for a development must be designed large enough to accommodate the maximum potential run-off from its entire upstream drainage area, whether inside or outside of the development, as specified in the City's storm drainage facility plan or separate storm drainage studies.
- 5.25 ADC 12.560 states where it is anticipated by the City Engineer that the additional run-off resulting from the development will overload an existing drainage facility, the review body will not approve the development until provisions have been made for improvement of the potential problem.
- 5.26 The applicant has submitted a preliminary drainage plan that shows the installation of stormwater quality and detention facilities. Final design details for these storm drainage facilities will be reviewed in conjunction with the subdivision. Before any work is done on or around a public storm drainage main the applicant must obtain a Site Improvement Permit from the City's Engineering Division.
- 5.27 A Connection Charge shall be due and payable when accessing the City's storm drains from or for the benefit of any real property against which no assessment has previously been levied or for the cost of constructing the storm drains has not been paid by the property owner or predecessor thereof.
- 5.28 AMC 12.45.030 12.45.040 requires a post-construction stormwater quality permit be obtained for all new development and/or redevelopment projects on a parcel(s) equal to or greater than one acre, including all phases of the development. (Ord. 5841 § 3, 2014)
- 5.29 **AMC 12.45.080 Post-construction stormwater quality plan required.** Applicants for a post-construction stormwater quality plan shall submit as a part of their permit application a post-construction stormwater quality plan. Each plan shall comply with the minimum standards outlined in the engineering standards, construction standards, and the provisions of this chapter. Each post-

- construction stormwater quality plan shall be reviewed, approved, and stamped by a professional licensed in Oregon as a civil or environmental engineer or landscape architect. (Ord. 5841 § 3, 2014).
- 5.30 Because the site is larger than one acre and more than 8,100 square feet of impervious surfaces will be created or replaced, the applicant must obtain a stormwater quality permit and construct stormwater quality facilities that meet all City Engineering Standards pertaining to stormwater quality.

Fire Safety:

5.31 The Albany Fire Department has reviewed the proposed subdivision for conformance with the 2022 Oregon Fire Code (OFC), and their comments are included as Attachment L. Fire safety requirements include street naming conventions, the provision of adequate water supply and capacity, and emergency access to and within the subdivision, including turnarounds, parking restrictions, and easements. The applicant must show compliance with fire safety standards prior to the Final Plat of Phase One.

Conclusions

- 5.1 The applicant must extend public utilities (sanitary sewer, water, storm drainage) to serve the proposed project. The extensions must be designed to provide access to these utilities for future development of surrounding properties.
- 5.2 The applicant must extend public sanitary sewer facilities into the site from Lochner Road to serve each of the proposed lots and provide a connection to the property to the south for future development.
- 5.3 The City's Water Facility Plan calls for the extension of the 16-inch water main in Lochner Road along the subject property's frontage. Public water must be made available to the property south of this site by extending a water main to the southern property line.
- 5.4 The applicant must provide stormwater detention and stormwater quality facilities for the property development.
- 5.5 Connection charges will be due for existing public infrastructure improvements in Lochner Road. These connection charges must be paid before the City will approve the Final Plat.
- 5.6 The applicant has submitted preliminary utility plans for the proposed development. While these plans appear to be generally acceptable, final design and construction details will be reviewed as part of the required permits.

Conditions

- Condition 5 Before the City will approve the final subdivision plat for each phase, the applicant must construct public sanitary sewer facilities to provide service to each of the proposed lots in the subdivision and provide for future extension to the property to the south.
- Condition 6 Before the City will approve the final subdivision plat for each phase, the applicant must construct public water facilities to provide service to each of the proposed lots in the subdivision and provide for future extension to the property to the south. The 16-inch public water main in Lochner Road must be extended to the south boundary of the subject property in Lochner Road.
- Condition 7 Before the City will approve the final subdivision plat for Phase One, the applicant must construct public storm drainage improvements to collect runoff from the proposed development. The storm drainage improvement must include stormwater detention and stormwater quality facilities generally as shown on the preliminary utility plans submitted by the applicant.

Condition 8 Before the City will approve the final subdivision plat for Phase One, the applicant must pay all connection charges associated with existing public infrastructure in Lochner Road along the frontage of the subject property.

NOTE:

All required permits must be obtained through the Public Works Department before beginning work on any of the aforementioned improvements. Final design and construction details will be reviewed as part of the required permits. Reference is hereby made to the comments provided by the Public Works Department, Engineering Division.

Criterion (6)

Activities and developments within special purpose districts must comply with the regulations described in Articles 4 (Airport Approach), 6 (Natural Resources), and 7 (Historic), as applicable.

Findings of Fact

- 6.1 Article 4 Airport Approach Overlay District
 - According to Figure 4.410-1 of the ADC, the subject property is not located within the Airport Horizontal Surface area, as indicated on the Albany Municipal Airport Approach and Clear Zone plan.
- 6.2 Article 6 Floodplain Overlay District
 - According to the FEMA Flood Insurance Rate Map, Community Panel No. 41043C0527G dated September 29, 2010, the subject property is partially (approximately 3,065 square feet) located in Zone AE, of the Special Flood Hazard Area (aka 100-year floodplain). ADC 6.110 "Site Improvement, Land Division, and Manufactured Home Park Standards" allows a land division within the floodplain without a land use review provided "no actual development" means the floodplain area has been excluded from the land division. The submitted Tentative Plat (Attachment B) shows the area where the floodplain is located within Tract B which is to be conveyed to the City of Albany as a stormwater facility and constitutes as "no actual development".
- 6.3 Article 6 Hillside Development Overlay District
 - According to Chapter 11, Plate 7 of the Comprehensive Plan, the subject property is not located in the Hillside Development District.
- 6.4 Article 6 Riparian Corridor Overlay District and Significant Wetlands Overly District
 - Most of the subject property is shown to contain non-significant wetlands. However, along
 the southern portion of the subject property is located within the Significant Wetland Overlay
 District and the associated Riparian Corridor.
 - The applicant submitted a wetland study performed by Pacific Habitat Service, dated August 13, 2021 (Attachment E). The applicant has also obtained a Wetland Delineation approval from the Oregon Department of State Lands (DSL) on June 2, 2021 (WD #2021-0033) which is valid for five years (June 2, 2026) (Attachment F).
 - Pursuant to ADC 6.280(B) the City's Local Wetland Inventory may be amended through wetland delineations approved by DSL. The applicant's wetland study provided evidence that the portion on the property that is inventoried as a Significant Wetland and Riparian Corridor has been degraded and is not identified as a wetland.
 - Based upon the wetland study performed by Pacific Habitat Service and the approved Wetland
 Delineation the boundary of the Significant Wetland and Riparian Corridor are no longer
 located within the subject property.

- 6.5 Article 6 Habitat Assessment Overlay District
 - The subject property is not located within the Habitat Assessment Overlay District.
- 6.6 Article 7 Historic Overlay District
 - According to Chapter 11, Plate 9 of the Comprehensive Plan, the subject property is not located within the Historic Overlay District. There are no known archaeological sites on the property.

- 6.1 The proposed development is not located within special purpose districts described in Article 7 (Historic Overlay District), as applicable.
- 6.2 According to the FEMA Flood Insurance Rate Map, a portion of the subject property is located within a SFHA. The proposed land division creates a tract (Tract B) to be conveyed to the City of Albany as a Stormwater Facility. This undeveloped tract meets the definition of "no actual development" pursuant to ADC 6.110 and is not subject to a floodplain development review.
- 6.3 The proposed development is not located within the Hillside Development Overlay District described in Article 6.
- 6.4 The subject property contains inventoried wetlands and has a valid Wetland Delineation through DSL. As a condition of approval, the applicant shall comply with the wetland delineation requirements and permits.
- 6.5 The approved Wetland Delineation found the inventoried Significant Wetland and associated Riparian Corridor in the southwestern portion of the property are no longer viable. The study and delineation found the boundaries of the significant wetland are located upon the property to the south (Tax Lot 600) and are not located upon the subject property.
- 6.6 This criterion is met with the following condition.

Conditions

Condition 10 Prior to the signing of the Final Plat for each phase the applicant shall comply with the wetland delineation requirements and permits from the Oregon Department of State Lands (DSL).

Lot and Block Arrangements Review Criteria (ADC 11.090)

In any land division for single-dwelling unit residential or middle housing development, lots and blocks shall conform to the following standards in this Article and other applicable provisions of this Code:

Criterion (1)

Lot arrangement must be such that there will be no foreseeable difficulties, for reason of topography or other condition, in securing building permits to build on all lots in compliance with the requirements of this Code with the exception of lots designated Open Space.

Findings of Fact

- 1.1 The applicant submitted findings stating: "The underlying zone of the proposed property is RS-6.5. The applicant is proposing a cluster development, and the Tentative Phased Subdivision Plans show that each lot will meet the applicable dimensional requirements for Section 11.495, as applicable. Each lot will also have adequate frontage on a public street."
- 1.2 ADC Table 3.190-1 contains the minimum lot size requirements for properties within the RS-6.5 zoning district. The applicant is requesting the proposed subdivision be reviewed as a phased cluster

development pursuant to the criteria and standards found in ADC 11.400-11.530. Cluster development is intended to protect and/or restore natural and other special features in the development of a site. Cluster development may provide greater flexibility, reduced and/or varied lot sizes, and more variety in permitted uses. Residential density may be transferred within the development in exchange for restoring degraded or marginal quality resources located in a Significant Natural Resource overlay district or for protecting natural or other special features of the site.

- 1.3 Pursuant to ADC 11.495, residential cluster development standards in Table 11.495-1 supersede the same standards in Section 3.190, Table 3.190-1. As detailed in Table 11.495 properties in the RS-6.5 zoning district do not have a minimum lot size, width, or depth, with the exception of lots on the perimeter of the cluster development.
- 1.4 The subject property is not located in an area with steep slopes. The proposed subdivision has been designed to accommodate the existing topography ensuring building permits may be issued for each lot.
- 1.5 The subject property contains identified wetlands with boundaries approved through a wetland delineation with DSL (DSL file no. WD #2021-0033). Based upon the site map submitted with the application (Attachment B) the proposed development will reserve a portion of the inventoried wetlands as open space and will not be developed.
- 1.6 Based on these factors, there will be no difficulty in obtaining building permits for all lots within the proposed development.

Conclusion

1.1 This criterion is met.

Criterion (2)

Lot dimensions must comply with the minimum standards of this Code. When lots are more than double the minimum area designated by the zoning district, those lots must be arranged so as to allow further subdivision and the opening of future streets where it would be necessary to serve potential lots. An urban conversion plan may be required in conjunction with submittal of tentative subdivision or partition plat.

Findings of Fact

- 2.1 The applicant proposes a residential cluster development as part of this five-phased subdivision. ADC 11.400-11.500 contains the requirements and standards for cluster developments which supersedes the lot standards found in ADC Table 3.190-1. Based upon table 11.495-1 the RS-6.5 zoning district does not have a minimum lot size, width, or depth for lots within the cluster development. Perimeter lot compatibility standards are found in ADC 11.500 and are addressed later in this staff report and are included here by reference.
- 2.2 The applicant proposes a total of 176 residential lots and four tracts to be developed in five phases. The minimum proposed lot size is 2,389 square feet and a maximum lot size of 8,820 square feet. There are no lots that are more than double the minimum (6,500 square feet) area for lots within the RS-6.5 zoning district. Three of the proposed tracts will exceed double the minimum area for lots within the RS-6.5 zoning district. These tracts are to be preserved as either wetlands/open space or stormwater facilities, which are restricted from any further development. As such an urban conversion plan is not required with this Tentative Plat.

Conclusions

2.1 The proposed development will create a total of 176 residential lots and four tracts with the RS-6.5 zoning district which meet the lot standards outlined in ADC 11.495 Table 11.495-1.

- 2.2 There are not any lots proposed to be greater than double the minimum lot size for the RS-6.5 zoning district. The proposed tracts which are greater than double the minimum lot size are restricted by covenant from any further development.
- 2.3 This criterion is met.

Criterion (3)

Double frontage lots shall be avoided except when necessary to provide separation of residential developments from streets of collector and arterial street status or to overcome specific disadvantages of topography and/or orientation. When driveway access from arterials is necessary for several adjoining lots, those lots must be served by a combined access driveway in order to limit possible traffic hazards on such streets. The driveway shall be designed and arranged so as to avoid requiring vehicles to back into traffic on arterials. An access control strip shall be placed along all lots abutting arterial streets requiring access onto the lesser class street where possible.

Findings of Fact

- 3.1 As shown on the Tentative Plat, Attachment B, lots 1 through 14 will abut an arterial, in addition to their primary frontage to an internal local street. No individual access points to the arterials are proposed. Double frontage lots are proposed in this instance due to the location of wetlands on the site, and to allow for preservation of the wetlands while overcoming the applicable arterial access spacing requirements.
- 3.2 This condition arises out of the necessity to provide separation from the residential development's local streets, (Blue Jay Avenue, Blackbird Avenue, Finch Street, Harrier Street, Flicker Street, Junco Street, Nuthatch Street), from the existing arterial street, (Lochner Road). Therefore, as noted above, the double frontage lots in this case are an allowable exception to this criterion.
- 3.3 Driveway access to Lochner Road is not proposed.

Conclusion

3.1 This criterion is met.

Criterion (4)

Side yards of a lot shall run at right angles to the street the property faces, except that on a curved street the side property line shall be radial to the curve.

Findings of Fact

4.1 As shown on the Tentative Plat, Attachment B, lot lines run at right angles to the streets, or radial to the curved portions of the streets. Therefore, the side yards of the lots will run at right angles as well.

Conclusion

4.1 This criterion is met.

Criterion (5)

The average block length shall not exceed 600 feet. Block length is defined as the distance along a street between the centerline of two intersecting through streets (Figure 11.090-1). The City may grant an exception to the average block length standard based on one or more of the conditions in subsections (a) through (c) below.

- (a) Physical conditions preclude an average block length of 600 feet or less. Such conditions may include steep slopes or the existence of physical features, including, but not limited to: wetlands, riparian corridors, mature tree groves, or a resource under protection by State or Federal law.
- (b) Existing transportation or utility facilities, buildings, or other existing development on adjacent lands, including previously subdivided but vacant lots or parcels, physically preclude an average block length of 600 feet or less, considering the potential for redevelopment.
- (c) An existing public street or streets terminating at the boundary of the development site have a block length exceeding 600 feet or are situated such that the extension of the street(s) into the development site would create a block length exceeding 600 feet. In such cases, the average block length shall be as close to 600 feet as practicable.

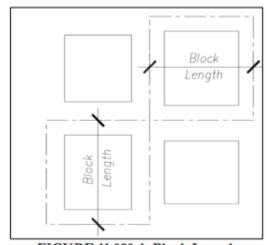


FIGURE 11.090-1. Block Length

- 5.1 The Tentative Plat, Attachment B, depicts the layout of the proposed development and the relationship between the streets at the intersections of Blue Jay Avenue with Lochner Road SE, and Blackbird Avenue with Lochner Road SE.
- As measured along the street between the center line of two intersecting through streets, the proposed blocks within the development are as follows:
 - Finch Street to Harrier Street ~223 ft
 - Harrier Stret to Flicker Street: ~255 ft
 - Flicker Street to Junco Street: ~300 ft
 - Junco Street to Nuthatch Street: ~252 ft
 - Nuthatch Street to Nighthawk Street: ~225 feet
 - Lochner Road to Finch Street: ~190
 - Average block from Blackbird Avenue to Blue Jay Avenue: ~360 feet Average Block Length = ~240 ft.

The average block length based upon the proposed development is approximately 240 feet, which meets the average block length standard.

Conclusion

- 5.1 The average block length within the development is approximately 240 feet.
- 5.2 This criterion is met.

Criterion (6)

Off-street pedestrian pathways shall be connected to the street network and used to provide pedestrian and bicycle access in situations where a public street connection is not feasible.

Findings of Fact

6.1 At the time of building permit processing, off-street pedestrian pathways will be established in compliance with Articles 8 and 11 of the ADC as applicable.

Conclusion

6.1 This criterion is met.

Criterion (7)

With the exception of townhouse development, the minimum frontage of a lot on a cul-de-sac shall be 22 feet as measured perpendicular to the radius.

Findings of Fact

7.1 The tentative site map does not propose a cul-de-sac with this development.

Conclusion

7.1 This criterion is met.

Criterion (8)

Flag lots are allowed only when the City Engineer has determined that the dedication and improvement of a public street is not feasible or not practical. The minimum width for a flag is 22 feet, except when access is shared by an access and maintenance agreement in which case each lot shall have a minimum width of 12 feet and a combined minimum of 24 feet.

Findings of Fact

8.1 The applicant does not propose any flag lots with this development.

Conclusion

8.1 This criterion is met.

Criterion (9)

At all street intersections, an arc along the property lines shall be established so that construction of the street at maximum allowable width, centered in the right-of-way, shall require not less than a twenty-foot radius of the curb line.

Findings of Fact

9.1 The arcs along the property lines at all street intersections will be established so that a minimum 200-foot radius of the curb line can be constructed.

Conclusion

9.1 The applicant must ensure that the final subdivision plat for the development complies with this 200-foot radius requirement.

Condition

Condition 11 Prior to City approval of the final subdivision plat for each phase of the development, the applicant must demonstrate that the arc along the property lines at all street intersections are established so that the construction of the curb line has a radius that is not less than two hundred feet.

Cluster Development Criteria (ADC 11.400-11.530)

Purpose (ADC 11.400)

Cluster development is intended to protect and/or restore natural and other special features in development of a site. In return, the more flexible standards found in this section may supersede other stricter standards of this code. Cluster developments may provide greater flexibility, reduced and/or varied lot sizes, and more variety in permitted uses. Residential density may be transferred within the development in exchange for restoring degraded or marginal quality resources locating in a Significant Natural Resource Overlay District or for protecting natural or other special features of the site. Developments must satisfy high-quality master planning and design requirements.

Findings of Fact

Portions of the subject property are located within the Albany Local Wetland Inventory. The applicant had a Wetland Delineation Report, dated January 14, 2021, completed by wetland biologist, Pacific Habitat Services. The Wetland Delineation Report identified wetlands that are not on Albany's Local Wetland Inventory, as well as determined the locational boundaries of the local inventoried wetland is not located upon the subject property.

Based upon the Wetland Delineation Report (Attachment E) and approved DSL Wetland Delineation (Attachment F) the applicant proposes to dedicate two tracts (Tracts A and C) totaling approximately 12.74 acres of land with identified wetlands intended for wetland preservation. An HOA consisting of residents/property owners of this development is required to be formed to manage Tracts A and C.

Optional Nature (ADC 11.405)

Cluster development is an optional form of development. Cluster development proposals are reviewed as part of the land division, site plan, or Conditional Use application processes.

Findings of Fact

The proposed cluster development is reviewed as part of a subdivision, a land division, application process. The land division criteria are addressed earlier in this report.

Eligibility (ADC 11.410)

To be eligible to apply for cluster development, all of the following are required:

- (1) Residential Zoning. The site must be located in a residential zoning district.
- (2) Natural and Other Special Features. The site must contain one or more of the features listed in Section 11.460.
- (3) Professional Designer. An applicant for cluster development approval must certify in writing that a certified landscape architect, site planner, or landscape designer, approved by the Director, will be used in the planning and design process for the proposed development.

The subject property is located within the Residential Single Dwelling (RS-6.5) zoning district, which is a residential zoning district.

The subject property contains wetlands that have been identified through a Wetland Delineation Report.

The project has been designed by a licensed civil engineer, and a natural resource specialist/wetlands biologist (Pacific Habitat Services).

Relationship to Other Regulations (ADC 11.420)

If the applicant chooses the cluster development option, and the site is deemed eligible by the City, these standards will supplement other provisions of this Code. For example, a subdivision proposed as a cluster development is also subject to other provisions of Article 11 of the Development Code. Other types of residential development are subject to Site Plan Review or Conditional Use review. These provisions apply to issuance of building permits in a cluster development and to ongoing uses and activities in a cluster development.

Findings of Fact

The applicant is proposing a residential phased subdivision applying the cluster development standards. As determined earlier in this report, the subject property is eligible for cluster development option pursuant to ADC 11.410.

The land division criteria under ADC 11.180 are addressed earlier in this report and are included here by reference.

At the time of building permit submittal, the respective building setbacks, lot coverage, and height standards of the underlying RS-6.5 zoning district will apply.

Procedure (ADC 11.430)

Cluster development proposals are reviewed as a Type III procedure.

Findings of Fact

The proposed cluster development is reviewed as a Type III procedure, in accordance with ADC 1.360.

Review Criterial (ADC 11.440)

The review criteria for a cluster development are those that apply to a particular type of development. For example, the tentative plat criteria in Article 11 apply to cluster land divisions. (See Section 11.420 for relation to the other requirements.) Also, the review body must find that the application meets the following additional criterion:

- (1) The proposed development meets all of the requirements for cluster development.
- (2) The proposed development preserves or restores natural or other special features as identified and prioritized in ADC 11.460.

<u>Findings of Fact</u>

- 1.1 The applicant proposes to create a 176-lot subdivision through a residential cluster development. Findings addressing the standards and requirements for residential cluster development are addressed in this staff report and are included here by reference.
- 1.2 The proposed cluster development is reviewed as part of a subdivision, a land division, application process. The land division criteria are addressed earlier in this report and are included here by reference. The applicant has submitted a Wetland Delineation Report (Attachment F) which indicates

there are wetlands upon the subject property. The Tentative Plat (Attachment B) has two separate tracts, Tracts A and C, to be conveyed to an HOA for the preservation of the wetlands and open space.

Conclusions

This criterion is met through compliance with conditions.

Natural Areas Requirements (ADC 11.450)

Cluster developments must provide a minimum of 20 percent of the site as permanent natural areas. Land designated as Open Space on the Comprehensive Plan or Zoning maps may not be used to fulfill this requirement.

Findings of Fact

The applicant's findings (Attachment C) provide a table with the breakdown of the tract areas intended for wetland preservation. Based upon the submitted materials, the applicant proposes approximately 12.73 acres of the subject property, 36 percent of the property, to be preserved as permanent natural areas. The subject property does not have any Open Space zoning district or Comprehensive Plan designations.

Designation of Permanent Natural Area (ADC 11.460)

The required natural area may be public or private. The minimum 20 percent of the gross acreage of the development site set aside as natural area in a cluster development should be designated in the following priority order:

- (1) The first priority for natural area designation is significant tree groves identified on the South Albany Area Plan Organizational Framework map in the Comprehensive Plan (Figure 1), and Oregon White Oak (Quercus garryana) trees citywide equal to or greater than six and one-half feet in circumference (approximately 25-inches in diameter) measured as defined in Article 9.203(4). For individual trees, the natural area boundary is defined as the critical root zone (as defined in Article 9.203 (1)) plus a 10-foot buffer.
- (2) The second priority for natural area designation is natural resources within the Significant Natural Resource overlay districts that are of degraded or marginal quality and subsequently restored to good quality in accordance with the quality levels in ADC Section 6.410(5). This priority shall be satisfied in the following order:
 - (a) Habitat for western painted and northwestern pond turtles within the Habitat Assessment Overlay (/HA), as identified by a turtle habitat assessment, that is restored to good quality.
 - (b) Wetland within the Significant Wetland overlay district (/SW) that is restored to good quality.
 - (c) Riparian area within the Riparian Corridor overlay district (/RC) that is restored to good quality.

Findings of Fact

The subject property does not contain significant tree groves identified on the SAAP or the Oregon White Oak. The subject property contains a small portion of Significant Wetlands and Riparian Corridor in the southwestern corner. These local jurisdictional wetlands have been altered through a Wetland Delineation through DSL based upon a Wetland Delineation Report submitted by Pacific Habitat Services. The inventoried Significant Wetlands are not located upon the subject property and are located upon the property directly south.

- (3) The third priority for natural area designation is protection of other environmentally sensitive areas, natural and scenic features of the site. This priority shall be satisfied in the following order:
 - (a) Good quality habitat for western painted and northwestern pond turtles near Thornton

- Lakes within the Habitat Assessment overlay (/HA) as identified by a turtle habitat assessment.
- (b) Good quality wetland within the Significant Wetland overlay district (/SW).
- (c) Good quality riparian area within the Riparian Corridor overlay district (/RC).
- (d) Other wetlands not within the Significant Wetland overlay district, as shown on the City's Local Wetland Inventories, or by a delineation approved by the Oregon Department of State Lands.
- (e) Existing channels identified in the most current version of the City of Albany Storm Water Master Plan.
- (f) Springs.
- (g) Land with natural slopes 12 percent or greater as designated by the Hillside Development overlay district (/HD).
- (h) Wooded area with five or more healthy trees over 25 inches in circumference (approximately eight inches in diameter) measured as defined in Article 9.203(4), if approved by the City Forester.
- (i) Land that provides bike or walking trails that connect to existing or proposed parks or trails, inventoried natural features, or areas zoned Open Space; or areas otherwise protected as permanent natural areas.
- (j) Incorporate public parks, trails, trailheads, or open space designated in the Parks, Recreation and Open Space Plan, the North Albany Refinement Plan, and the South Albany Area Plan.
- (k) Other features of the site unique to Albany, if approved by the Director.

The submitted Wetland Delineation Map (Figure 6) indicates the location of the identified wetlands upon the subject property. The applicant proposes two separate tracts to preserve the wetlands upon the subject property. Tract A is proposed at 528,146 square feet and will contain inventoried wetlands B and C as delineated on Figure 6 of the Wetland Delineation (Attachment F). Tract C will consist of 26,688 square feet and will contain wetland A and the inventoried Riparian Corridor. The subject property will also contain two different trail systems. The South Albany Area Plan Trails Framework indicates identifies a trail along the north and eastern property lines of the subject property. The applicant proposes to dedicate an easement to the City for the creation of this trail.

- (4) The fourth priority for natural area designation is to create "open spaces" in and around neighborhoods. This priority shall be satisfied by any of the following:
 - (a) Continuity of adjacent open space corridors or parkways.
 - (b) A network of interconnected open space corridors
 - (c) A buffer between neighborhoods.

Findings of Fact

The subject property is located within the SAAP boundary, and the applicant is proposing to set aside approximately 12.73 acres of open space (36 percent). The applicant's narrative provides a table breakdown of land areas shown for natural resource preservation. The abutting property to the east has an open space corridor located under the same BPA easement that encumbers the subject property. The orientation of Tract A provides continuity of this adjacent open space corridor and creates a network of interconnected open space corridors. The applicant has oriented Tract A to be located upon the northern and eastern property lines of the subject property. This creates a natural buffer between the existing manufactured home development to the east and any future development to the north.

Creation of Permanent Natural Areas (ADC 11.470)

(1) Natural areas in a cluster development may be set aside and managed in one or more of the following ways:

- (a) Portions of one or more individual lots; or
- (b) Common ownership by residents of the development; or
- (c) Third party (non-profit organization) whose primary purpose is to hold or manage the open space, subject to a reversionary clause in the event of dissolution of the non-profit organization; or
- (d) Dedicated to City of Albany, if the City agrees to accept ownership and maintain the space.
- (2) Except for Subsection (1)(d) above, natural areas shall be subject to restrictive covenants and easements reviewed by the Community Development Director and recorded and filed when the subdivision plat for the project area is recorded. Except when allowed in 11.480, an easement shall include permanent provisions prohibiting the placement of structures, or impervious surfaces, alteration of the ground contours, or any other activity or use inconsistent with the purpose of these provisions.

The applicant's narrative indicates the permanent natural area will be set aside in tracts. The Tentative Plat indicates there are four Tracts proposed within the subdivision. The chart below contains the specifics for each tract:

TRACT	SQUARE FEET	PROPOSED USE/OWNERSHIP		
A	528,146	Wetlands/Open Space; Convey to HOA		
В	36,157	Stormwater facility; Convey to City of Albany		
С	26,688	Wetlands/Open Space; Convey to HOA		
D	2,551	Access Easement; Conveyed to Gerig Trust		

Based upon the table above the applicant proposes to dedicate approximately 12.73 acres as natural areas to be conveyed to the future HOA. As a condition of approval, prior to recording the Final Plat for Phase One, a restrictive covenant that prohibits the placement of structures or impervious surfaces, alteration of ground contours, or any other activity or use inconsistent with the purpose of the Cluster Development provisions.

As a condition of approval, at the recording of the final plat for Phase One, a restrictive covenant that prohibits the placement of structures or impervious surfaces, alteration of ground contours, or any other activity or use inconsistent with the purpose of the Cluster Development provisions.

Condition

Condition 12 At the recording of the Final Plat for Phase One, a restrictive covenant must be filed, that prohibits the placement of structures or impervious surfaces, alteration of ground contours, or any other activity or use inconsistent with the purpose of the Cluster Development provisions.

Protection of Permanent Natural Areas (ADC 11.480)

- (1) If any applicable overlay districts allow it, the development may encroach into permanent natural areas, only under the following circumstances:
 - (a) Meets the requirements of all overlay districts in Articles 4, 6, and 7; and
 - (b) The encroachment is necessary to meet transportation, utility infrastructure requirements, or post construction stormwater quality requirements; or

- (c) The encroachment is necessary to provide bike or walking trails that connect to existing or proposed parks or trails, inventoried natural features, or areas zoned Open Space or otherwise protected as permanent natural areas.
- (2) Permanent alteration by grading may be authorized for the purpose of natural resource enhancement, such as wetland, riparian, or wildlife habitat restoration.
- (3) Significant wetlands, riparian corridors, and intermittent streams preserved as natural areas in cluster development may be used for conveyance of storm waters only when the applicant has demonstrated that the discharge is compatible with the protection of the natural resource. These natural features shall not be used for drainage improvements, such as detention or retention ponds, or any other utility improvement necessary for development of the lots.

<u>Findings of Fact</u>

According to the applicant's submitted materials, grading for natural resource enhancement is not planned. The submitted Tentative Plat shows the significant resources upon the subject property are not planned to convey stormwater.

(4) Areas set aside for permanent natural areas in cluster development cannot be further subdivided.

Findings of Fact

Under Criterion ADC 11.470 a condition of approval requires restrictive covenants and easements (via the formation of a HOA.) to protect the dedication natural areas in Tracts A and C. The City is to be conveyed the storm water facility, Tract B, and the Gerig Trust will be conveyed Tract D for access. The recorded plat will further describe the intent/purpose of these tracts. Through compliance with the conditions set forth in this report the natural areas will be protected and not further developed or divided.

(5) Fences are permitted in and around the natural areas if consistent with the expressed purpose of the natural areas.

Findings of Fact

The submitted site plan did not indicate the location of proposed fencing.

(6) Provisions must be established to ensure the continued maintenance of areas designated as natural areas through Cluster Development. See Section 11.470.

Findings of Fact

Under criterion ADC 11.470, Tracts A and C are to be owned and maintained by an HOA. As a condition of approval, Covenants, Conditions and Restriction of the HOA documents are to describe the maintenance responsibility of Tracts A and C for protection of natural resources and are to be provided to the City for review prior to the recording of the final plat.

Condition

Condition 13 Prior to the signing of the Final Plat for Phase One, a copy of the Covenants, Conditions, and Restriction of the HOA documents detailing the maintenance and responsibility of Tracts A and C must be provided to the City for review.

Permitted Uses (ADC 11.490)

The uses allowed within cluster developments outside the permanent natural areas are determined by the underlying zoning district standards in Section 3.050, with the following exceptions:

- (1) On development sites greater than 20 acres, up to 20 percent of the housing units in RS-6.5 and RS-10 may be attached single-dwelling or condominium housing.
- (2) On development sites greater than 50 acres, up to two acres may be developed with neighborhood commercial uses through a Conditional Use review. The maximum building footprint of commercial or office uses shall be 3,000 square feet. Commercial and office uses

shall be limited to restaurants with no drive-through service, and convenience-oriented and personal service-oriented uses as described in Article 22.

Findings of Fact

The applicant proposes to subdivide the 35.32-acre property into 176 lots for future residential development. Single dwelling units and middle housing options are outright uses in the RS-6.5 zoning district, with triplexes, fourplexes, and cottage clusters dependent upon the lot size. Table 11.495-1 indicates the maximum density for properties within the RS-6.5 zoning district is 6 units per gross acre. The proposed 176-lot subdivision is below the maximum density of 211 units.

Development Standards (ADC 11.495)

In a cluster development, the following development standards in Table 11.495-1 supersede the same standards in Section 3.190, Table 3.190-1. The number of allowable dwelling units is based on the maximum density for the zone as specified in the following table.

Tilbell in the in this waste density ranges per none.									
Standard	RS-10	RS-6.5	RS-5 & HM	RM	RMA	OS			
Max. dwelling units per gross acre (1)	4	6	8	25	35	1 (5)			
Minimum Lot Size (2)	None	None	None	None	None	N/A			
Minimum Lot Width	None	None	None	None	None	N/A			
Minimum Lot Depth	None	None	None	None	None	N/A			
Minimum front setback (3)	15 ft.	10 ft.	10 ft.	10 ft.	10 ft	N/A			
Maximum Lot Coverage (4)	70%	70%	70%	70%	75%	N/A			

TABLE 11.495-1. Allowable density ranges per zone.

- In Middle Housing Zoning Districts, additional density to allow for middle housing may be permitted. Density for middle housing shall be based on the minimum lot size for the housing type in the applicable zoning district.
- (2) Lots on the perimeter of the cluster development shall meet the standards in 11.500.
- (3) Except, when lots are adjacent to existing development on the same side of the street, the setback shall be within 5 feet of the adjacent house(s) setback(s).
- (4) The maximum lot coverage may be up to 100 percent for lots that provide land only for the building footprint.
- (5) Allows 1 residential unit per existing lot.

Findings of Fact

The site is a 35.32-acre property located within the RS-6.5 zoning district. The applicant proposes a 176-lot subdivision through the residential cluster development standards. The submitted Tentative Plat (Attachment B) indicates that the proposed lots meet the standards found in Table 11.495-1. Some standards, such as setbacks and lot coverage, are not reviewable at this stage of development and are reviewed with the building permit application for each dwelling.

The standards outlined in Table 11.495-1 supersedes the same standards described in Section 3.190, Table 3.190-1 with the exception found in Footnote 1 which acknowledges lots situated on the perimeter of the cluster development. Conformance with this standard is described later in this staff report and is included here by reference.

Perimeter Lot Compatibility (ADC 11.500)

The following standards and exceptions will apply to the lots on the perimeter of a proposed cluster development.

- (1) Standards. The term "standard minimum lot size" as used in this section, means the minimum lot size allowed in the underlying base zone without any reductions in size allowed elsewhere in this Code.
 - (a) When the proposed cluster development abuts developed property in a lower density residential zoning district, the size of lots on the perimeter of the proposed cluster development shall be at least the standard minimum lot size allowed in the zone underlying the cluster development.

The subject property is located within the RS-6.5 zoning district which has a "standard minimum lot size" of 6,500 square feet. The properties to the north and east are located within the RS-6.5 zoning district; the property to the south is located within Linn County and is zoned UGA-UGM-20; and the property to the west is located within the LI zoning district. The properties to the north and east are located within a residential zoning district but are not of a lower density. The property to the south is located within Albany's Urban Growth Boundary and is located in a less dense zoning district; however, the SAAP land use plan indicates the property, upon annexation, will be the same density as the subject property. The property to the west is not located within a residential zoning district.

(b) When the proposed cluster developed property in the same residential zoning district as the proposed cluster development, the size of lots on the perimeter of the cluster development shall be at least 70 percent of the standard minimum lot size of the underlying zoning district.

Findings of Fact

The subject property is located within the RS-6.5 zoning district which has a "standard minimum lot size" of 6,500 square feet. The properties to the north and east are located within the RS-6.5 zoning district, which is the same residential zoning district as the subject property. In order to comply with this standard, the perimeter lots to the north and east must be at least 4,550 square feet. The submitted Tentative Plat contains three lots along the north of the development and one property along the eastern perimeter that meets this or exceeds 70 percent of the "standard minimum lot size". Findings addressing exceptions to this standard are discussed later in this staff report and referenced here.

- (2) Exceptions. The Perimeter Lot Compatibility standards do not apply in the following cases:
 - (a) Perimeter lots that are adjacent to land that is zoned for higher density housing, mixed-use or non-residential uses, or to residentially zoned property not in residential use (such as educational, institutional, religious, or park uses).

Findings of Fact

The subject property is located within the RS-6.5 zoning district and is surrounded by properties that are located within the RS-6.5 zoning district to the north and east; the jurisdiction of Linn County (UGA-UGM-20) to the south; and the LI zoning district to the west. This exception does not apply to this development based upon the surrounding zoning districts.

(b) Where the same property owner owns the property abutting the proposed cluster development or when the perimeter lots share a property line with the Urban Growth Boundary.

Findings of Fact

The subject property is located within the RS-6.5 zoning district and is surrounded by properties that are located within the RS-6.5 zoning district to the north and east; the jurisdiction of Linn County (UGA-UGM-20) to the south; and the LI zoning district to the west. The property to the south of the site is located within the Urban Growth Boundary and is currently owned by the same property owner. This exception applies to the perimeter lots along the southern boundary of the proposed development.

(c) If a buffer area is created as a separate property along the perimeter and is at least 20 feet wide, the buffer area shall become a permanent natural area and shall meet the provisions in Sections 11.470 and 11.480.

The applicant proposes to create a 176-lot cluster development with approximately 12.73 acres of preserved wetlands and open space. The proposed building area of the subdivision is bordered by Tract A to the north and east. This proposed Tract A is greater than 20 feet wide and creates a natural buffer area that meets the provisions of Sections 11.470 and 11.480. Based upon the location and dimensions of Tract A the perimeter lots to the north and east are exempt from meeting 70 percent of the "standard minimum lot size".

(d) Cluster developments abutting property that is at least 1 acre in size.

Findings of Fact

The subject property is abutting properties that are at least one acre in size. Based upon the size of the abutting properties, all perimeter lots are exempt from meeting 70 percent of the "standard minimum lot size".

South Albany Connectivity (ADC 11.530)

Developments within the South Albany Area Plan boundary shall provide a connected street and pathway network.

Findings of Fact

The subject property is located within the South Albany Area Plan boundary. Based upon the SAAP the subject property does not contain any future street connections (Attachment I). The subject property does contain areas that have been planned for two separate trail networks, the Oak Creek Loop Trail and a proposed trail (Attachment J). The Oak Creek Loop Trail is currently in the Albany Transportation System Plan (TSP) under M2a. The Tentative Plat shows proposed alignment of both required trail systems. The applicant does not propose construction of either trail at this time. As a condition of approval, the applicant must provide the City an easement for each trail alignment prior to the Final Plat for Phase One.

Overall Conclusion

As proposed and conditioned, the application under planning file SD-02-23 for a Cluster Development Tentative Plat to develop a 176-lot subdivision satisfies all applicable review criteria as outlined in this report.

Overall Conditions

Condition 1 The applicant shall convey Tract D to the property at 3795 Lochner Road SE at the time of recording the Final Plat for Phase One.

Transportation:

- Condition 2 The applicant shall construct, to city standards, all public streets interior to the development. The right-of-way widths shall be 54 feet and the curb-to-curb widths 30 feet as identified on the Tentative Plat Map. The minimum center line radius for interior local streets shall be 200 feet.
- Condition 3 Project phasing and interior street construction must demonstrate compliance with applicable Fire Code requirements relating to the need for secondary access and access point spacing.
- Condition 4 Prior to the development of Phase One:
 - The applicant shall dedicate 10 feet of public right-of-way along the site's 705 feet of frontage along Lochner Road as shown on Tentative Plat Map.
 - The applicant shall construct a six-foot public setback sidewalk along the site's frontage on Lochner Road.

- The applicant shall install stop signs and striped crosswalks at the two new local street connections to Lochner Road.
- The applicant shall dedicate to the City a multi-use path over Tract A for the path identified in the South Albany Area Plan (SAAP) that extends from the southeastern corner of the site north to the BPA easement, and along the BPA easement to Lochner Road. The precise location of the easement overt that alignment shall be non-specific in order to allow for flexibility in path design and alignment and allow for a path for up to 12 feet in width.

Utilities:

- Condition 5 Before the City will approve the final subdivision plat for each phase, the applicant must construct public sanitary sewer facilities to provide service to each of the proposed lots in the subdivision and provide for future extension to the property to the south.
- Condition 6 Before the City will approve the final subdivision plat for each phase, the applicant must construct public water facilities to provide service to each of the proposed lots in the subdivision and provide for future extension to the property to the south. The 16-inch public water main in Lochner Road must be extended to the south boundary of the subject property in Lochner Road.
- Condition 7 Before the City will approve the final subdivision plat for Phase One, the applicant must construct public storm drainage improvements to collect runoff from the proposed development. The storm drainage improvement must include stormwater detention and stormwater quality facilities generally as shown on the preliminary utility plans submitted by the applicant.
- Condition 8 Before the City will approve the final subdivision plat for Phase One, the applicant must pay all connection charges associated with existing public infrastructure in Lochner Road along the frontage of the subject property.
- NOTE: All required permits must be obtained through the Public Works Department before beginning work on any of the aforementioned improvements. Final design and construction details will be reviewed as part of the required permits. Reference is hereby made to the comments provided by the Public Works Department, Engineering Division.

Lot and Block Standards:

Condition 9 Prior to City approval of the final subdivision plat for the development, the applicant must demonstrate that the arc along the property lines at all street intersections are established so that the construction of the curb line has a radius that is not less than twenty feet.

Natural Resources:

- Condition 10 Prior to the signing of the Final Plat for each phase the applicant shall comply with the wetland delineation requirements and permits from the Oregon Department of State Lands (DSL).
- Condition 11 At the recording of the Final Plat for Phase One, a restrictive covenant must be filed, that prohibits the placement of structures or impervious surfaces, alteration of ground contours, or any other activity or use inconsistent with the purpose of the Cluster Development provisions.
- Condition 12 Prior to the signing of the Final Plat for Phase One, a copy of the Covenants, Conditions, and Restriction of the HOA documents detailing the maintenance and responsibility of Tracts A and C must be provided to the City for review.

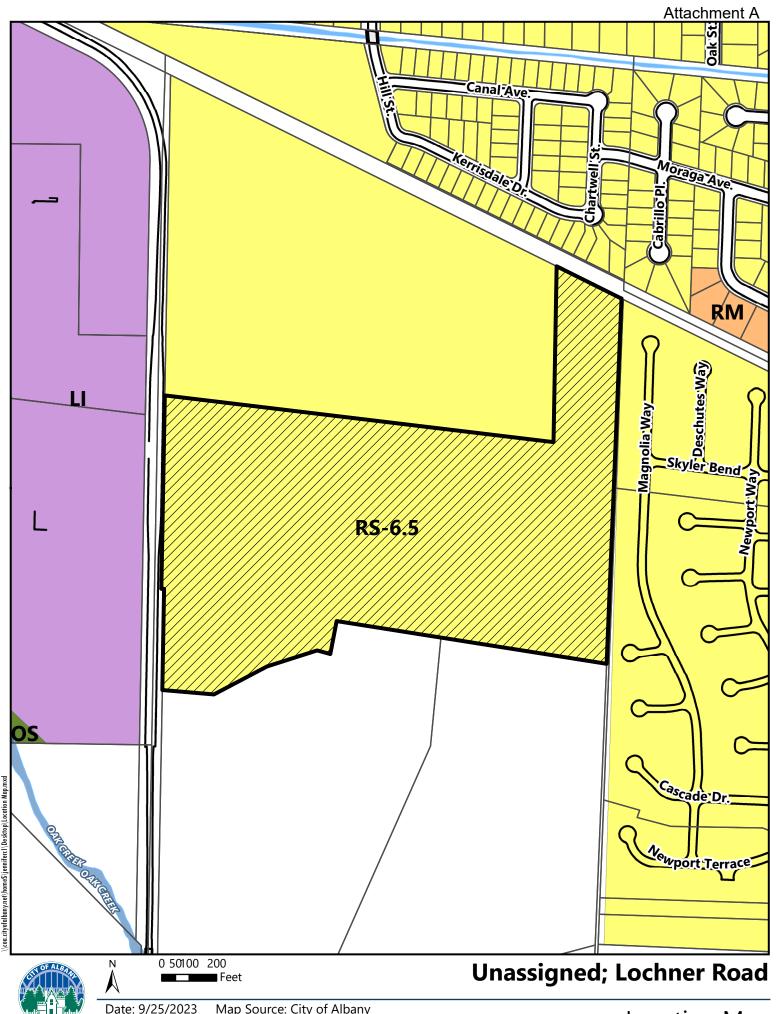
Attachments

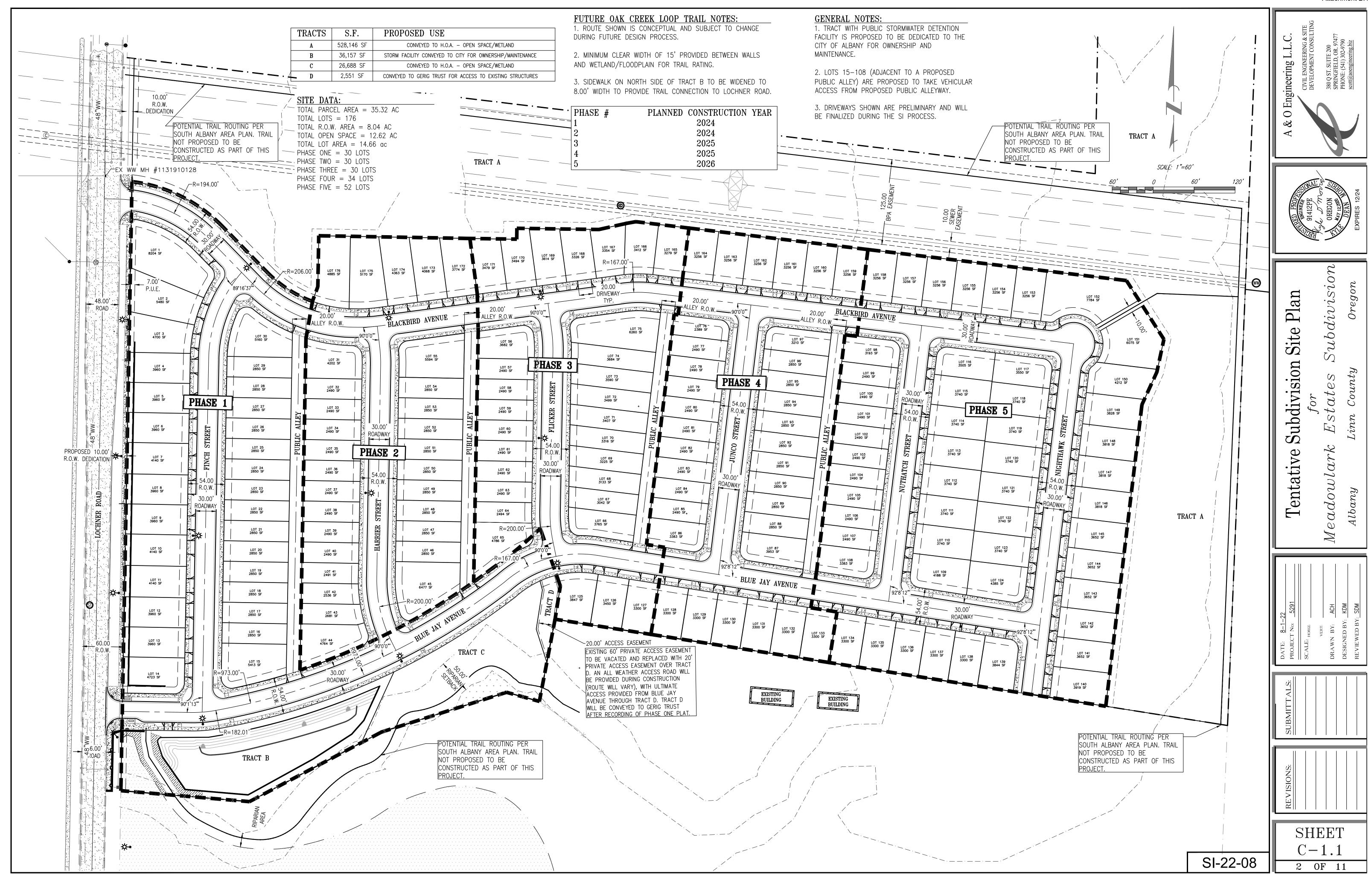
- A Location Map B Site Map
- C Applicant's Narrative
- D Neighborhood Meeting Materials
- E Wetland Report
- F DSL Wetland Delineation
- G Transportation Impact Analysis
- H Stormwater Report
- I SAAP Road Network
- J SAAP Trail Network
- K FIRM Panel
- L Albany Fire Department Comments

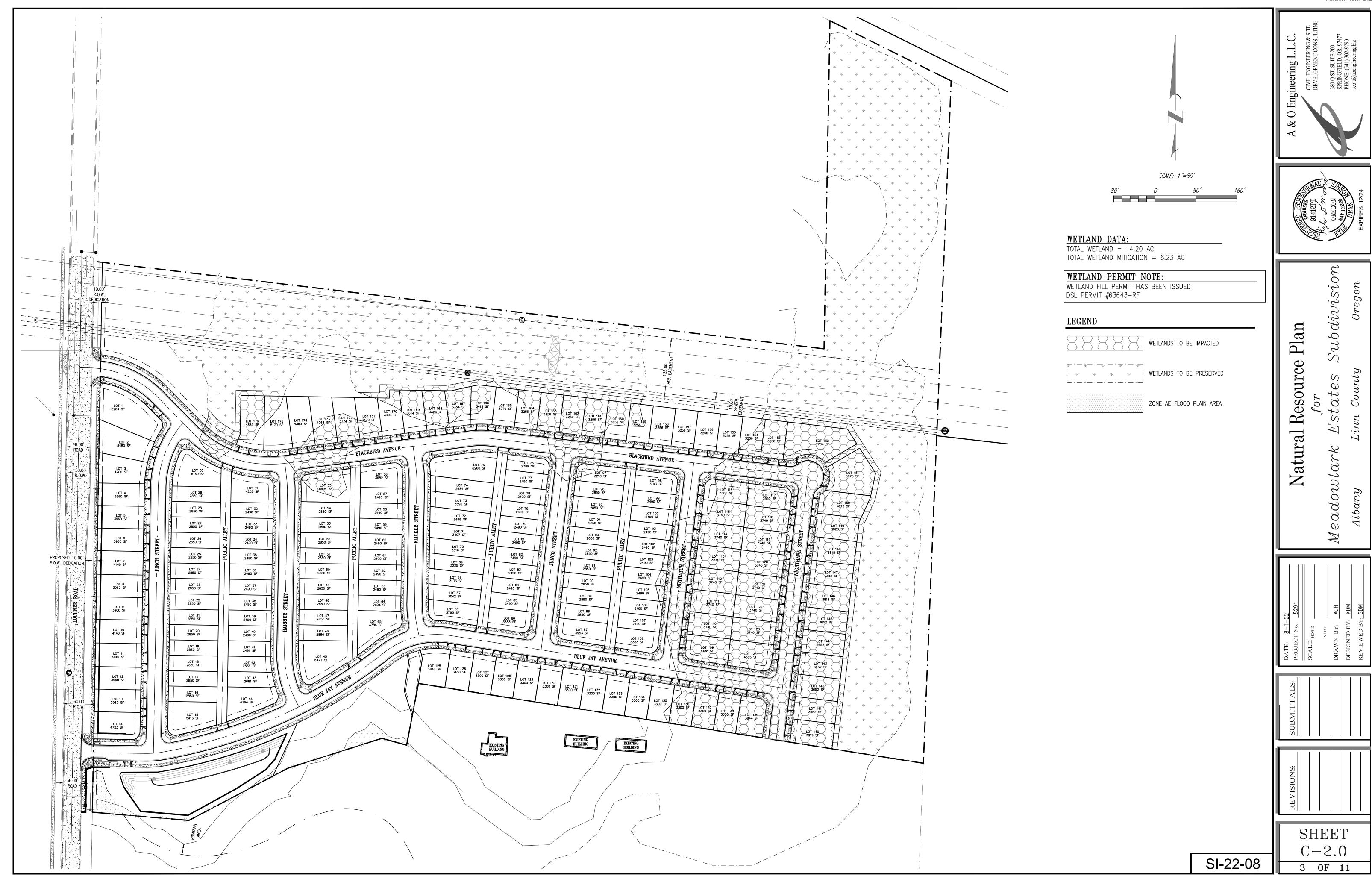
Acronyms

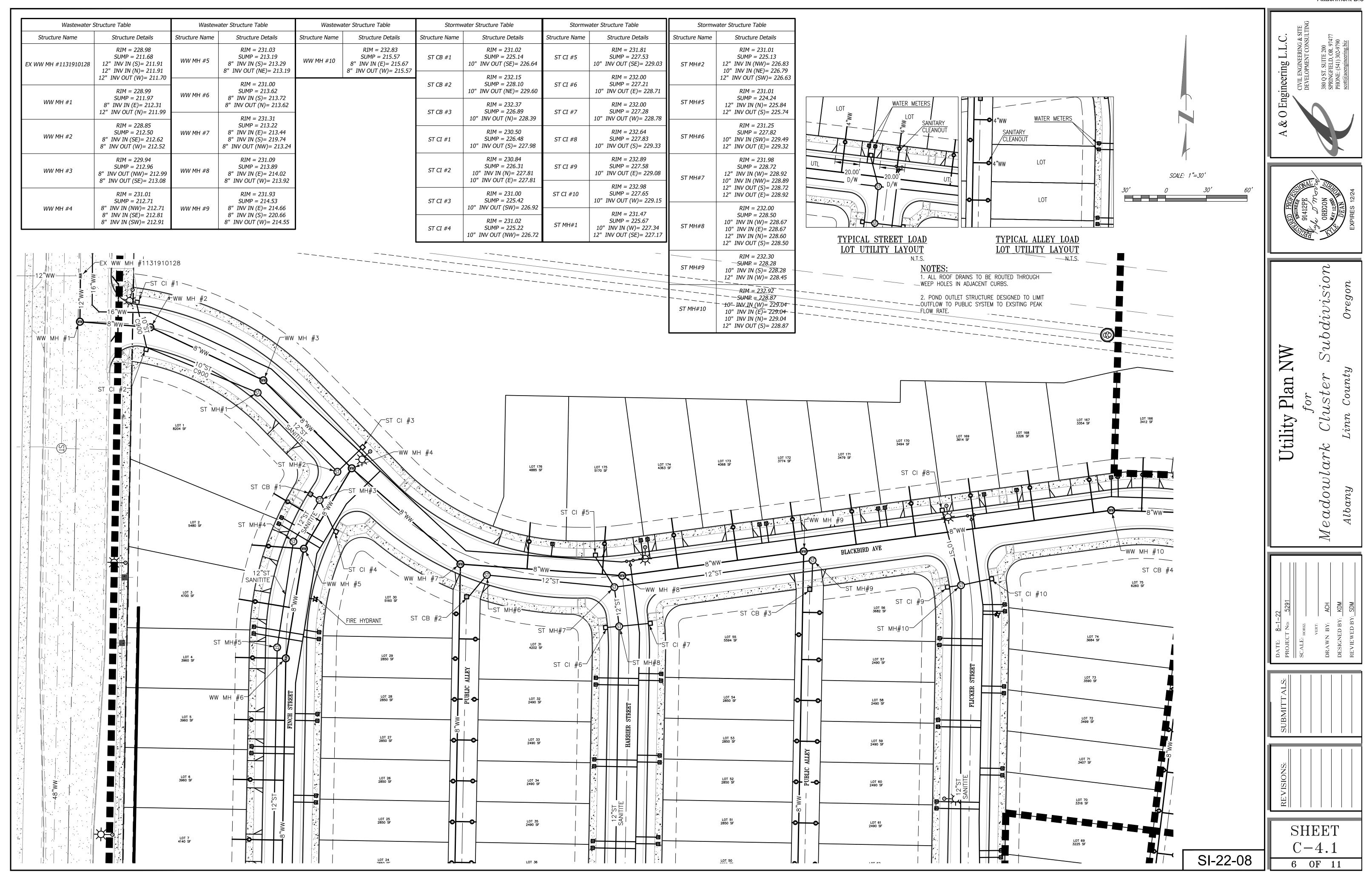
ADC Albany Development Code AMC Albany Municipal Code DSL Department of State Lands

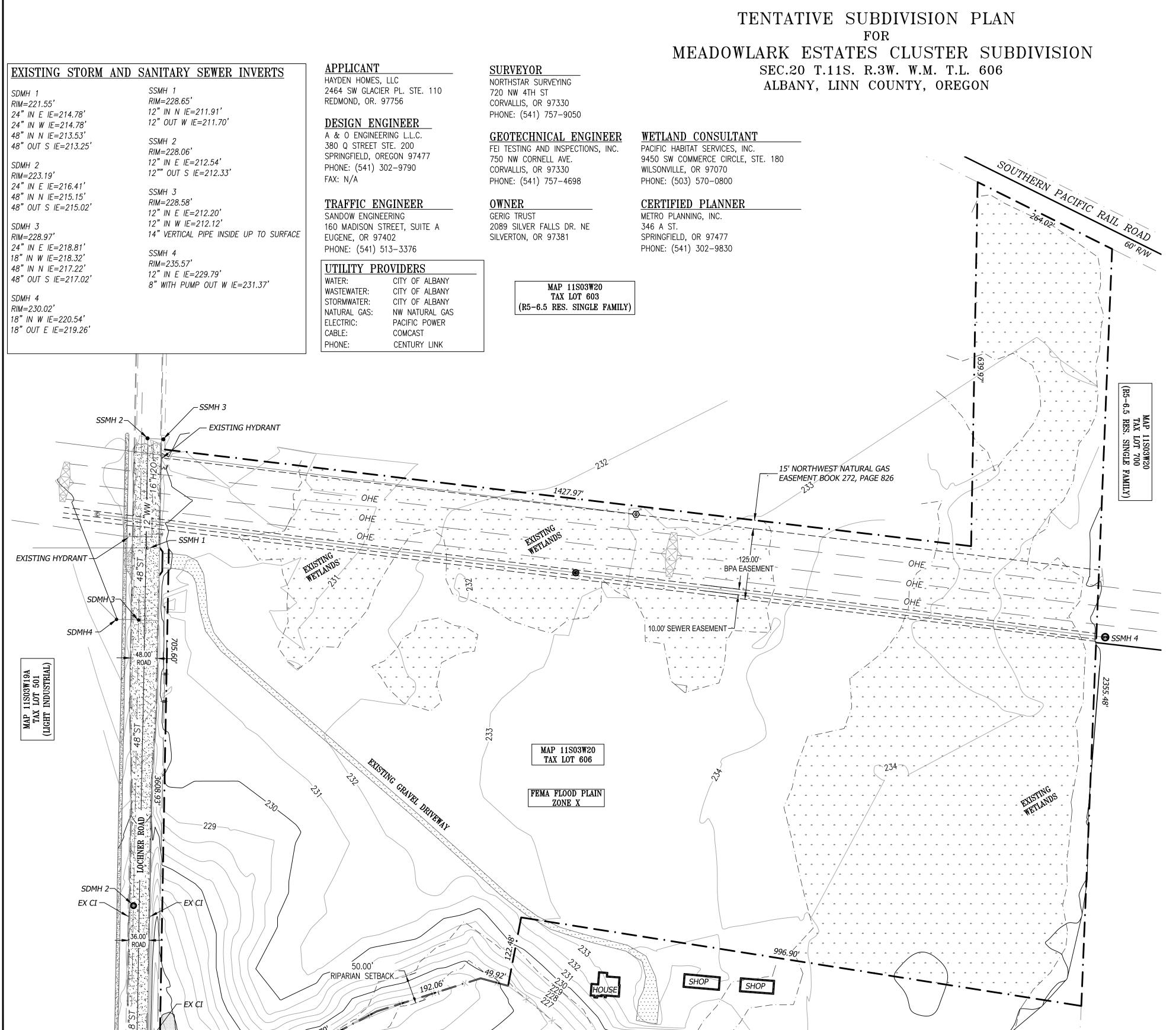
FEMA Federal Emergency Management Agency

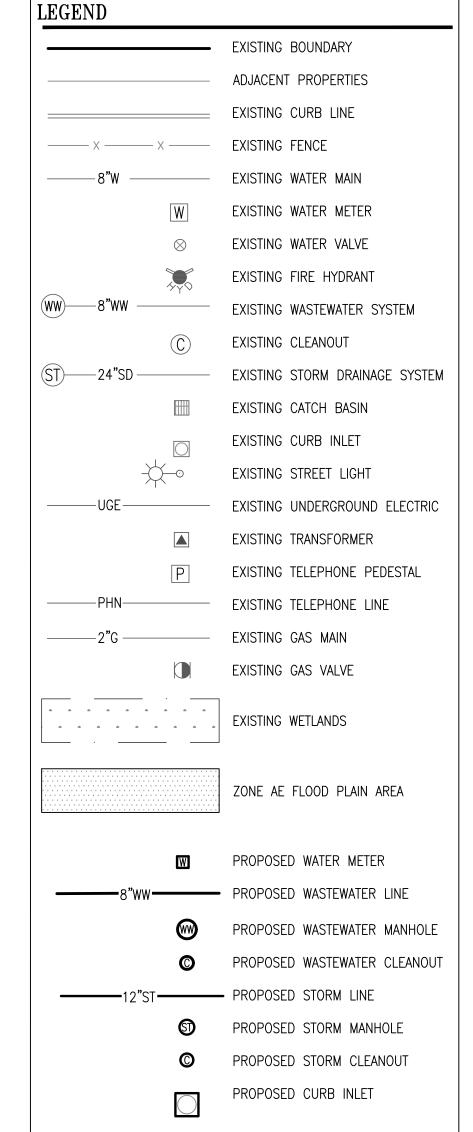

FIRM Flood Insurance Rate Map
GIS Geographic Information Systems
HOA Home Owners Association

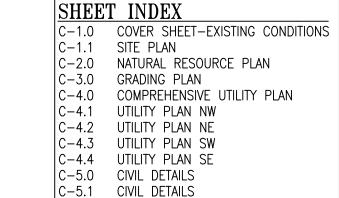

ITE Institute of Transportation Engineers
LI Limited Industrial Zoning District


LOS Level of Service


RS-6.5 Residential Medium Density Zoning District


SI Site Improvement Permit
SAAP South Albany Area Plan
TSP Transportation System Plan
V/C Volume of Capacity Ratio

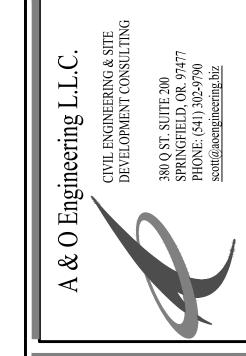



MAP 11S03W20 / TAX LOT 600 LINN COUNTY ZONE: UGA-UGM-20

SCALE: 1"=100' VICINITY MAP

DATUM NOTE:

BENCHMARK USED FOR THIS SURVEY IS LINN COUNTY MONUMENT #93046 WITH AN ELEVATION OF 227.86 FEET, VERTICAL DATUM: NGVD 29. ELEVATIONS ARE US



SITE NOTES:

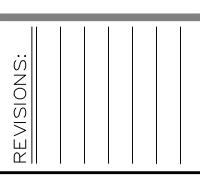
1. THE PROPERTY IS LOCATED IN ZONE X AND ZONE AE ON FEMA FIRM MAP 41043C0527G. AREAS OF PROPERTY WITHIN ZONE AE ARE SHOWN ON MAP AND NO DEVELOPMENT IS PROPOSED WITHIN ZONE AE AREA. BASE FLOOD ELEVATION INS LISTED AS 223' (NAVD88) PER FEMA FIRM MAP. ADJUSTED TO NAVD29 BFE ROUNDS TO APPROXIMATELY 220'.

3. PARCEL WAS CREATED BY RECORDED LAND PARTITION PLAT NO. 2020-70. SUBJECT PROPERTY IS PARCEL 2 OF THIS PARTITION.

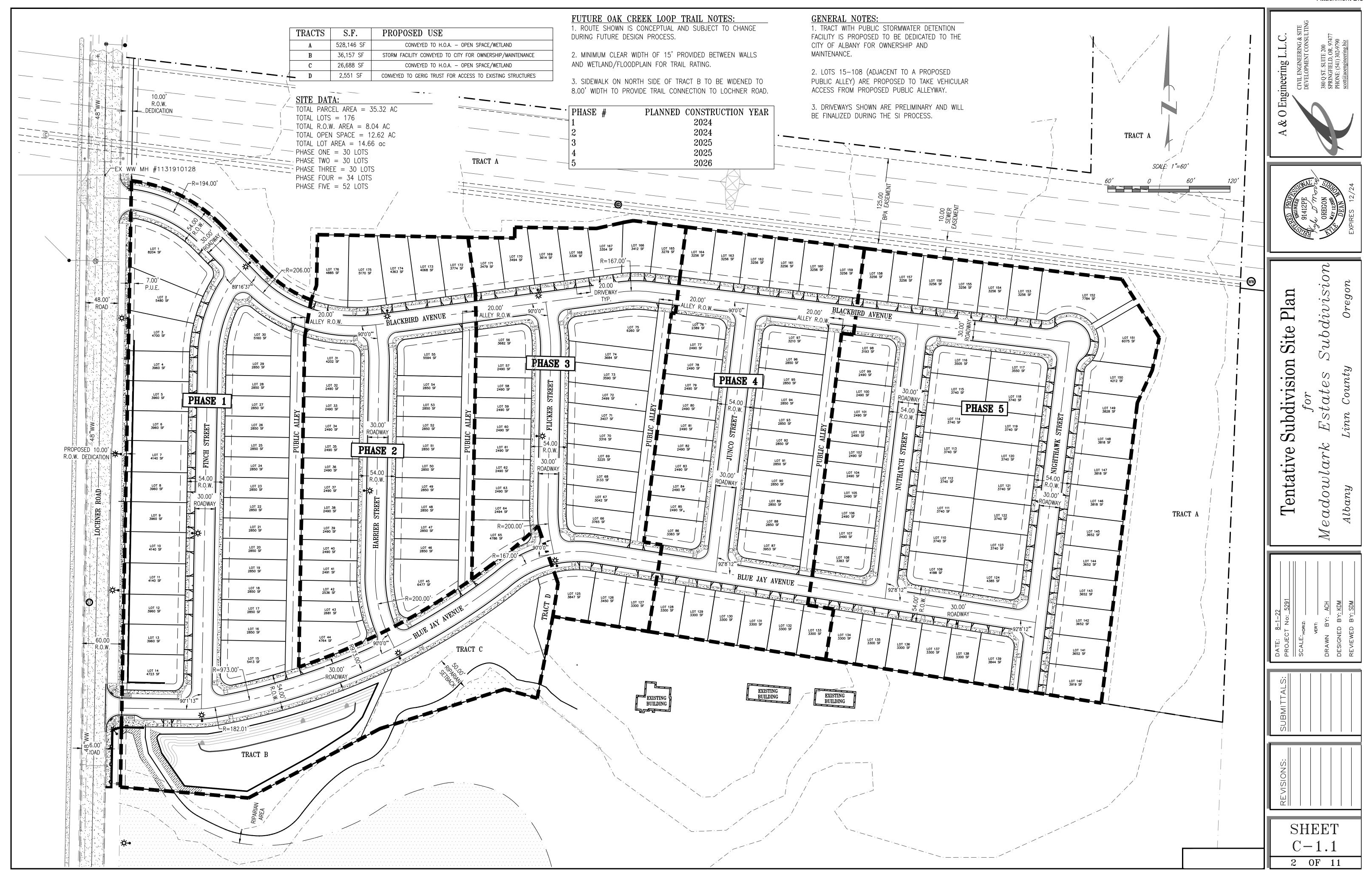
4. EXISTING LAND IS OPEN FIELD WITH AN EXISTING GRAVEL

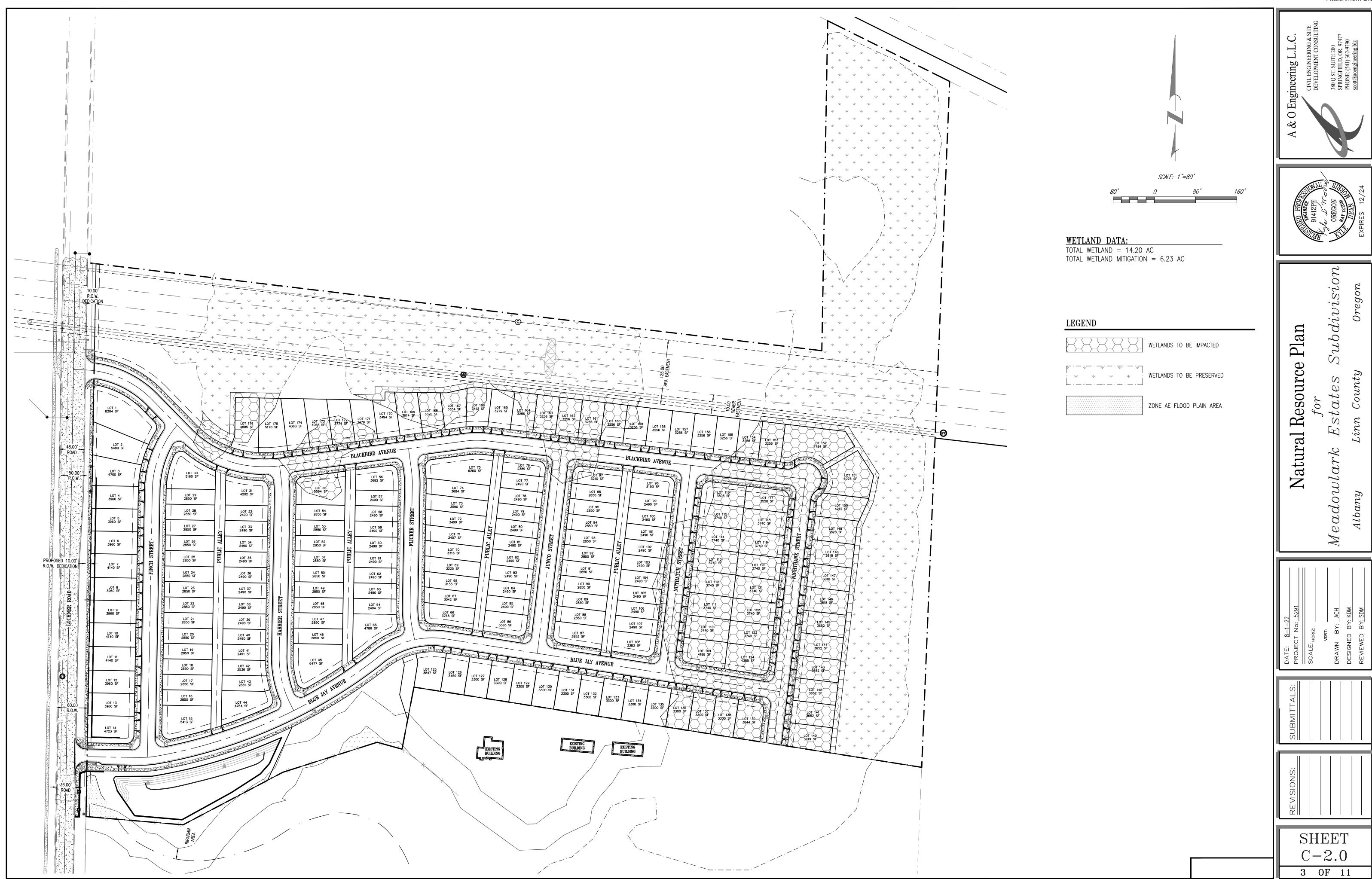
sion Conditions divi

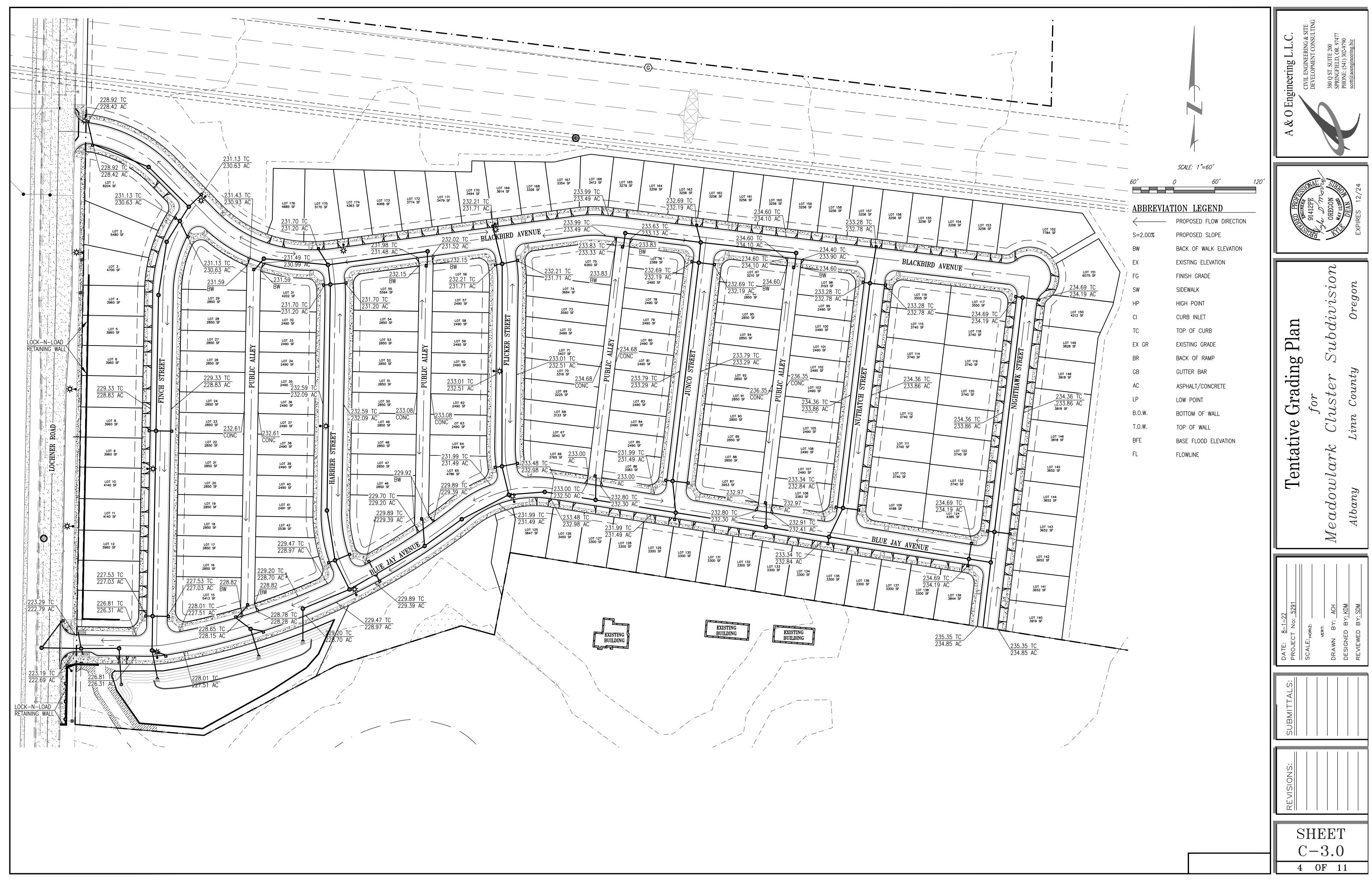
xisting

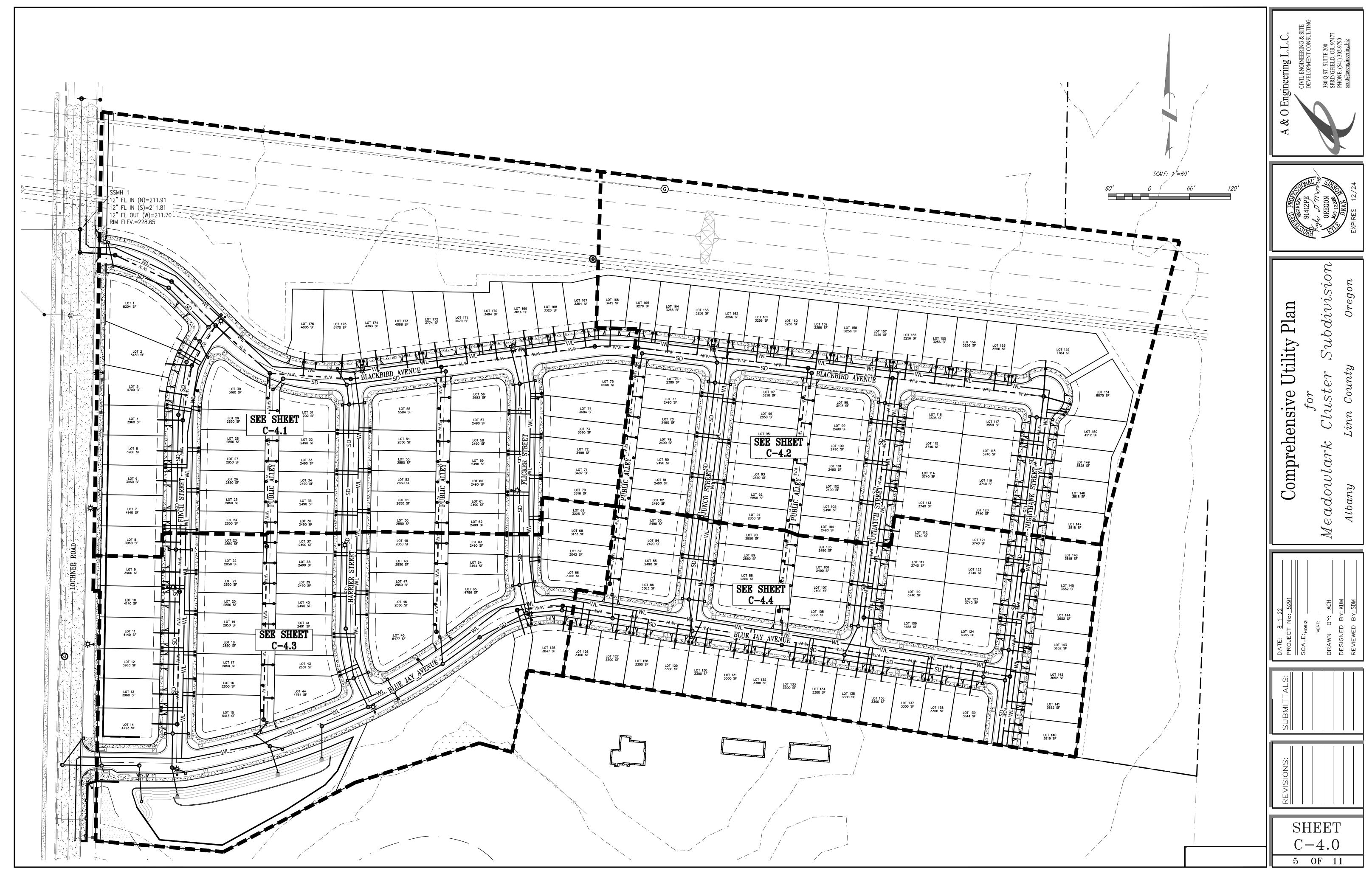

 $\overline{\mathbf{S}}$

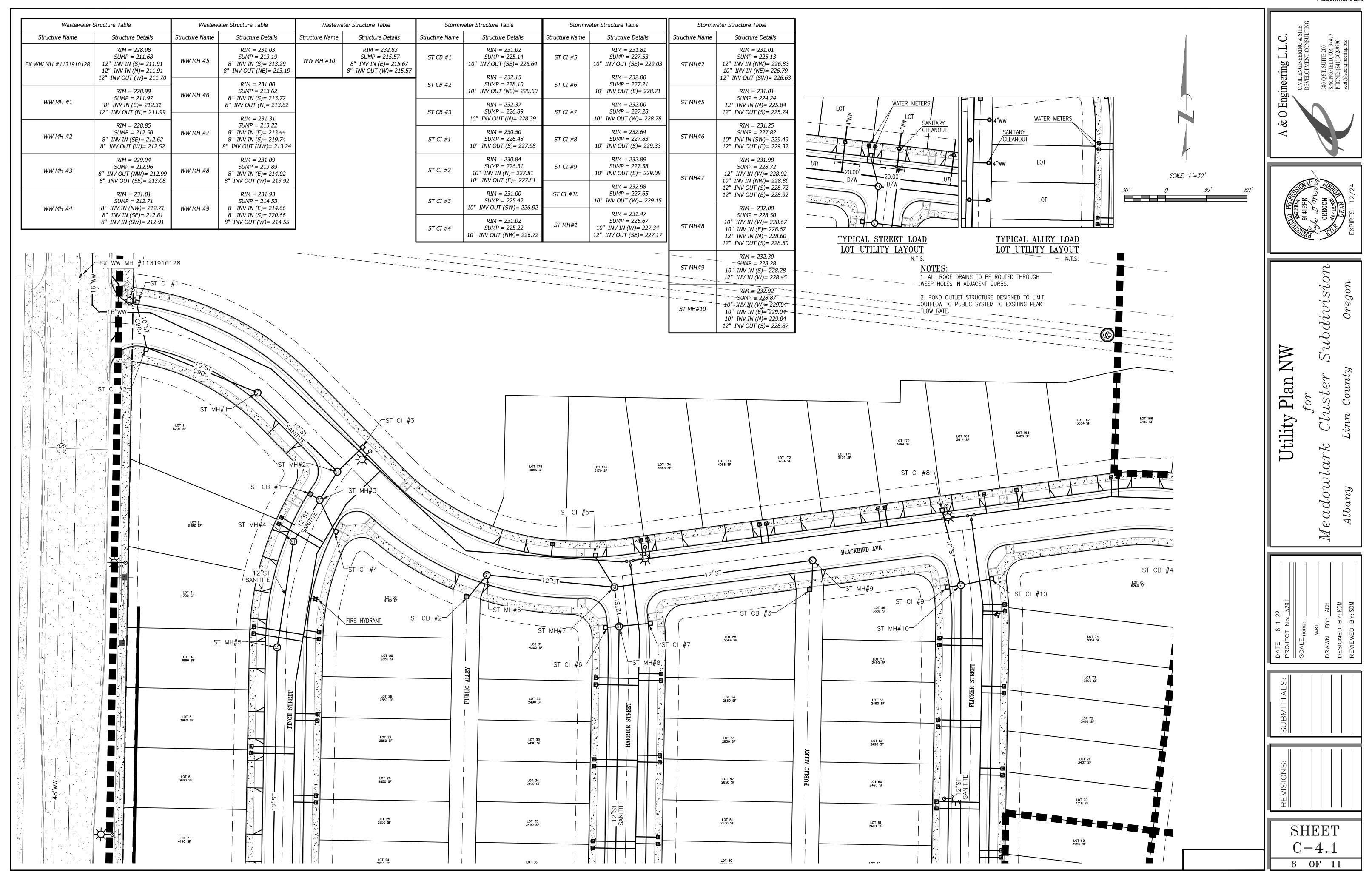
Cover

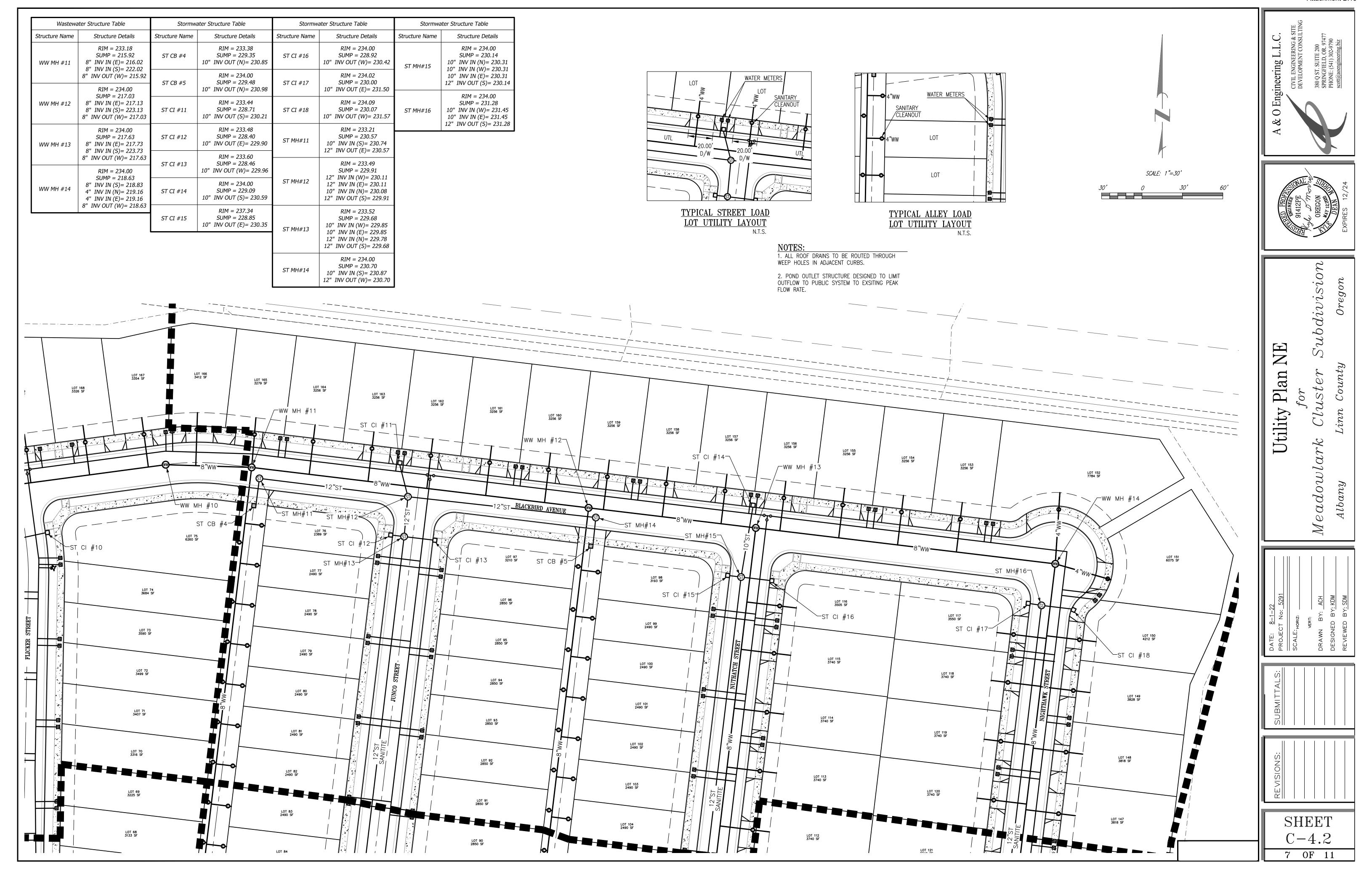

0.7

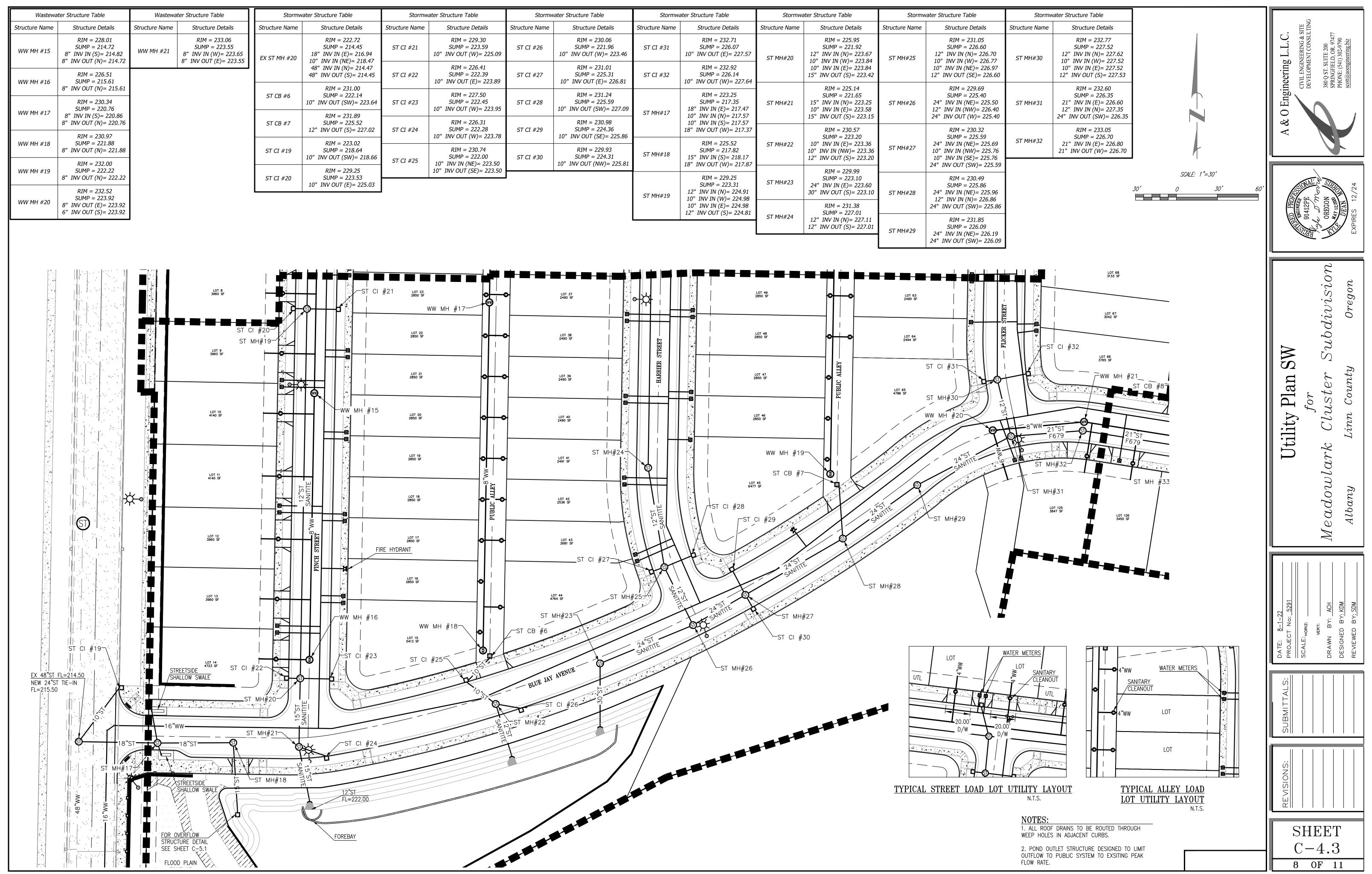

 σt $\langle \mathcal{N} \rangle$

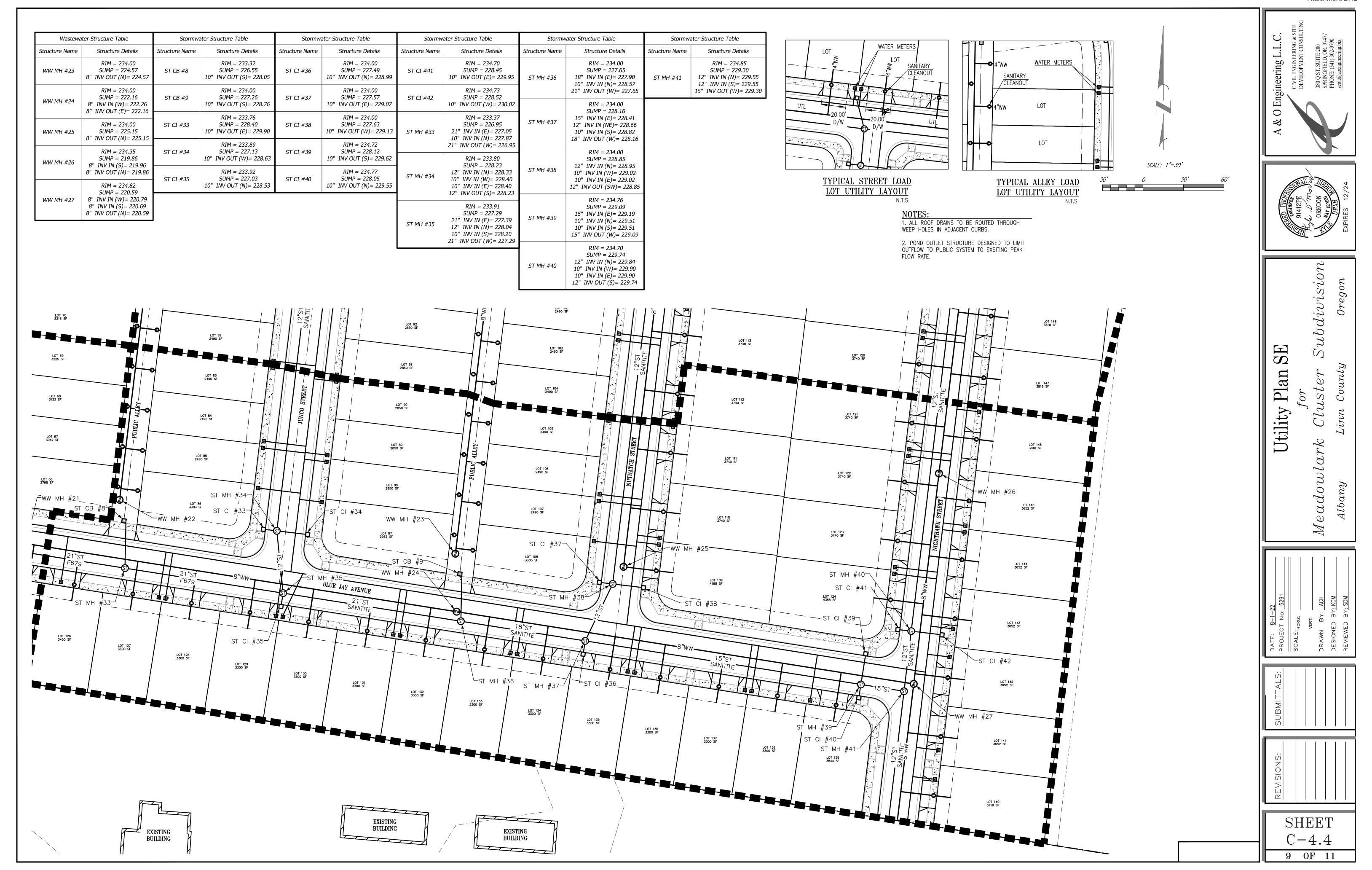

adowla

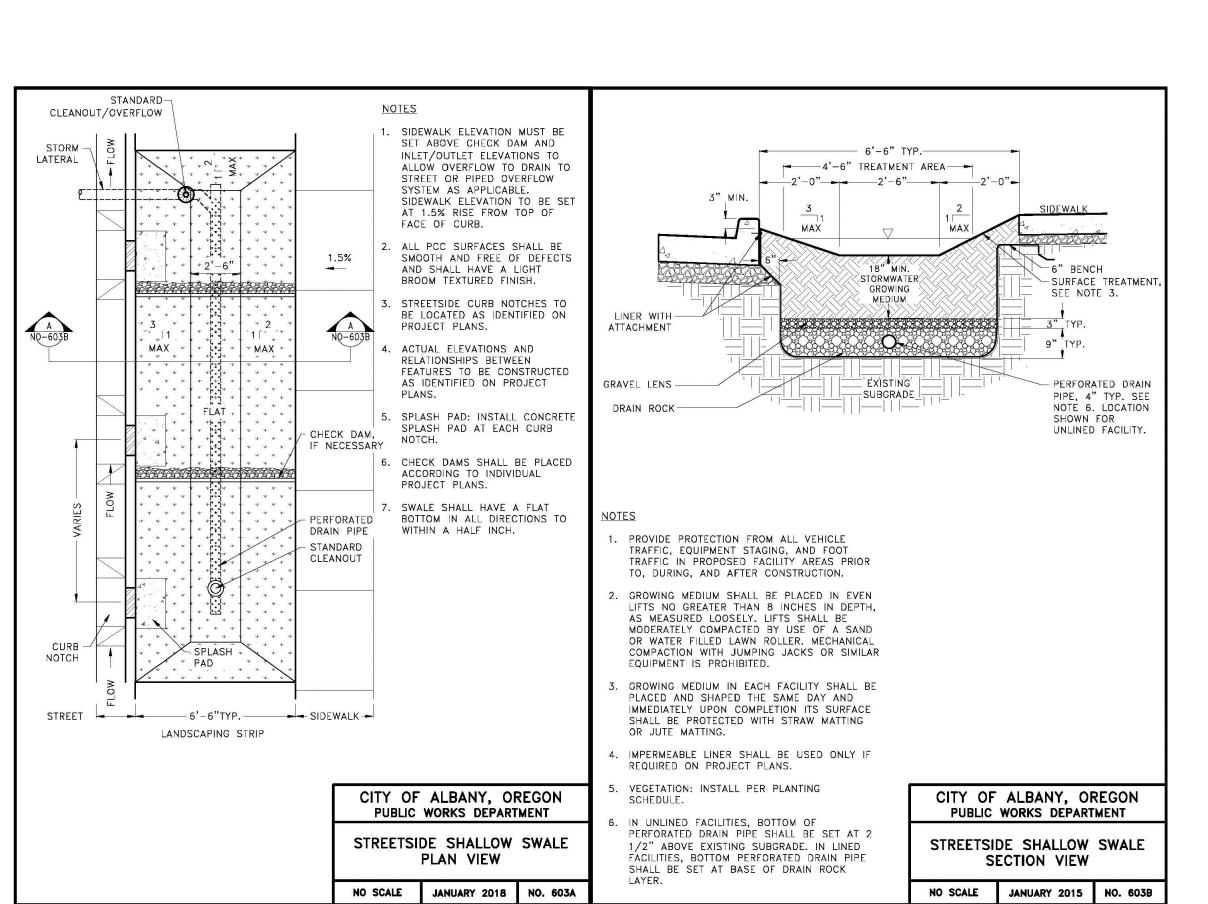



SHEET C-1.01 OF 11









- 3" CLEAN RIVER ROCK

- PLACE LANDSCAPE

— 12" CLEAN TOPSOIL

PLANTER STRIP TREATMENT

TYPICAL CURB AND GUTTER

ASPHALTIC CONCRETE

a. ASPHALT CONCRETE: 5" OF ASHPALT CONCRETE (2" OF "C" MIX OVER 3" OF "B" MIX) AND 12" OF COMPACTED 1" - O CRUSHED AGGREGATE BASE OVER GEOTEXTILE FABRIC.

b. PORTLAND CEMENT CONCRETE: 8" OF PORTLAND CEMENT CONCRETE AT 4,000 P.S.I., OVER 2" OF COMPACTED 1" — O CRUSHED AGGREGATE.
THE STRUCTURAL SECTION FOR ALL OTHER STREETS SHALL BE DESIGNED FOR 50 YEAR TRAFFIC EQUIVALENT AXLE LOADING USING PROCEDURES APPROVED BY THE CITY ENGINEER.

AGGREGATE BASE MATERIAL SHALL EXTEND TO ONE FOOT BEYOND THE FACE OF CURB, MINIMUM

MATERIALS, THE CONTRACTOR SHALL REMOVE AND REPLACE THE PLANTER STRIP NO LESS THAN 4' DEEP BY 4' WIDE USING NATIVE SOILS MORE CONDUCIVE TO TREE SURVIVABILITY THROUGH THE LENGTH OF THE PLANTER STRIP.

PLANTER STRIPS SHALL, AT A MINIMUM, BE COMPOSED OF SILTY CLAY LOAMS NATIVE TO THI

AREA. IN LOCATIONS THAT ARE COMPOSED OF GRANULAR, AGGREGATE, OR OTHER IMPORTED

SIDEWALK. SEE DETAIL DWG. NO. 313

GEOTEXTILE FABRIC/ SEE ODOT SECTION 00350

1"-0" CRUSHED AGGREGATE BASE

ASPHALT CONCRETE ALTERNATE

. THE TYPICAL SECTION FOR RESIDENTIAL STREETS SHALL BE AS FOLOWS:

SEE NOTES 3 & 12" MIN. SHOULDER STANDARD FILL COMPACTED SUB-BASE FABRIC UNDER ROCK

PORTLAND CEMENT

1"-0" CRUSHED

AGGREGATE BASE

PORTLAND CEMENT CONCRETE ALTERNATE

NO SCALE

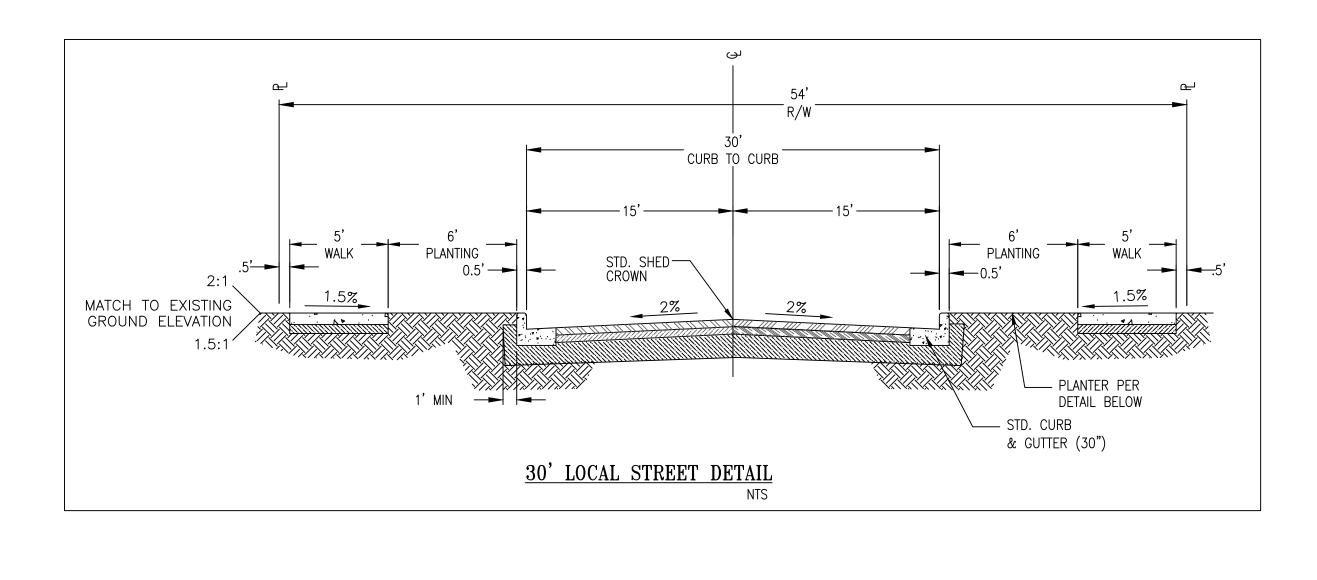
CONTRACTOR TO PLACE ANYWHERE

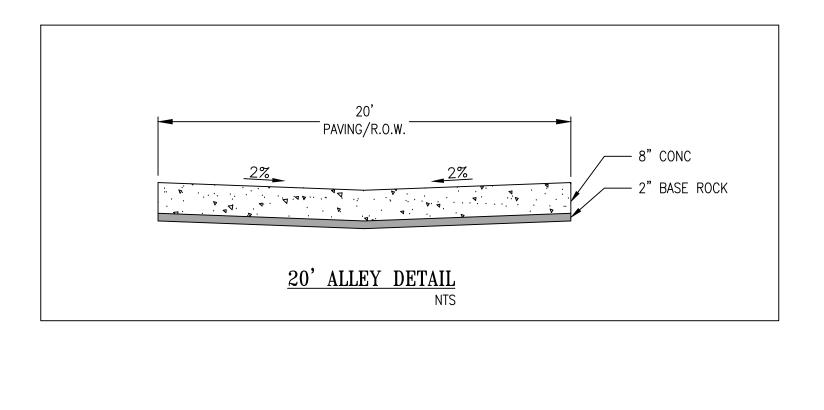
WITH SI PROJECT.

TO BE BUILT CONCURRENTLY.

ADJACENT TO SIDEWALK BEING CONSTRUCTED

2. PLANTERS ADJACENT TO SIDEWALK BEING

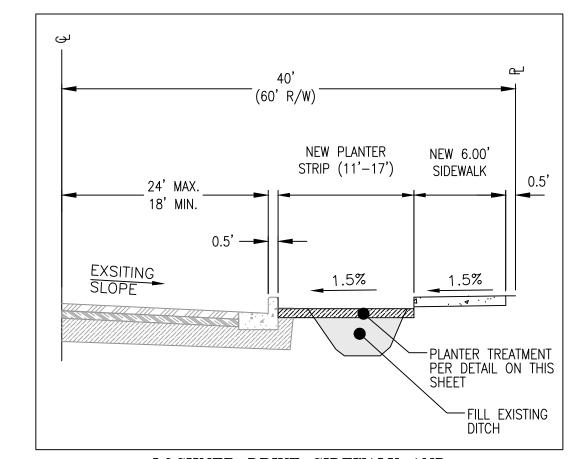

CONSTRUCTED DURING HOUSE CONSTRUCTION


SEE DETAIL 304.

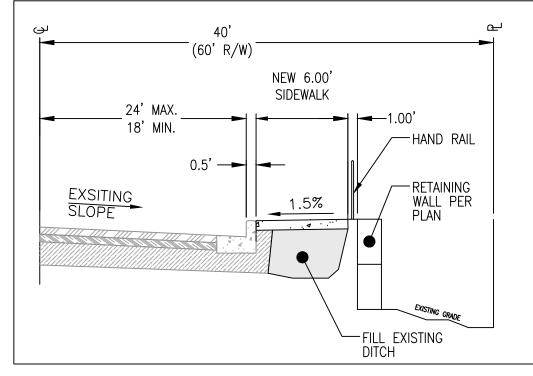
CITY OF ALBANY, OREGON PUBLIC WORKS DEPARTMENT

TYPICAL STREET SECTION

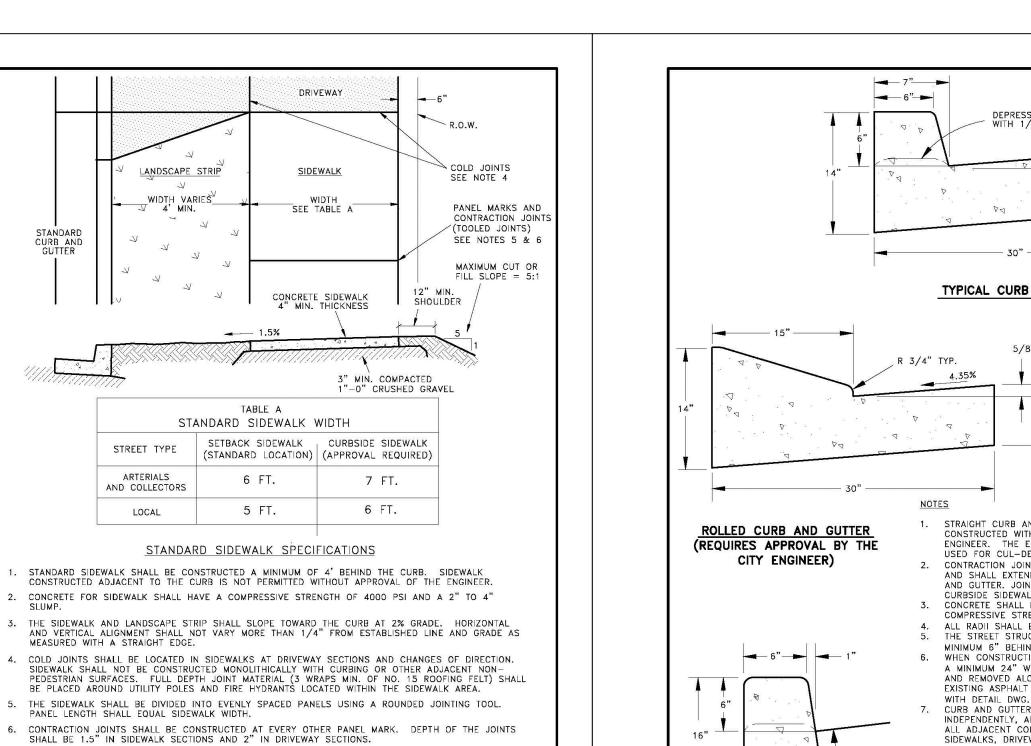
JANUARY 2015 NO. 301


7. ALL SIDEWALKS SHALL BE FINISHED WITH A "LIGHT BROOM" FINISH. THE DIRECTION OF BROOMING SHALL BE PERPENDICULAR TO THE LENGTH OF THE SIDEWALK. OUTSIDE EDGES OF THE SIDEWALK AND PANEL MARKS SHALL BE FINISHED WITH A STANDARD EDGING TOOL HAVING A 1/2" RADIUS.

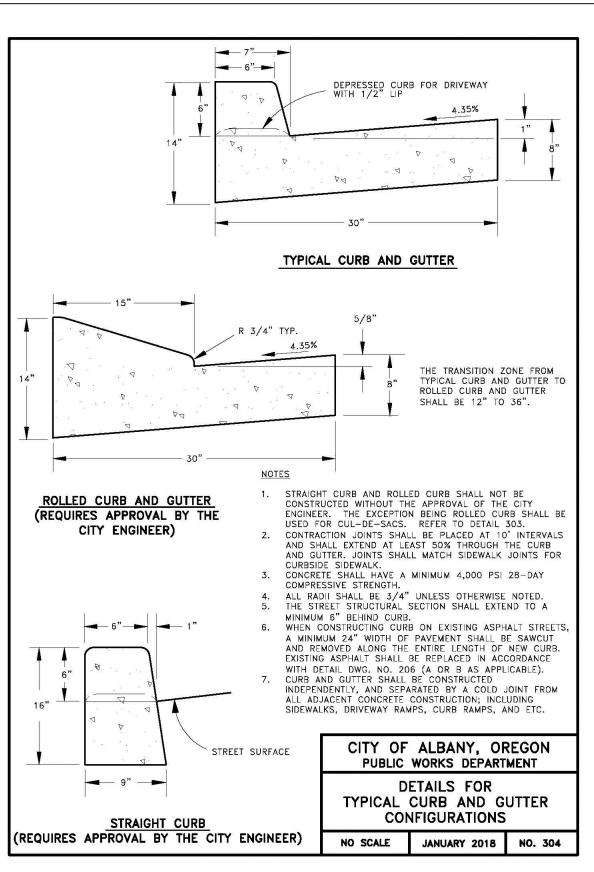
SPECIFICATIONS RELATIVE TO CONSTRUCTION AROUND OBSTACLES (MAILBOXES, POLES, ETC.)

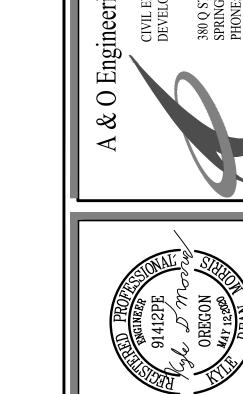

9. CONCRETE SIDEWALK ADJACENT TO ROLLED CURB

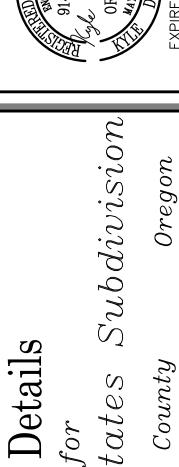
8. SEE DETAIL DWG. NO. 314 FOR SIDEWALK

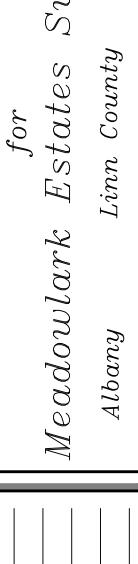

SHALL HAVE A 6" MIN. THICKNESS.

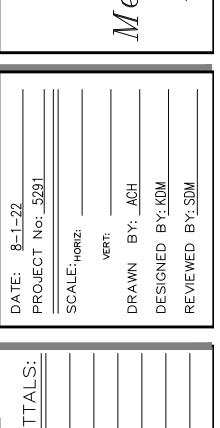
LOCHNER DRIVE SIDEWALK IMPROVEMENTS STA. 9+91.85 TO STA. 10+76.44

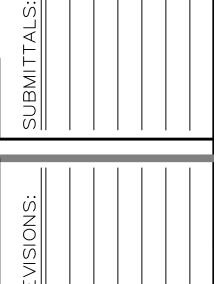


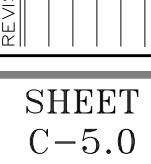

CITY OF ALBANY, OREGON

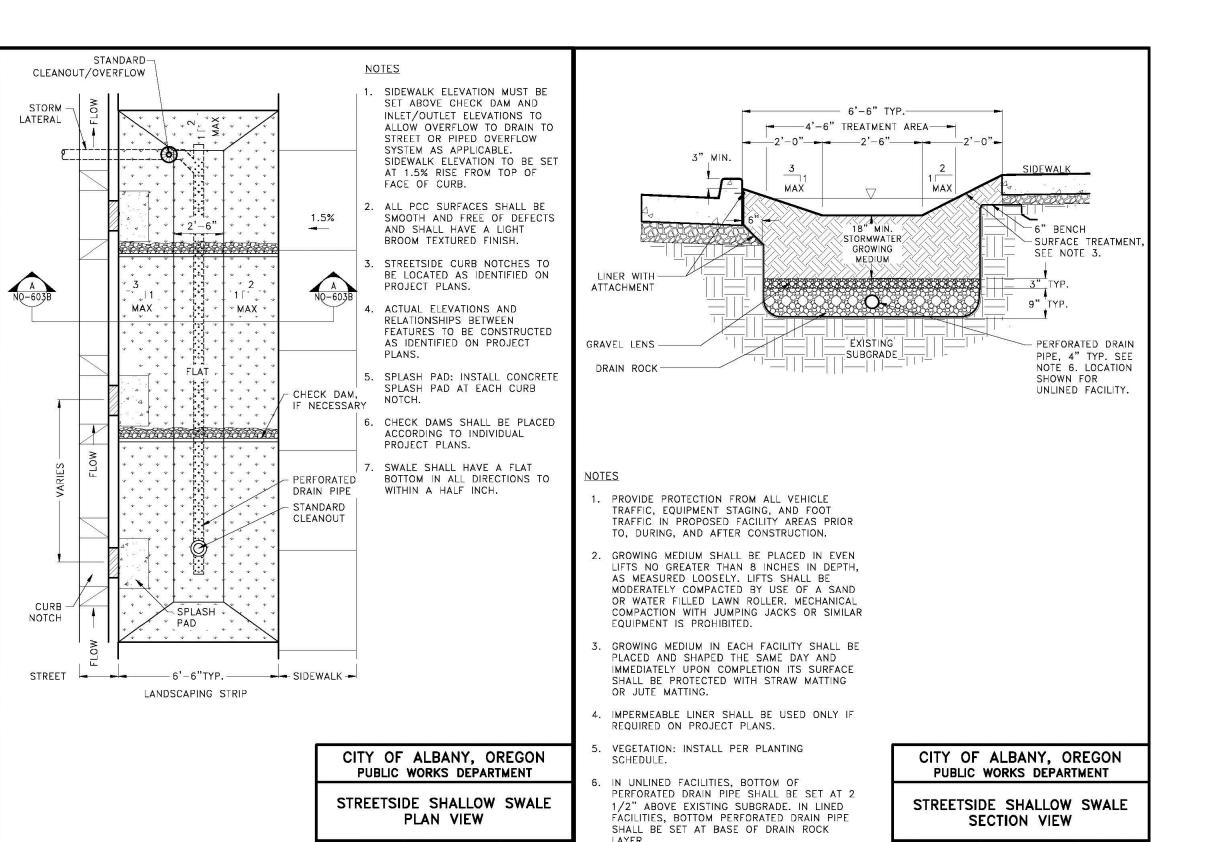

PUBLIC WORKS DEPARTMENT

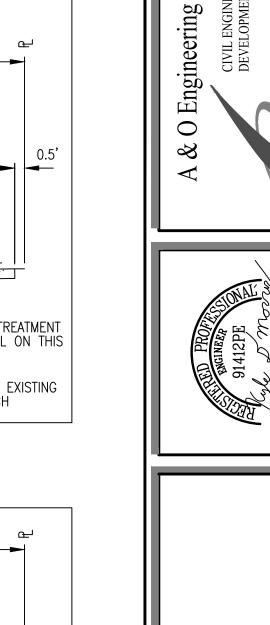

STANDARD (SETBACK) SIDEWALK

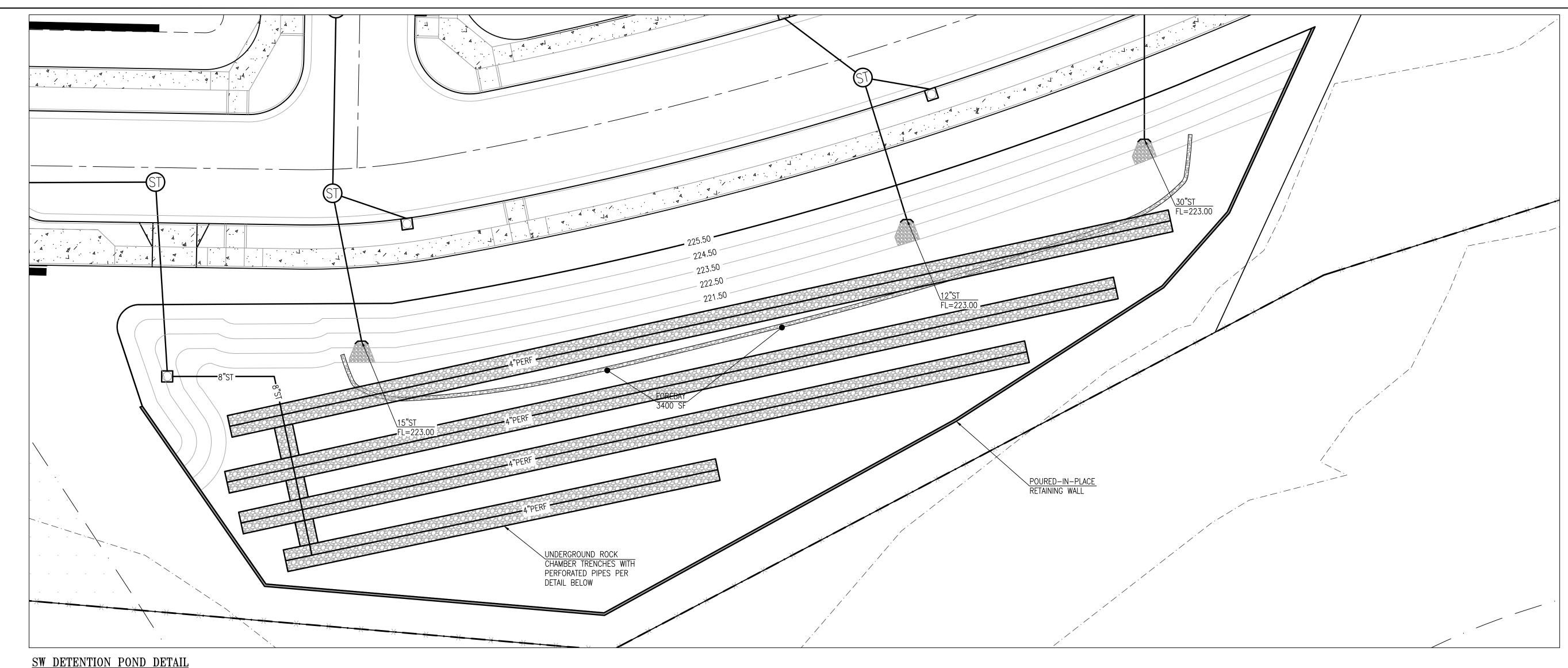

NO SCALE JANUARY 2018 NO. 313



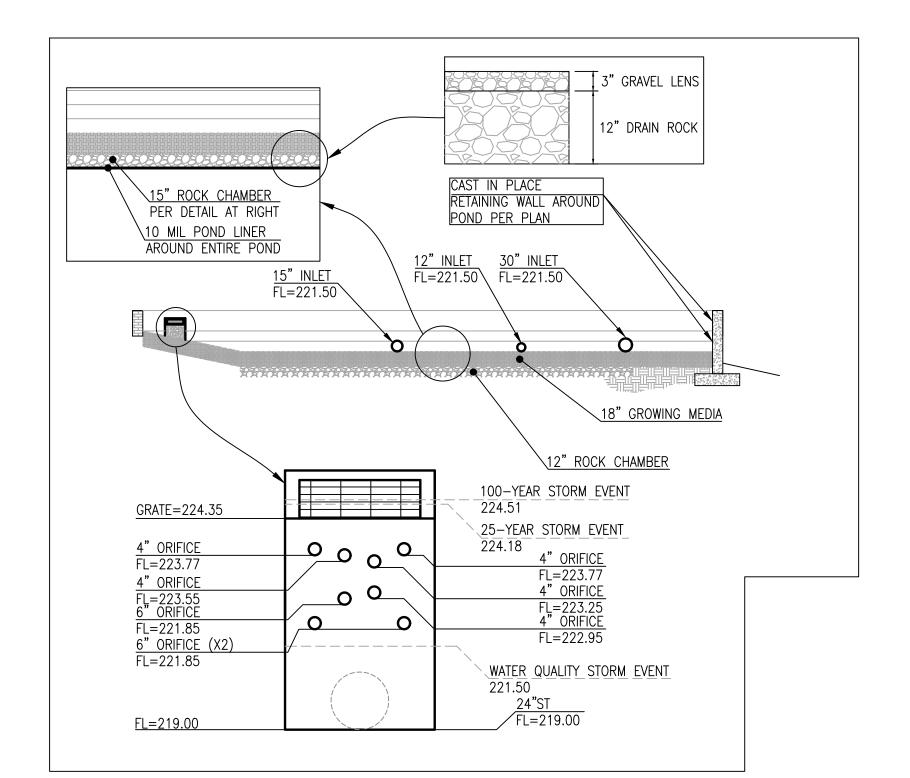








10 OF 11



SW DETENTION POND DETAIL SCALE: 1"=15' PLAN VIEW

SW DETENTION POND DETAIL

CROSS-SECTION

SCALE: 1"=15'

DETENTION POND NOTES:

1. POURED-IN-PLACE BLOCK RETAINING WALL SHALL BE INSTALLED PER STRUCTURAL DRAWINGS.

2. BLOCK LANDSCAPE BLOCK RETAINING WALL TO BE INSTALLED IN COMPLIANCE WITH ALL

MANUFACTURE'S SPECIFICATIONS.

3. GROWING MEDIA SHALL BE IMPORTED TOPSOIL WITH HIGH INFILTRATION CHARACTERISTICS AND ALLOW FOR GRASS SEED TO GROW. CONTRACTOR SHALL SUBMIT CUT SHEET OF MEDIA SOIL TO ENGINEER FOR APPROVAL PRIOR TO ORDERING. THE SOIL MEDIA SHALL MEET CITY OF ALBANY SPECIFICATIONS.

4. PONDS SHALL BE HYDROSEEDED WITH SUNMARK NATIVE WATER QUALITY MIX OR EQUIVALENT. 5. ROCK CHAMBER SHALL BE FILLED WITH $\frac{1}{2}$ " -2 $\frac{1}{2}$ " CLEAN ROUND ROCK UNCOMPACTED.

6. FLOW-CONTROL STRUCTURE TO BE ODOT TYPE D DITCH INLET.

7. POND SHALL BE HYDROSEEDED AT TIME OF YEAR (TYPICALLY SPRING OR FALL) WHEN WEATHER SUPPORTS SUCCESSFUL SEED GERMINATION. IT IS THE CONTRACTOR'S RESPONSIBILITY TO ENSURE SUCCESSFUL SEED GERMINATION AND SHALL REPLACE SEED UNTIL SUCCESSFUL GROWTH. CONTRACTOR CAN INSTALL A TEMPORARY (ABOVE GROUND) IRRIGATION SYSTEM IF DESIRED TO PLANT DURING SUMMER MONTHS.

8. POND SHALL HAVE 4" PERFORATED PIPES CONNECTED TO THE OVERFLOW STRUCTURE AS SHOWN ON PLAN.

9. FOR FOREBAY WALL CONSTRUCTION SEE DETAIL ON THIS SHEET.

Civil Detail

eadowla

ubdivision

SHEET C - 5.111 OF 11

Land Use Application for Meadowlark Estates Subdivision

Submitted to:	City of Albany Planning Division 333 Broadalbin St SW Albany, OR 97321
Property Owner:	Loren Gerig 2089 Silver Falls Drive NE Silverton, OR 97381
Applicant:	Brian Thoreson Hayden Homes 2464 SW Glacier Pl Ste 110 Redmond, OR 97756
Applicant Representative:	Scott Morris, PE A & O Engineering LLC 380 Q Street Ste 200 Springfield, OR 97477 scottmorris@ao-engr.com
Site Location:	3795 Lochner Road SE
Assessors Map:	11S-03W-20; Tax Lot 600
Site size:	35.32 acres
Land Use District:	RS-6.5

Hayden Homes is pleased to submit this application for a phased subdivision to create 176 lots for the future construction of detached, single-family homes. The project site consists of one tax lot totaling 35.32 acres and is currently zoned RS-6.5.

The essential components of the Meadowlark Estates Subdivision application include:

- 176 lots that meet or exceed City standards for future, detached, single-family homes
- Preservation and enhancement of natural areas as permanent open space
- Cluster development to protect natural features, provide needed housing, and maintain anticipated housing density across the subject property.
- An interconnected public street system, including sidewalks and landscaping strips.
- Integrated on-site stormwater management system

The Meadowlark subdivision is a "needed housing" application under Oregon Revised Statute (ORS) 197.303(1)(a) as it provides detached single-family housing on buildable land, as defined in Oregon Administrative Rules OAR 660-008-0005. ORS 197.307(4) states that a local government may apply only clear and objective standards, conditions, and proceedings regulating the development of needed housing on buildable land.

This application includes the City of Albany (City) application forms, written materials, and preliminary plans necessary for the City to review and determine compliance with applicable approved criteria.

Site Description/Setting

The subject property is located in South Albany, East of Lochner Road SE (Arterial Street). The site consists of one tax lot and the total acreage is 35.32 acres.

The area is bounded to the north by railroad tracks and an agricultural field, to the south by a single-family home and associated outbuildings, open space and Oak Creek (on the adjacent tax lot), to the east by an existing housing development. A cold storage facility and the Oak Creek Youth Correctional Facility are located west of Lochner Road SE. Land use around the study area includes agriculture, single-family residential, and open space.

ADJACENT PROPERTY	ZONING	CURRENT USES
North	Urban Growth Boundary	Railroad Tracks, Agriculture
East	RS-6.5	Existing Housing Development
South	Urban Growth Boundary, RS-6.5	Open Space, Single Family homes
West	Light Industrial	Cold Storage Facility, Youth Correctional Facility

The parcel consists of generally flat topography, with elevations on site ranging from 225 to 230 feet. A Bonneville Power Administration (BPA) easement with overhead lines and transmission towers also extends along the northern side of the property. The SW portion of the site has a steeper slope to the South and has a small area of floodplain as shown on the site plan.

The subject property consists of land that has been managed for agricultural production (grass seed or hay), and is likely tilled and planted at least once a year. The area is dominated by a monoculture of tall false rye grass (*Schedonorus arundinacea*, *FAC*).

Criterion 1: The proposal meets the development standards of the underlying zoning district, and applicable lot and block standards of this Article.

<u>11.090 Lot and Block Arrangements.</u> In any single-family residential land division, lots and blocks shall conform to the following standards in this Article and other applicable provisions of this Code:

(1) Lot arrangement must be such that there will be no foreseeable difficulties, for reason of topography or other condition, in securing building permits to build on all lots in compliance with the requirements of this Code with the exception of lots designated Open Space.

The underlying zone of the proposed property is RS-6.5. The applicant is proposing a cluster development and The Tentative Phased Subdivision Plans show that each lot will meet the applicable dimensional requirements for Section 11.495, as applicable. Each lot will also have adequate frontage on a public street. See below for Cluster Subdivision standards.

(2) Lot dimensions must comply with the minimum standards of this Code. When lots are more than double the minimum area designated by the zoning district, those lots must be arranged so as to allow further subdivision and the opening of future streets where it would be necessary to serve potential lots. An urban conversion plan may be required in conjunction with submittal of tentative subdivision or partition plat.

Lochner Road SE is an Arterial Street that runs along the entire West boundary of the property and is the only potential access point for the development. Although the recommended distance between intersections is 1800 linear feet, this development is proposed to have intersections 756 feet apart (centerline to centerline). The streets have been analyzed by the project Traffic Engineer (Access Engineering LLC) and they have indicated this does not cause a safety concern. These intersections are placed as far apart as practical taking into account existing wetland and slope constraints on the property.

The lot and block arrangements have been made such that there will be no foreseeable difficulties in securing building permits to build on all lots in compliance with requirements of this Code. There are fourteen double frontage lots along Lochner Road. Lochner Road is an arterial street, therefore the double frontage lots were created to provide separation between the residential development and the road.

(3) Double frontage lots shall be avoided except when necessary to provide separation of residential developments from streets of collector and arterial street status or to overcome specific disadvantages of topography and/or orientation. When driveway access from arterials is necessary for several adjoining lots, those lots must be served by a combined access driveway in order to limit possible traffic hazards on such streets. The driveway should be designed and arranged so as to avoid requiring vehicles to back into traffic on arterials. An access control strip shall be placed along all lots abutting arterial streets requiring access onto the lesser class street where possible.

As mentioned above, there are fourteen double frontage lots proposed. This is due to Lochner Road being an arterial street. The double frontage lots are proposed so there is adequate separation between the arterial road and the proposed subdivision.

(4) Side yards of a lot shall run at right angles to the street the property faces, except that on a curved street the side property line shall be radial to the curve.

The Tentative Phased Subdivision show side yards will run at right angles to the street as far as practicable. The applicable criterion is met.

(5) The average block length shall not exceed 600 feet. Block length is defined as the distance along a street between the centerline of two intersecting through streets (Figure 11.090-1).

The Tentative Phased Subdivision Plans show blocks are planned to be less than 600 feet in length as measured from centerline to centerline. The applicable criteria are met.

(6) Off-street pedestrian pathways shall be connected to the street network and used to provide pedestrian and bicycle access in situations where a public street connection is not feasible.

The Tentative Phased Subdivision Plans show that each lot has access to a public street, and there are no dead ends or cul-de-sacs. The criteria are met. There is area set aside for a separated pedestrian/bike path in related Tracts. These are to be consistent with future paths shown in the South Albany Area Plan. No path construction is proposed with this cluster subdivision application.

With the minimum of townhouse development, the minimum frontage of a lot on a culde-sac shall be 22 feet as measured perpendicular to the radius.

The minimum lot frontage in the proposed subdivision is 24 feet, with most lots being above that number.

(8) Flag lots are allowed only when the City Engineer has determined that the dedication and improvement of a public street is not feasible or not practical. The minimum width for a flag is 22 feet, except when access is shared by an access and maintenance agreement in which case each lot shall have a minimum width of 12 feet and a combined minimum of 24 feet.

There are no flag lots proposed as part of this subdivision.

(9) At all street intersections, an arc along the property lines shall be established so that construction of the street at maximum allowable width, centered in the right-of-way, shall require not less than a twenty-foot radius of the curb line.

The Tentative Phased Subdivision Plans show street intersections that meet applicable standards. The criterion is met.

Criterion 2: Development of any remainder of property under the same ownership can be accomplished in accordance with the Code.

The area is bounded to the north by railroad tracks and an agricultural field, to the south by a single-family home and associated outbuildings, open space and Oak Creek (on the adjacent tax lot), to the

east by an existing housing development. A cold storage facility and the Oak Creek Youth Correctional Facility are located west of Lochner Road SE. Land use around the study area includes agriculture,

The Subject property is 35.32 acres. As shown on the Tentative Phased subdivision Plans, natural areas span 12.88 Acres. Open space covers approximately 36.9% of the parcel. More than 20% of the site is preserved as permanent natural area.

Due to environmental features (wetland area), railroad tracks and existing development (east side), the only potential future development is SouthEast of the property. The site plan includes extension of a public street and utilities to this area to allow for future development. All other areas adjacent to the site are not developable.

Criterion 3: Adjoining land can be developed or is provided access that will allow it's development in accordance with the Code.

The Tentative Phased Subdivision Plans show the applicable location, width, and grade standards for streets will be met. There are no possible connections to the North or East of the property due to wetlands and existing development. The site to the South has development potential on the Eastern side of the parcel (outside Oak Creek Riparian Setback), therefore street and utility stubs are proposed to be extended as shown on the site plan.

The existing 60 foot private access easement is to be vacated and replaced with a 20' private access easement over Tract D. An all weather access road will be provided during construction (route will vary), with ultimate access provided via Blue Jay Avenue, then through Tract D. Tract D will be conveyed to the Gerig Trust after recording of phase one plat. The will provide uninterrupted access to the existing structures on the property South of the development.

Criterion 4: The Public Works Director has determined that transportation improvements are available to serve the proposed subdivision or partition in accordance with Article 12 or will be made available at the time of development.

The planned cluster subdivision will create lots for future single-family homes. Each lot will have adequate frontage and dimensions to accommodate access, driveways, and parking. Access will be reviewed with the building permit application for each home. The applicable criteria can be met.

Criterion 5: The Public Works Director has determined that the public facilities and utilities are available to serve the proposed subdivision or partition in accordance with Article 12 or will be made available at the time of development.

The Utility Plans show the applicable requirements for sanitary sewers can or will be met. The wastewater line is proposed to be extended through the subdivision to serve all proposed lots. The wastewater line is also extended at the East end of the project for future extension to the South.

The Utility Plans show the applicable requirements for water can or will be met. Water lines are shown to be extended through the subdivision to serve all proposed lots. The water line in Finch Street is proposed to be upsized to 16" diameter and then routed back out to Lochner Road and extended to the southern property line. Water distribution line is also extended at the East end of the project for future extension to properties to the South.

The Tentative Phased Subdivision Plans show the utility easements proposed. The PUE's are proposed to be 10' on one side of all streets and 7' on the other side. Except as allowed in Section 12.400, all utilities will be located underground. The applicable criteria are met.

Criterion 6: Activities and developments within special purpose districts must comply with the regulations described in Articles 4 (Airport Approach), 6 (Natural Resources), and 7 (Historic) as applicable.

The subject property is within the Significant Natural Resource Overlay District. A wetland permit has been conditionally approved for the impact once wetland credits have been purchased. The wetland credits are proposed to be purchased after receiving approval of the land use application. A portion of the property at the South end has a small triangular shaped significant wetland that requires a 50' riparian setback as part of the Riparian Corridor Overlay. The site has been designed to avoid encroachment into this 50' riparian setback area, therefore there are no mitigation elements proposed. The extent of the significant wetland and 50' riparian setback are shown on plan sheet C-1.1.

Cluster Development Standards

11.410 Eligibility. To be eligible to apply for cluster development, all of the following are required:

- (1) Residential Zoning. The site must be located in a residential zoning district.
- (2) Natural and Other Special Features. The site must contain one or more of the features listed in Section 11.460
- (3) Professional Designer. An applicant for cluster development approval must certify in writing that a certified landscape architect, site planner, or landscape designer, approved by the Director, will be used in the planning and design process for the proposed development.

The subject property is located in RS-6.5 zone meeting the cluster development standard. The site also contains open space and significant wetlands, meeting the cluster development standard. A & O

Engineering is the professional designer in the planning and design process for the proposed development.

11.450 Natural Area Requirements. Cluster developments must provide a minimum of 20 percent of the site as permanent natural areas. Land designated as Open Space on the Comprehensive Plan or Zoning maps may not be used to fulfill this requirement.

13.63 acres of the project are designed open space. This is approximately 39% of the site, therefore meeting the minimum 20% standard.

TRACTS	S.F.	PROPOSED USE
Α	528,146	CONVEYED TO H.O.A – OPEN SPACE/WETLAND
В	36,157	STORM FACILITY CONVEYED TO CITY
С	26,688	CONVEYED TO H.O.A – OPEN SPACE/WETLAND
D	2,551	CONVEYED TO GERIG TRUST

11.460 Designation of Permanent Natural Area. The required natural area may be public or private. The minimum 20 percent of the gross acreage of the development site set aside as natural area in a cluster development shall be designated in the following priority order: [Ord. 5968, 1/14/22]

(1) The first priority for natural area designation is significant tree groves identified on the South Albany Area Plan Organizational Framework map in the Comprehensive Plan (Figure 1), and Oregon White Oak (Quercus garryana) trees citywide equal to or greater than six and one-half feet in circumference (approximately 25 inches in diameter) measured as defined in Article 9.203(4). For individual trees, the natural area boundary is defined as the critical root zone (as defined in Article 9.203 (1)) plus a 10-foot buffer. [Ord. 5801, 2/13/13; Ord. 5947, 1/1/21] Albany Development Code, Article 11 11 - 15 July 1, 2023

N/A

(2) The second priority for natural area designation is natural resources within the Significant Natural Resource overlay districts that are of degraded or marginal quality and subsequently restored to good quality in accordance with the quality levels in ADC Section 6.410(5). This priority shall be satisfied in the following order:

- (a) Habitat for western painted and northwestern pond turtles within the Habitat Assessment Overlay (/HA), as identified by a turtle habitat assessment, that is restored to good quality.
- (b) Wetland within the Significant Wetland overlay district (/SW) that is restored to good quality.
- (c) Riparian area within the Riparian Corridor overlay district (/RC) that is restored to good quality.

The proposed site is not within the Habitat Assessment Overlay, therefore (a) is not applicable. The property does fall within the Significant Wetland overlay district. The applicant acknowledges that the property falls within the 50' buffer of the delineated riparian corridor, however there are no proposed buildings or disturbances within that 50' buffer. See sheet C-1.1 for this information.

- (3) The third priority for natural area designation is protection of other environmentally sensitive areas, or natural and scenic features of the site. This priority shall be satisfied in the following order: [Ord. 5968, 1/14/22]
- (a) Good quality habitat for western painted and northwestern pond turtles near Thornton Lakes within the Habitat Assessment overlay (/HA) as identified by a turtle habitat assessment.
- (b) Good quality wetland within the Significant Wetland overlay district (/SW).
- (c) Good quality riparian area within the Riparian Corridor overlay district (/RC).
- (d) Other wetlands not within the Significant Wetland overlay district, as shown on the City's Local Wetland Inventories, or by a delineation approved by the Oregon Department of State Lands.
- (e) Existing channels identified in the most current version of the City of Albany Storm Water Master Plan.
- (f) Springs.
- (g) Land with natural slopes 12 percent or greater as designated by the Hillside Development overlay district (/HD).
- (h) Wooded area with five or more healthy trees over 25 inches in circumference (approximately eight inches in diameter) measured as defined in Article 9.203(4), if approved by the City Forester. [Ord. 5947, 1/1/21]
- (i) Land that provides bike or walking trails that connect to existing or proposed parks or trails, inventoried natural features, or areas zoned Open Space; or areas otherwise protected as permanent natural areas.

(j) Incorporate public parks, trails, trailheads or open space designated in the Parks, Recreation and Open Space Plan, the North Albany Refinement Plan, and the South Albany Area Plan. [Ord. 5801, 2/13/13]

(k) Other features of the site unique to Albany, if approved by the Director.

N/A

- (4) The fourth priority for natural area designation is to create "open spaces" in and around neighborhoods. This priority is satisfied by any of the following:
- (a) Continuity of adjacent open space corridors or parkways.
- (b) A network of interconnected open space corridors.
- (c) A buffer between neighborhoods.

The site is located within the South Albany Area Plan boundary and the applicant is proposing to set aside approximately 13.57 acres as open space (39%). The open space to the North and East of the development area provides buffer between existing neighborhoods as shown on the site plans.

- 11.470 Creation of Permanent Natural Areas.
- (1) Natural areas in a cluster development may be set aside and managed in one or more of the following ways:
- (a) Portions of one or more individual lots; or
- (b) Common ownership by residents of the development; or
- (c) Third party (non-profit organization) whose primary purpose is to hold or manage the open space, subject to a reversionary clause in the event of dissolution of the non-profit organization; or Albany Development Code, Article 11 11 16 July 1, 2023
- (d) Dedicated to City of Albany, if the City agrees to accept ownership and maintain the space.

The permanent natural areas will be set aside in tracts. Tract A consists of open space/wetland and it is to be conveyed to the H.O.A for maintenance. Tract B is a storm facility conveyed to the City for Ownership/maintenance. Tract C is planned to be conveyed to the H.O.A for ownership/maintenance. Tract D is to be conveyed to the Gerig Trust for access to the existing structures.

(2) Except for Subsection (1)(d) above, natural areas shall be subject to restrictive covenants and easements reviewed by the Community Development Director and recorded and filed when the subdivision plat for the project area is recorded. Except when allowed in 11.480, an easement

shall include permanent provisions prohibiting the placement of structures or impervious surfaces, alteration of the ground contours, or any other activity or use inconsistent with the purpose of these provisions.

The permanent natural areas will be set aside in tracts. Tract B will be conveyed to the City of Albany for ownership and maintenance after storm facility improvements are complete and accepted. Tract D will be conveyed to the property owner to the South after phase one plat recording. Tracts A and C will be conveyed to the HOA for ownership and maintenance.

11.480 Protection of Permanent Natural Areas.

The permanent natural area is shown on the Tentative Phased Subdivision Plans. The applicable requirements of Article 6 are met as described above in the responses to that article. Articles 4 and 7 are not applicable to this project.

11.490 Permitted Uses. The uses allowed within cluster developments outside the permanent natural areas are determined by the underlying zoning district standards in Section 3.050

The underlying zoning district is RS-6.5 which allows detached single dwelling units. Therefore this criterion is met.

11.495 Development Standards. In a cluster development, the following development standards in Table 11.495-1 supersede the same standards in Section 3.190, Table 3.190-1. The maximum density permitted by zoning district is specified in the following table.

STANDARD	RS-6.5
Max dwelling units per gross acre	6
Minimum lot size	None
Minimum lot width	None
Minimum lot depth	None
Minimum front setback	10 ft.
Maximum lot coverage	70%

Based on the RS-6.5 zoning and the acreage of the subject property, 176 single-family homes are allowed within the planned Meadowlark Estates Subdivision. The Tentative Phased Subdivision Plans show 176 lots for future single-family homes. The planned lots are configured to meet the applicable setback and lot coverage requirements. Setback and lot coverage requirements will be reviewed with the building permit application for each home. The applicable criteria are, or can be, met.

- 11.500 Perimeter Lot Compatibility. The following standards and exceptions will apply to the lots on the perimeter of a proposed cluster development.
- (1) Standards. The term "standard minimum lot size" as used in this section, means the minimum lot size allowed in the underlying base zone without any reductions in size allowed elsewhere in this Code.
- (a) When the proposed cluster development abuts developed property in a lower density residential zoning district, the size of lots on the perimeter of the proposed cluster development shall be at least the standard minimum lot size applicable to the proposed housing type that is allowed in the zone underlying the cluster development.

The subject property is zoned RS-6.5. The lowest density residential zoning district abutting the subject property is also RS-6.5. The planned cluster subdivision does not abut property in a lower density residential zoning district, and the criterion does not apply.

(b) When the proposed cluster development abuts developed property in the same residential zoning district as the proposed cluster development, the size of lots on the perimeter of the cluster development shall be at least 70 percent of the standard minimum lot size applicable to the proposed housing type that is allowed in the underlying zoning district.

The subject property is zoned RS-6.5. Abutting property to the east is zone RS-6.5. There are wetlands along the eastern perimeter of the subject property, separating existing homes to the east from the western lots planned on the subject property. The subdivision layout proposes a buffer between existing and new homes. The criterion is met.

- (2) Exceptions. The Perimeter Lot Compatibility standards do not apply in the following cases:
- (a) Perimeter lots that are adjacent to land that is zoned for higher density housing, mixed-use or non-residential uses, or to residentially zoned property not in residential use (such as educational, institutional, religious or park uses).

There are perimeter lots along Lochner Road. West of Lochner Road is zoned Light Industrial. This exception applies.

(b) Where the same property owner owns the property abutting the proposed cluster development or Proposed Cluster Development RS-6.5 Perimeter lots must be at least 6,500 sf Abutting Property w/ Lower Density Residential RS-10 Zoning Proposed Cluster Development RS-10.0 Perimeter lots must be at least 7,000 sf (70% of minimum lot size for underlying zoning) Abutting Property w/ Same Residential Zoning: RS-10 Albany Development Code, Article 11 11 - 18 July 1, 2023 when the perimeter lots share a property line with the Urban Growth Boundary.

The parcel south of the proposed site is owned by the same owner. This exception applies.

(c) If a buffer area is created as a separate property along the perimeter and is at least 20 feet wide, the buffer area shall become a permanent natural area and shall meet the provisions in Sections 11.470 and 11.480.

This criterion is not applicable.

(d) Cluster developments abutting property that is at least 1 acre in size.

This criterion has been met.

11.520 Street Standards for Cluster Development. Local streets in a cluster development may be constructed to the Residential Street Design for Constrained Sites as described in Section 12.122(4).

Street standards have been designed in accordance with Residential Street Design for Constrained Sites as described in section 12. In addition, many of the interior lots will be served by rear alley's to provide local streets without driveway accesses. See sheet C-1.1 for details on site layout.

11.530 South Albany Connectivity. Developments within the South Albany Area Plan boundary shall provide a connected street and pathway network.

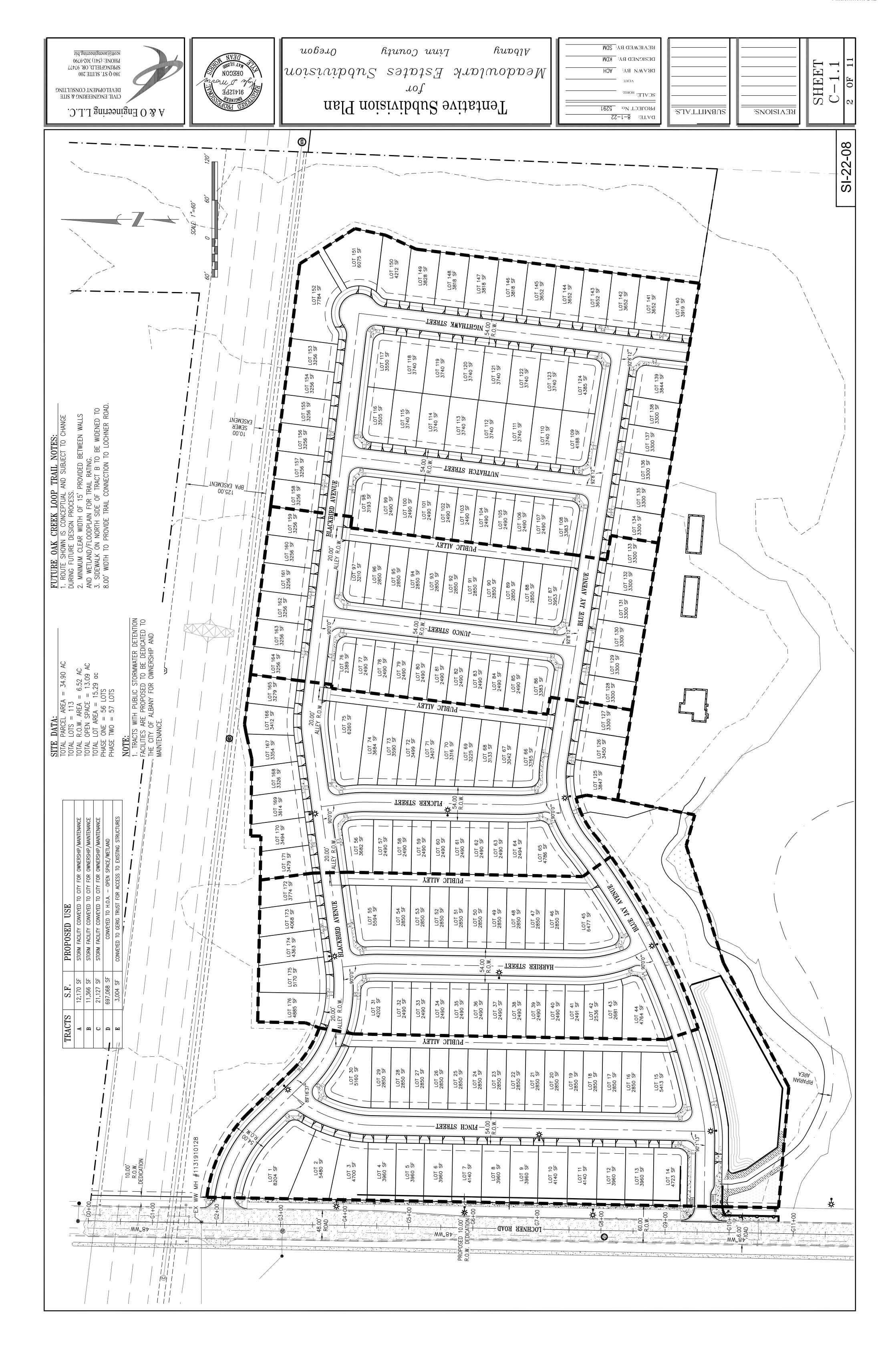
The subject property is located in the South Albany Area Plan boundary, but the primary future trail connection is located on the property to the South. There is open space at the South end of the development in Tracts B & C that can be used by the City of Albany for a future connection (see potential route shown on sheet C-1.1 of site plan set). The applicant held a pre-application meeting with City of Albany and the discussion was to provide open space area on the north and east ends of the development to allow for a future trail connection, but not propose constructing a trail as part of this development as details of trail have not been determined by City staff. Sheet C-1.1 of the plan set shows a potential routing for this future trail, including a connection to Nighthawk Street between lots 151 & 152 located in Tract A. Therefore, this criterion is met.

Neighborhood Meeting Report Meadowlark Estates Subdivision

Meeting Date: 5:00 PM, August 10th, 2023

Location: Albany Public Library

In preparation for the submission of land use application for a subdivision of the subject property, the applicant conducted a neighborhood meeting in accordance with applicable City requirements. Neighbors within 1000 feet were invited to join the meeting with a mailed notice. A general description of the application and review process were provided. Five individuals attended, and there was one call prior to the meeting.


Some of the questions asked at the meeting were:

- What is the mix/size of homes being built
- Who owns the nearby land
- If there will be street parking provided
- If there are any proposed parks in the subdivision
- If the subdivision is phased
- When is the target start date
- Will there be an HOA/how will the open space be managed

The only concern brought up was one neighbor questioning the impact on the wetlands. We explained that we had gone through the Department of State Lands to get the necessary approvals and addressed mitigation for any wetland impact.

No questions or concerns were brought up that required follow-up from the engineer or developer.

Site plan shown at meeting attached.

A & O Engineering LLC

Oregon ~ Washington ~ Arizona

380 Q Street Suite 200 • Springfield, OR 97477

July 24, 2023,

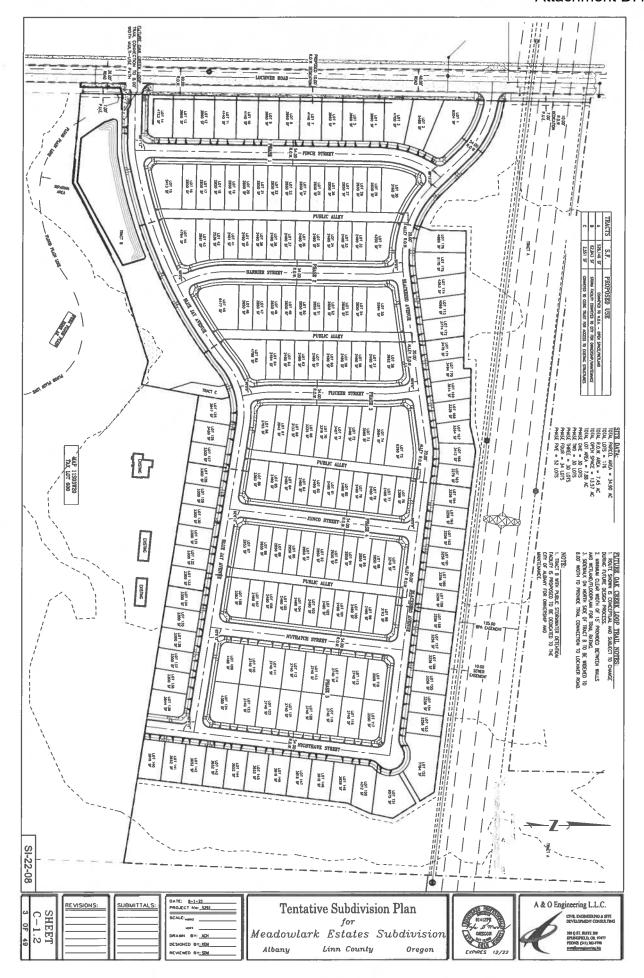
Dear Neighbor/Property Owner

A & O Engineering LLC is holding a neighborhood meeting regarding a 176 lot subdivision for future single-family homes on an approximate 35 acre property located at 3795 Lochner Road. The subject property is shown on attached map. This is an updated layout for the previously approved project; Meadowlark Estates, approved on October 6th, 2021.

Meeting time and location:

Time - Thursday August 10th - 5:00 PM

Location - Albany Public Library Meeting Room


2450 14th Ave SE Albany, OR 97322

You are receiving this letter because you are listed as the owner of property within 1000' of the planned subdivision. This will be an open house drop-in format to answer questions about the project prior to City Submittal. Please note that the attached site plan is based on preliminary plans. This plan might be altered prior to submittal of the application to the city. We look forward to discussing this project with you. If you have any questions, feel free to contact us at (541) 302-9790 or scottmorris@aoengr.com.

Sincerely,

A & O Engineering LLC

Scott Morris, PE

Wetland Delineation Lochner Road SE Property Albany, Oregon

(Township 11 South, Range 3 West, Section 20, Portion of Tax lot 600)

Prepared for

James Limerick, Land Development Manager
Hayden Homes
2464 SW Glacier Place
Redmond, OR 97756


Prepared by

Carlee Michelson, Joe Thompson, Shawn Eisner, Amy Hawkins, John van Staveren Pacific Habitat Services, Inc. Wilsonville, Oregon 97070 (503) 570-0800

(503) 570-0800 (503) 570-0855 FAX

PHS Project Number: 6869

January 14, 2021

TABLE OF CONTENTS

		<u>Page</u>
I.	INTRODU	CTION1
II.		AND DISCUSSION1
	A. Landsca	ape Setting and Land Use1
	B. Site Alt	erations1
	C. Precipit	ation Data and Analysis1
	D. Method	
	_	tion of All Wetlands and Other Non-Wetland Waters
	F. Deviation	on from Local Wetland or National Wetand Inventories4
		g Method4
		nal Information4
		and Conclusions4
	J. Disclain	mer4
III.	REFEREN	ICES5
APF	PENDIX A:	Figures
Fig	gure 1:	Vicinity Map (USGS)
	gure 2:	Tax Lot Map
Fig	gure 3:	Wetland Inventory Map (Local)
•	gure 4:	Soil Survey Map
	gures 5A-5C:	
F15	gure 6:	Potentially Jurisdictional Wetland (Wetland Delineation Map)
APF	PENDIX B:	Wetland Delineation Data Sheets
APF	PENDIX C:	Site photos (ground level)
APF	PENDIX D:	Wetland Definitions and Methodology (Client only)

I. INTRODUCTION

Pacific Habitat Services, Inc. (PHS) conducted a wetland delineation for the Lochner Road SE development site in Albany, Oregon (Township 11 South, Range 3 West, Section 20, portion of Tax lot 600). This report presents the results of PHS's wetland delineation within the study area. Figures, including a map depicting the location of wetlands within the study area, are located in Appendix A. Data sheets documenting on-site conditions are in Appendix B. Ground-level photos of the site are located in Appendix C. A discussion of the wetland delineation methodology, provided for the client, is in Appendix D.

II. RESULTS AND DISCUSSION

A. Landscape Setting and Land Use

The study area is adjacent to and east of Lochner Road SE, and consists of the northern portion of tax lot 600 in Albany, Oregon. The study area is bounded to the north by railroad tracks and an agriculture field, to the south by a single-family home and associated outbuildings, open space and Oak Creek (on the remainder of tax lot 600), to the east by an existing housing development. A cold storage facility and the Oak Creek Youth Correctional Facility are located west of Lochner Road SE. Land use around the study area includes agriculture, single-family residential, and open space.

The study area consists of generally flat topography, with elevations on site ranging from 225 to 230 feet. A gravel driveway bisects the western portion of the study area.

The study area consists of land that has been managed for agricultural production (grass seed or hay), and is likely tilled and planted at least once a year. At the time of the site visit, the study area was planted with a monoculture of tall false rye grass (*Schedonorus arundinacea*, FAC).

There are no roadside ditches or wetlands adjacent to Lochner Road SE.

B. Site Alterations

The Google Earth historical photos of the study area from 1994 (the earliest available) through 2018 shows no changes within the site, other than different types of planted crops.

No recent fill material or deposits were observed within the study area.

C. Precipitation Data and Analysis

The Lochner Road SE study area was delineated on October 15, 2020; precipitation data for the months preceding this period is summarized below.

A WETS table for the Albany area was unavailable at the time of this report. As such, precipitation data was used from a station at the Salem Airport (McNary Field), located approximately 21.75 miles northeast of the site.

Table 1 compares the most recent monthly precipitation amounts recorded to the average monthly precipitation recorded in Salem, as well as to the normal precipitation range as identified in the Natural Resource Conservation Service's (NRCS) WETS climate table for the Salem AP (McNary Field) station. These data show that when rainfall amounts have varied most significantly from the mean, the amounts may also have fallen outside the normal range of variability for this area. For this period, August and September were within the normal range of variation for the area; however, July was below average, as only a trace amount of precipitation was observed.

Table 1: Comparison of average and observed monthly precipitation in Salem, prior to the October delineation fieldwork.

		30% Chance Will Have			
Month	Average Precipitation ¹	Less Than Average ¹	More Than Average ¹	Observed Precipitation ²	Percent of Normal
July*	0.18	0.07	0.19	Trace	0%
August	0.34	0.10	0.35	0.12	35%
September	1.40	0.55	1.70	1.36	97%

Notes: 1. Source: NRCS WETS Table for Salem AP (McNary Field (http://agacis.rcc-acis.org)

Total observed precipitation for the previous water year (October 1, 2019 through September 30, 2020) was 27.91 inches, which was approximately 70 percent of the normal for those months. Table 2 shows daily precipitation totals for the two weeks prior to the fieldwork conducted on October 15, 2020; as the table shows, no precipitation was recorded on the day of the delineation fieldwork.

Table 2: Daily precipitation totals for two weeks prior to and including the day of fieldwork.

Date	Precipitation (inches)	Date	Precipitation (inches)
1-Oct	0.00	9-Oct	0.10
2-Oct	0.00	10-Oct	0.85
3-Oct	0.00	11-Oct	0.31
4-Oct	0.00	12-Oct	0.23
5-Oct	0.00	13-Oct	0.16
6-Oct	0.00	14-Oct	0.00
7-Oct	0.00	15-Oct	0.00
8-Oct	0.00		

The precipitation fluctuations preceding the delineation are not expected to have affected the wetland boundary because the delineation generally relied on the presence of hydric soil indicators and micro-topography to define the wetland/upland boundary. The wetlands appear to be the result of a shallow groundwater table, and are the result of their position in the landscape rather than the result of precipitation.

^{2.} Source: NRCS monthly precipitation data (Salem) (http://agacis.rcc-acis.org)

^{*----}Monthly rainfall was <u>below</u> the 'normal' range

^{**----}Monthly rainfall was above the 'normal' range

PHS believes that "normal circumstances" in terms of precipitation for this site have generally prevailed during the wetland delineation fieldwork. While varied precipitation has fallen in the months leading up to the fieldwork, this is not surprising given the mid-October timeline, which is typical before the onset of significant fall rains.

D. Methods

PHS delineated the limits of the wetlands on the site based on the presence of wetland hydrology, hydric soils, and hydrophytic vegetation, in accordance with the Routine On-site Determination, as described in the *Corps of Engineers Wetland Delineation Manual*, *Wetlands Research Program Technical Report Y-87-1* ("The 1987 Manual") and the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains*, *Valleys, and Coast Region*. PHS conducted the wetland delineation within the study area on October 15.

The entire study area was investigated for the presence of wetlands or other waters. Four wetlands were delineated within the study area. Wetlands A through D were delineated based on subtle topographic changes and changes from observed hydric soils to soils where no hydric indicators were observed. The presence/absence of oxidized rhizospheres (OR) was also used to determine the wetland boundaries. Vegetation within the wetland and adjacent upland generally consists of mixed, facultative grasses that are semi-regularly harvested and plowed or tilled, and was not a good indicator of the wetland/upland boundary. Due to the time of year, the grass seedlings in several of the sample points were unable to be identified. These grasses are presumed to be facultative for the purposes of the delineation.

PHS did not take additional data in areas that are topographically higher than the wetlands (other than data needed to verify the wetland/upland boundary). Sample point 15 is located in the southwestern portion of the site, in a topographically low area. This sample point is representative of the upland areas throughout the site. The upland areas do not exhibit surface indicators of wetlands (i.e. ponded surface water, or stunted/stressed vegetation, FACW or wetter vegetation, etc.).

E. Description of all Wetlands and Other Non-Wetland Waters

Wetlands A, B, C, and D

Wetlands A, B, C, and D are similar in vegetation structure, soils, and hydrology. The wetlands are located in topographically low areas within an active agriculture field. The following table outlines Wetlands A through D.

Table 3. Summary of Wetland Areas within the Lochner Road Study Area

Wetland	Size (sq. ft. /acres)	Cowardin Class	Hydrogeomorphic (HGM) Class	Dominant Vegetation
A	2,348 / 0.05	PEMC	Slope/Flats	Unidentifiable grass
В	410,379 / 9.42	PEMC	Slope/Flats	Tall false ryegrass
С	191,050 / 4.39	PEMC	Slope/Flats	Tall false ryegrass
D	15,428 / 0.35	PEMC	Slope/Flats	Tall false ryegrass
Total	619,205 / 14.2			

PEMC = Palustrine/emergent/seasonally saturated (PEMC)

Soils within Wetlands A through D meet the hydric soil criteria for Redox Dark Surface (F6) or Depleted Dark Surface (F7).

Wetlands A through D did not exhibit surface saturation, a high water table, and/or saturation within the upper 12 inches of the soil profile during the delineation; however, ORs were observed, as well as geomorphic position and/or surface water visible on aerials to satisfy hydrologic criteria. Wetland A continues offsite to the south; Wetland B continues offsite to the northwest and south; Wetland C continues off site to the north; Wetland D does not continue offsite.

F. Deviation from Local Wetland or National Wetland Inventories

The Albany (Willamette River, Calapooia River, and Oak Creek) Local Wetland Inventory (LWI) maps wetland in the southwestern portion of the study area, which is consistent with PHS' delineation of Wetland A. The LWI also maps wetland in the northern portion of the study area, just south of the railroad tracks, which is consistent with PHS' delineation of the northern portion of Wetland B. PHS, however, also delineated a large portion of the eastern study area as Wetland B, and also delineated Wetlands C and D in the central portion of the study area. This discrepancy may be due to the areas chosen for sample points within a densely vegetated agricultural field at the time of the NWI mapping.

G. Mapping Method

PHS flagged the limits of the wetlands within the study area with blue pin flags, lime green tape was used for sample point locations. A&O Engineering, Inc., then performed a professional land survey of the delineated boundaries. The accuracy of the survey and sample points 1-15 are subcentimeter. Sample points 16 and 17 were placed on the map using field notes; the accuracy of these data points is +/- 3 feet.

H. Additional Information

None

I. Results and Conclusions

PHS delineated Wetlands A through D within the study area. The total area of wetland within the study area boundary is 619,205 square feet (14.2 acres), as summarized in Table 3 in Section E above.

J. Required Disclaimer

This report documents the investigation, best professional judgment and conclusions of the investigators. It is correct and complete to the best of our knowledge. It should be considered a Preliminary Jurisdictional Determination of wetlands and other waters and used at your own risk unless it has been reviewed and approved in writing by the Oregon Department of State Lands in accordance with OAR 141-090-0005 through 141-090-0055.

III. REFERENCES

Adamus, P.R. and D. Field. 2001 Guidebook for Hydrogeomorphic (HGM)-based Assessment of Oregon Wetland and Riparian Sites. Willamette Valley Ecoregion, Riverine Impounding and Slopes/Flats Subclasses. Oregon Division of State Lands, Salem, OR.

GoogleEarth Map. 2017 aerial photograph.

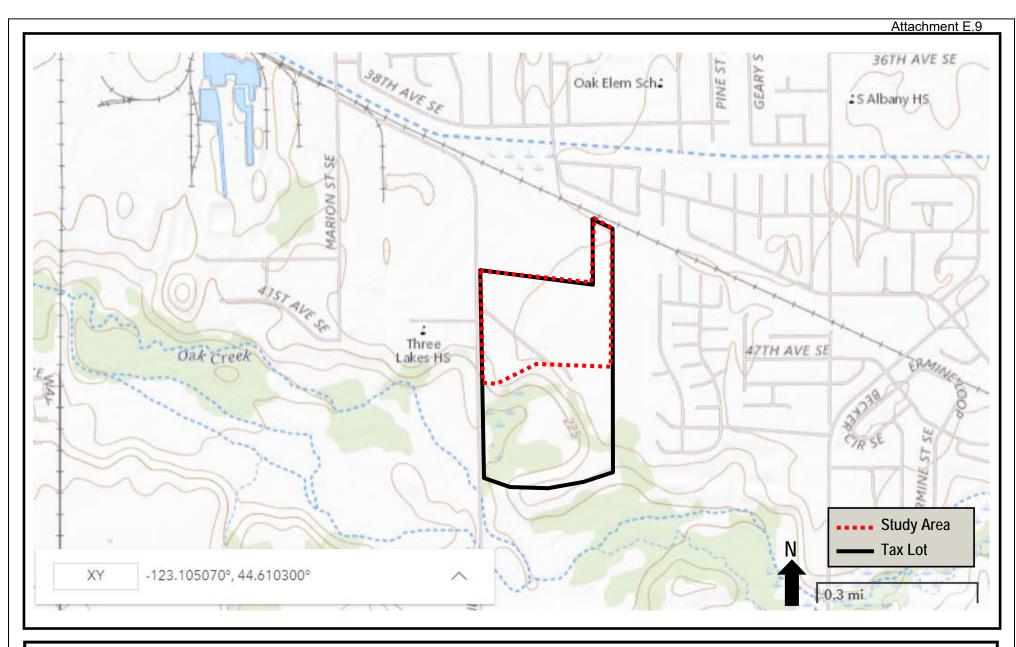
Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. *State of Oregon 2018 Plant List. The National Wetland Plant List*: 2018 Wetland Ratings http://wetland-plants.usace.army.mil/nwpl static/v34/home/home.html#

Munsell Color, 2009. Munsell Soil Color Charts. Gretag-Macbeth, New Windsor, New York.

NRCS WETS table for Salem Airport (McNary Field). (http://agacis.rcc-acis.org)

NRCS monthly rainfall data for Salem (http://agacis.rcc-acis.org

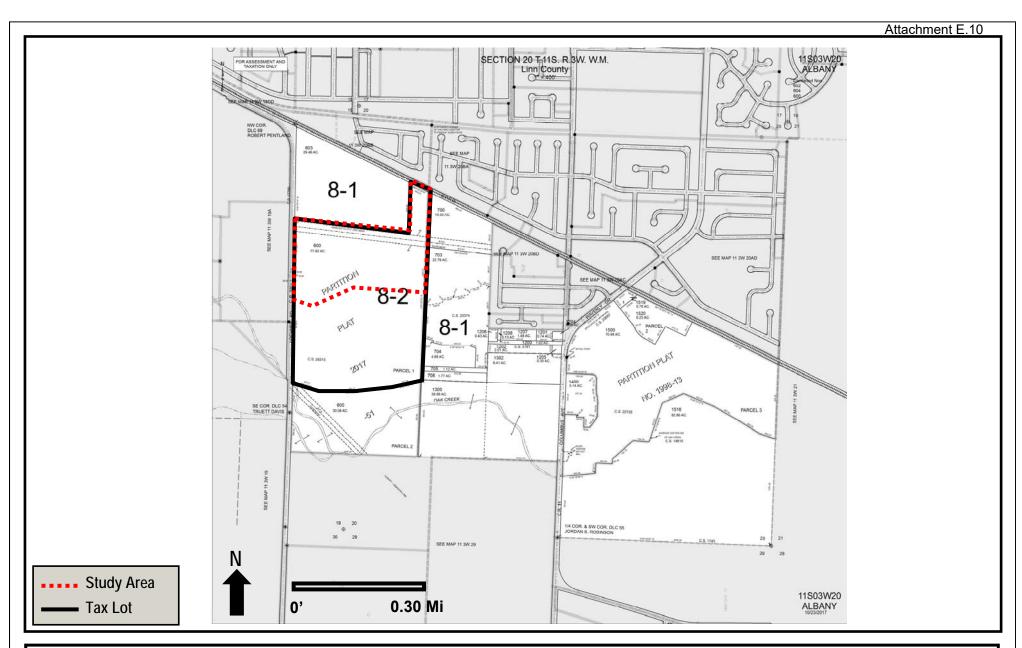
Oregon Department of State Lands, 2009. Oregon Revised Statutes (ORS), Chapter 196 — Columbia River Gorge; Ocean Resource Planning; Wetlands; Removal and Fill. Section 196.800 Definitions for ORS 196.600 - 196.905


Oregon Maps online. 2020. http://www.ormap.org/

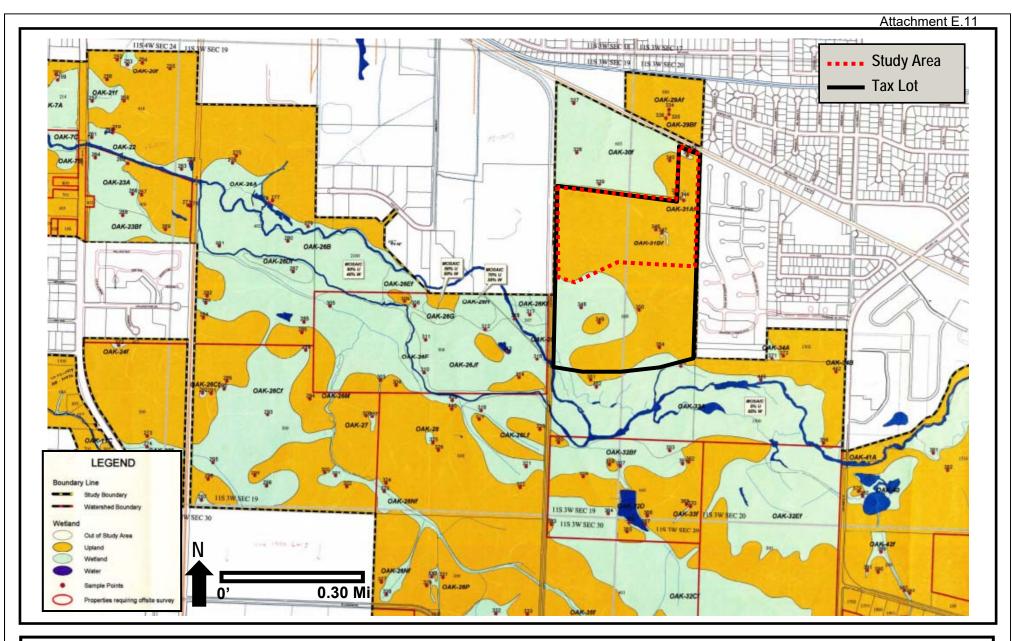
- US Army Corps of Engineers, Environmental Laboratory, 1987. Corps of Engineers Wetland Delineation Manual. Technical Report Y-87-1.
- US Army Corps of Engineers, Environmental Laboratory, 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0).
- USDA, Web Soil Mapper, 2020. *Soil Survey of Linn County, Oregon*. http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx
- U.S. Fish and Wildlife Service National Wetland Inventory. https://www.fws.gov/wetlands/data/mapper.html
- US Geologic Survey, 2020. 7.5-minute topographic map, Tangent, Oregon quadrangle. https://viewer.nationalmap.gov/basic/?basemap=b1&category=ustopo&title=US%20Topo%20D ownload

Appendix A

Figures



Pacific Habitat Services, Inc. 9450 SW Commerce Circle, Suite 180 Wilsonville, OR 97070 General Location and Topography Lochner Road SE Property - Albany, OR United States Geological Survey (USGS) Tangent, Oregon 7.5 quadrangle, 2020 (viewer.nationalmap.gov/basic) FIGURE


1

Pacific Habitat Services, Inc. 9450 SW Commerce Circle, Suite 180 Wilsonville, OR 97070 Tax Lot Map Lochner Road SE Property - Albany, OR The Oregon Map (ormap.net) FIGURE

2

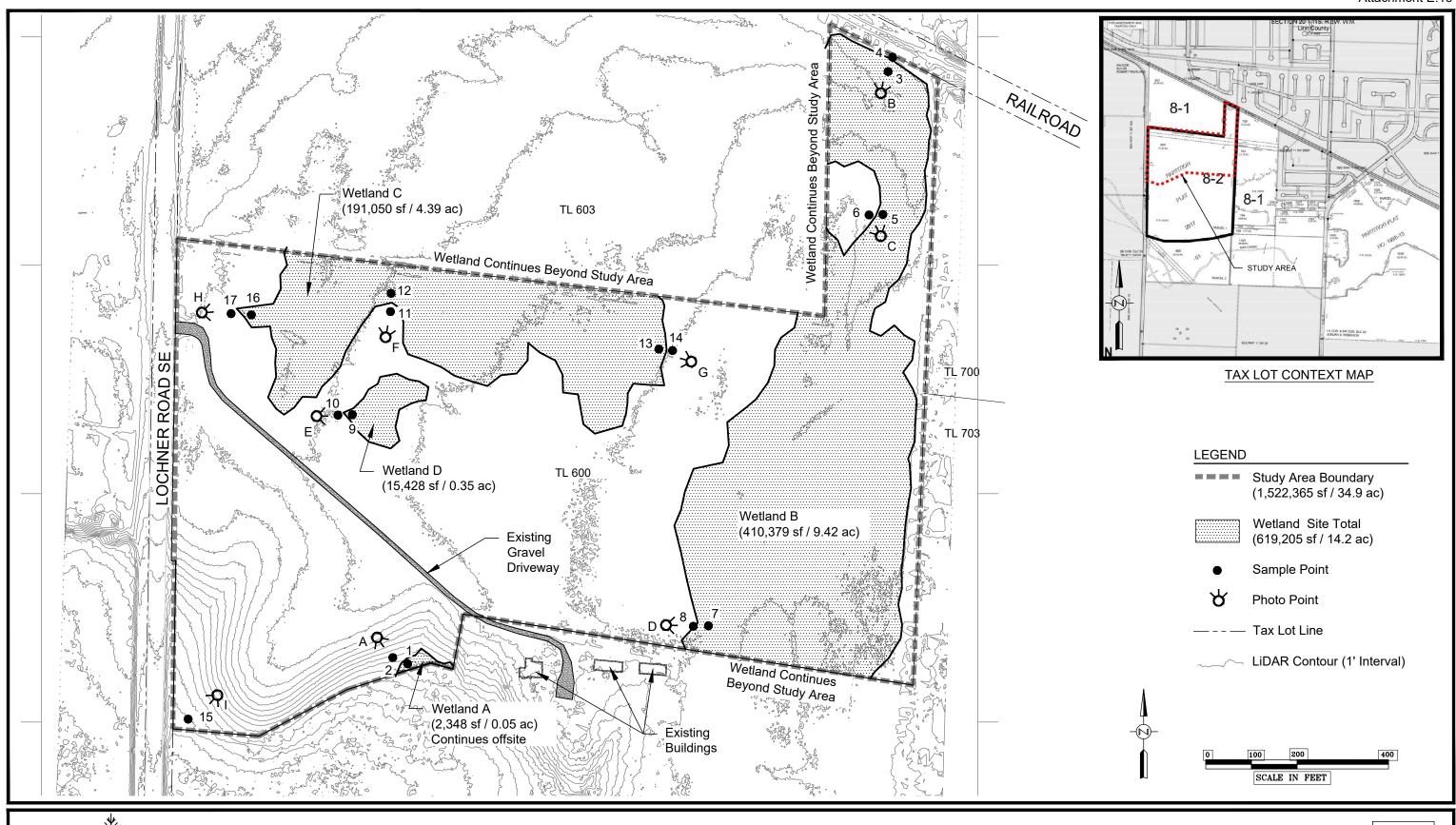
Pacific Habitat Services, Inc. 9450 SW Commerce Circle, Suite 180 Wilsonville, OR 97070 Local Wetland Inventory Lochner Road SE Property - Albany, OR Willamette River, Calapooia River, and Oak Creek LWI, 1999

FIGURE

Soils Lochner Road SE Property - Albany, OR Natural Resources Conservation Services, Web Soil Survey, 2020 (websoilsurvey.sc.egov.usda.gov) **FIGURE**

4

July 2018 Aerial Photo Lochner Road SE Property - Albany, OR GoogleEarth, 2020 FIGURE 5A


March 2010 Aerial Photo Lochner Road SE Property - Albany, OR GoogleEarth, 2020 FIGURE 5B

April 2006 Aerial Photo Lochner Road SE Property - Albany, OR GoogleEarth, 2020 FIGURE

5C

Survey provided by A&O Engineering, LLC. The accuracy of the survey, study area, tax lot and sample points 1-15 are sub-centimeter. Sample points 16 and 17 were placed on the map using field notes; the accuracy of these data points is +/- 3 feet.

Wetland Delineation Lochner Road SE Property - Albany, Oregon

1-19-2021

Appendix B

Wetland Determination Data Sheets

Project/Site:	Lochr	er Road		_	City/County:	A	lbany/Linn		Samp	oling Date:	10/1	15/2020
Applicant/Owner: <u>F</u>	layden H	omes						State:	OR	_ ;	Sampling Point	1
Investigator(s):		JT/CM			Section, To	wnship, Range:	-		20	/11S/3W		
Landform (hillslope, terr	ace, etc.:)		SI	оре		Local relief (cor	ncave, convex, n	one):	N	lone	Slope (%)	
Subregion (LRR):		LRR	Α		Lat:	44.6000	41°	Long:	-123.	090571°	Datum	WGS85
Soil Map Unit Name:		W	oodburn	silt lo	am, 3-12% sl	opes		NWI Clas	sification:		PFOC	
Are climatic/hydrologic	conditions c	n the site	typical for t	his time	e of year?	Yes	Х	No		(if no, expla	in in Remarks)	
Are vegetation	Soil	or H	ydrology		significantly dist	urbed?	Are "Normal C	ircumstance	es" preser	nt? (Y/N)	Υ	
Are vegetation	Soil	or H	ydrology		naturally proble	matic? If needed	, explain any ans	wers in Rer	narks.)			_
SUMMARY OF FI	NDINGS	- Atta	ch site n	nap s	howing san	npling point	locations, tr	ansects,	import	ant featu	res, etc.	
Hydrophytic Vegetation	Present?	Yes	Х	No		Is Sampled Ar	ea within					
Hydric Soil Present?		Yes	Х	No		a Wetlan		Yes	Х	_	lo	=
Wetland Hydrology Pres	sent?	Yes	X	No								
Remarks:						1						
/EGETATION - U	se scien	tific na	mes of p	lants	3 .							
			absolu		Dominant	Indicator	Dominance	Test work	sheet:			
Ott		,	<u> </u>	er	Species?	Status						
ree Stratum (plot siz	ze:)				Number of Don	-			4	(A)
1							That are OBL,	FACW, or F	AC:		1	_(A)
2 3				—			Tatal November	.f.D				
٥ 				— .			Total Number of				1	(D)
+					= Total Cover		Species Across	All Strata.			'	_(B)
					- Total Cover							
Sapling/Shrub Stratum	(plot size	e:)				Percent of Don	•				
1							That are OBL,	FACW, or F	AC:	1	00%	_(A/B)
2 3							Dunisalaman	landar Ma	.l l 4.			
<u> </u>							Prevalence		KSneet:			
							Total % Cover OBL Spe			Multiply by: x 1 =	_ 0	
<u> </u>					= Total Cover		FACW spe	_		x 2 =		-
					10101 00101		FAC Spe			x 3 =	0	=
lerb Stratum (plot siz	ze:	5)				FACU Spe	_		x 4 =	0	-
1 Unidentified gra	ass		20		Х	(FAC)	UPL Spe	cies		x 5 =	0	= =
2							Column T	otals	0	(A)	0	(B)
3												
4							Prevalen	ce Index =B	/A =	#1	OIV/0!	_
5												
6							Hydrophytic	Vegetation	on Indic	ators:		
7									-	=	phytic Vegetati	on
8										nce Test is >		
			20		= Total Cover					ce Index is ≤	ations ¹ (provide	supporting
	(plot size:)								a separate she	
Voody Vine Stratum		-	-							Non-Vascul		•
								P	roblemati	c Hydrophyti	c Vegetation¹ (I	Explain)
Noody Vine Stratum 1 2												
1			0		= Total Cover		¹ Indicators of h	-	d welland	i nyarology n	iust be bresein	, uilicss
1			0		= Total Cover		disturbed or pro	oblematic.	u welland	i nydrology n	nust be present	, uness
	Stratum		0		= Total Cover			oblematic.		X	·	, uniess

Profite Description: (Descripte to the depth receded to document the indicators confirm the absonce of indicators) Color (moints) Matrix Reduct Part Remarks	SOIL			PHS#	6869			Sampling Point: Attachm ent E.19
Color Color Color Section	Profile Descr	iption: (Describe to	the depth	needed to docume	ent the indicator or	confirm the abser	ce of indicators.)	
10	Depth	-						
4-7				Color (moist)	% Type	Loc		Remarks
T-10								- <u></u>
10-12	4-7	10YR 3/2					Silt Loam	Fine
10-12	7-10	10YR 3/2	95				Silt Loam	Fine
Type: C=Concentration, D=Depletion, RN=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C=Concentration, D=Depletion, RN=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C=Concentration, D=Depletion, RN=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C=Concentration, D=Depletion, RN=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C=Concentration, D=Depletion, RN=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C=Concentration, D=Depletion, RN=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C=Concentration, D=Depletion, RN=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C=Concentration, D=Depletion, RN=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C=Concentration, D=Depletion, RN=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C=Concentration, D=Depletion, RN=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C=Concentration, D=Depletion, RN=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C=Concentration, D=Depletion, RN=Reduced Data Reduced Fig. Capacity Mucroscopy Matrix, CS=Covered Numbers, CT=Coated Sand Grains. Type: C=Concentration, D=Depletion, RN=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C=Concentration, CS=Covered Numbers, CT=Coated Sand Grains. Type: C=Concentration, RN=Reduced Numbers, CS=Covered Numbers, CT=Coated Sand Grains. Type: C=Concentration, RN=Reduced Numbers, CS=Covered Numbers, CT=Coated Sand Grains. Type: C=Concentration, RN=Reduced Numbers, CS=Covered Numbers, CT=Coated Sand Grains. Type: C=Concentration, RN=Reduced Numbers, CS=Covered Numbers				10YR 4/6		PL		
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosoa (A1) Sandy Redox (S5) 2 cm Muck (A10) Histo Epipedon (A2) Stripped Matrix (S6) Red Parent Material (TF2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Other (explain in Remarks) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Phydrology must be present, unless disturbed or problematic. Restrictive Layer (if present): Type: Depth (inches): Hydric Soil Present? Yes X No Remarks: Plowed field. Hydric Soil Present? Yes X No Remarks: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA Water stained Leaves (B9) (MLRA1; 2, 44, and 48) Surface Water (A1) Drainage Patterns (B10) High Water Table (A2) Jayabot Invertebrates (B13) Drys-Season Water Table (C2) Sediment Deposits (B3) X Oxidized Rhizospheres along Living Roots (C3) X Seuroural Prisot (D3) High Water Marks (B1) Agail Mater Crust (B4) Presence of Reduced fron (C4) Sultra Oxidized Rhizospheres along Living Roots (C3) X Geomorphic Design (D2) Invalidation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Field Observations: Surface Water Present? Yes No X Depth (inches): Surface Water Table Present? Yes No X Depth (inches): Surface Water Present? Yes No X Depth (inches):	10-12	10YR 3/2	95	7.5YR 3/4		M	Silt Loam	Fine
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Histosol (A2) Stripped Matrix (S8) Red Parent Material (TF2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Other (explain in Remarks) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) X Redox Dark Surface (F7) Thick Dark Surface (A12) Y Redox Dark Surface (F7) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Pripe: Depth (inches): Hydric Soil Present? Yes X No Restrictive Layer (if present): Type: Depth (inches): Hydric Soil Present? Yes X No Wettand Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA Water stained Leaves (B9) High Water Table (A2) Sait Crust (B11) Drainage Patterns (B10) Surface Water (A1) Sait Crust (B11) Drainage Patterns (B10) Drift Deposits (B3) X Oxidized Ribizopheres along Living Roots (C3) X Geomorphic Decision (C2) Surface Soil Crust (B4) Presence of Reduced Iron (C4) Saltaration (Visible on Aerial Image (C2) Surface Soil Crust (B6) Surface of Reduced Iron Reduction in Rowed Soils (C6) Fac-Neutral Test (D5) Surface Soil Crust (B6) Surface Soil Crust (B7) Surface (B7) Surface Water Present? Yes No Surface (B7) Surface Soil Crust (B7) Surface (B7) Surface Water Present? Yes No Surface (B7) Surface Water Present? Yes No Surface (B7) Surface (B7) Surf								
Histosof (A1) Histo Epipedon (A2) Stripped Matrix (S8) Red Parent Material (TF2) Black Histic (A3) Learny Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Problematic Redox Depressions (F8) Problematic Redox Depressions (F8) Hydric Soil Present? Yes X No Remarks: Plowed field. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA High Water Table (A2) Saturation (A3) Salt Crust (B11) Saturation (A3) Salt Crust (B11) Portic Depression (B3) Aquatic Invertebrates (B13) Prinary Problematic (B13) Prinary Prinary Prinary (B14) Prinary Prinary Prinary (B14) Prinary Prinary Prinary (B14) Prinary Prinary Prinary (B14) Prinary								
Histic Epipedon (A2) Stripped Matrix (S6) Red Parent Material (TF2) Black Histic (A3) Loamy Micky Mineral (F1)(except MLRA 1) Very Shallow Dark Surface (TF12) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Other (explain in Remarks) Depleted Bellow Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Prosent; Type: Deplth (inches): Popth (inches): Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) High Water Table (A2) 1, 2, 4A, and 4B) Saturation (A3) Salt Crust (B11) Dark Material (C1) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Sediment Deposits (B3) X Oxidized Rhizospheres along Living Roots (C3) X Geomorphic Position (D2) Agal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquiatrd (D3) Iron Deposits (B5) Recent In Remarks Field Observations: Surface Water Present? Yes No X Depth (inches):	Hydric Soil		icable to	all LRRs, unless			Indic	· ·
Black Histic (A3) Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Trick Dark Surface (A12) Sandy Mucky Mineral (S1) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (F3) Pepleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Pepleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Problematic. Restrictive Layer (If present): Type: Depth (inches): Plowed field. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required: Surface Water (A1) High Water Table (A2) Surface Water (A1) Water stained Leaves (B9) (Except MLRA Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Mater Marks (B1) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Sulface Water (A1) Presence of Reduced Iron (C4) Shallow Agital Mol or Crust (B4) Presence of Reduced Iron (C4) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Surface Water Present? Yes Water Table (Na) Presence of Reduced in The Mineral Surface (B1) Wetland Hydrology Present?		•				` ,		
Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A12) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (F2) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Sandy Gleyed Matrix (S4) Restrictive Layer (if present): Type: Depth (inches): Plowed field. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Hydric Soil Present (MLRA1, 2, 4A, and 4B) Sulface Water (A1) Water Stained Leaves (B9) (Except MLRA High Water Table (A2) Salturation (A3) Salt Crust (B11) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Surface Soil Crust (B4) Presence of Reduced Iron (C4) Sulface Soil Crust (B6) Feach National International Color (C2) Surface Soil Crust (B6) Surface Soil Cracks (B6) Surface Soil Cracks (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Surface Water Table (PC) Wetland Hydrology Present?		Histic Epipedon (A2)				` ,		
Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Secondary (If present): Type: Depth (inches): Plowed field. Hydric Soil Present? Yes X No Water stained Leaves (B9) Surface Water (A1) Saturation (A2) Saturation (A3)		Black Histic (A3)			Loamy M	ucky Mineral (F1) (e	except MLRA 1)	Very Shallow Dark Surface (TF12)
Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Oleyed Matrix (S4) Secondary (F7) Secondary (F8) Redox Depressions (F		Hydrogen Sulfide (A4	1)		Loamy G	leyed Matrix (F2)		Other (explain in Remarks)
Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Redox Depression (F8		Depleted Below Dark	Surface (A	A11)	Depleted	Matrix (F3)		
Sandy Gleyed Matrix (S4)		Thick Dark Surface (A12)		X Redox Da	ark Surface (F6)		2
Restrictive Layer (if present): Type: Depth (inches): Hydric Soil Present? Yes X No Remarks: Plowed field. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required Surface Water (A1) High Water Table (A2) High Water Table (A2) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Sediment Deposits (B2) Pydrogen Sulfide Odor (C1) Sediment Deposits (B3) Aqualic Invertebrates (B13) Drift Deposits (B3) A X Oxidized Rhizospheres along Living Roots (C3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Surface Soil Cracks (B6) Surface Water Present? Yes No X Depth (inches): Surface Water		Sandy Mucky Minera	ıl (S1)		Depleted	Dark Surface (F7)		, , , ,
Type: Depth (inches): Hydric Soil Present? Yes		Sandy Gleyed Matrix	(S4)		Redox De	epressions (F8)		
Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Iron Deposits (B5) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface Water Table (A2) Surface Water Present? Yes No X Depth (inches): Water stained Leaves (B9) (Except MLRA Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Drainage Patterns (B10) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Image Presence of Reduced Iron (C1) Saturation Visible on Aerial Image Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): >12 Wetland Hydrology Present?	Type: Depth (inche Remarks:	·					Hydric Soil Pre	esent? Yes X No
High Water Table (A2) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Dry-Season Water Table (C2) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Teld Observations: Surface Water Present? Yes No X Depth (inches): 1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Image Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Image Presence of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Wetland Hydrology Present? Wetland Hydrology Present?	Type: Depth (inche Remarks: Plowed field	d. DGY	rs:				Hydric Soil Pre	esent? Yes X No
Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Dry-Season Water Table (C2) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Salt Crust (B11) Aquatic Invertebrates (B13) Aquatic Invertebrates (B1) Aquatic Invertebrates (B1) Aquatic Invertebrates (B1) Aquatic Inverteb	Type: Depth (inche Remarks: Plowed field HYDROLC Wetland Hy	d. DGY rdrology Indicator		uired; check all th	nat apply)		Hydric Soil Pre	Secondary Indicators (2 or more required)
Water Marks (B1) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Image Drift Deposits (B3) X Oxidized Rhizospheres along Living Roots (C3) X Geomorphic Position (D2) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Fac-Neutral Test (D5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Vegetated Present? Yes No X Depth (inches): Vegetated Concave Present? Vegetated Concave Surface (B8) Wetland Hydrology Present?	Type: Depth (inche Remarks: Plowed field HYDROLC Wetland Hy	d. OGY rdrology Indicator cators (minimum o		uired; check all th		ained Leaves (B9) (l		Secondary Indicators (2 or more required)
Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Oxidized Rhizospheres along Living Roots (C3) X Geomorphic Position (D2) X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Fac-Neutral Test (D5) Fac-Neutral Test (D5) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): >12 Wetland Hydrology Present?	Type: Depth (inche Remarks: Plowed field HYDROLC Wetland Hy	d. OGY rdrology Indicator cators (minimum of Surface Water (A1)	of one requ	uired; check all th	Water sta			Secondary Indicators (2 or more required) Water stained Leaves (B9)
Drift Deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Oxidized Rhizospheres along Living Roots (C3) Recent Iron Reduction in Plowed Soils (C6) Fac-Neutral Test (D5) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Other (Explain in Remarks) Frost-Heave Hummocks (D7) Depth (inches): Wetland Hydrology Present? Wetland Hydrology Present?	Type: Depth (inche Remarks: Plowed field HYDROLC Wetland Hy	d. OGY rdrology Indicator cators (minimum of Surface Water (A1) High Water Table (A2)	of one requ	uired; check all th	Water sta	and 4B)		Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B)
Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >12 Wetland Hydrology Present?	Type: Depth (inche Remarks: Plowed field HYDROLC Wetland Hy	d. OGY rdrology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3)	of one requ	uired; check all th	Water sta 1, 2, 4A, Salt Crus	and 4B) t (B11)		Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10)
Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >12 Wetland Hydrology Present?	Type: Depth (inche Remarks: Plowed field HYDROLC Wetland Hy	d. OGY rdrology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)	of one requ	uired; check all th	Water sta 1, 2, 4A, Salt Crus Aquatic I	and 4B) t (B11) nvertebrates (B13)		Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >12 Wetland Hydrology Present?	Type: Depth (inche Remarks: Plowed field HYDROLC Wetland Hy	d. OGY rdrology Indicator cators (minimum of Surface Water (A1)) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B	of one requ	uired; check all th	Water sta 1, 2, 4A, Salt Crus Aquatic Ii Hydroger	and 4B) t (B11) nvertebrates (B13) n Sulfide Odor (C1)	Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >12 Wetland Hydrology Present?	Type: Depth (inche Remarks: Plowed field HYDROLC Wetland Hy	d. OGY rdrology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3)	of one required on	uired; check all th	Water sta 1, 2, 4A, Salt Crus Aquatic li Hydroger X Oxidized	and 4B) t (B11) nvertebrates (B13) n Sulfide Odor (C1) Rhizospheres alon	Except MLRA g Living Roots (C3)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C2) X Geomorphic Position (D2)
Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >12 Wetland Hydrology Present?	Type: Depth (inche Remarks: Plowed field HYDROLC Wetland Hy	d. OGY rdrology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5)	of one required (2) (32) (32) (4)	uired; check all th	Water sta 1, 2, 4A, Salt Crus Aquatic II Hydroger X Oxidized Presence Recent Ir	and 4B) t (B11) nvertebrates (B13) n Sulfide Odor (C1) Rhizospheres along of Reduced Iron (Con) on Reduction in Plo	Except MLRA g Living Roots (C3) (C4) (wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5)
Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >12 Wetland Hydrology Present?	Type: Depth (inche Remarks: Plowed field HYDROLC Wetland Hy	d. OGY rdrology Indicator cators (minimum of Surface Water (A1)) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1 Iron Deposits (B5) Surface Soil Cracks (B3)	of one requiped (2) (32) (4) (86)		Water sta 1, 2, 4A, Salt Crus Aquatic li Hydroger X Oxidized Presence Recent Ir Stunted o	and 4B) It (B11) Invertebrates (B13) In Sulfide Odor (C1) Rhizospheres along In Reduced Iron (Con Reduction in Place In Stressed Plants (Except MLRA g Living Roots (C3) (C4) (wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Water Table Present? Yes No X Depth (inches): >12 Wetland Hydrology Present?	Type: Depth (inche Remarks: Plowed field HYDROLC Wetland Hy	d. OGY rdrology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on	of one required (2) 32) 4) (B6) Aerial Ima	gery (B7)	Water sta 1, 2, 4A, Salt Crus Aquatic li Hydroger X Oxidized Presence Recent Ir Stunted o	and 4B) It (B11) Invertebrates (B13) In Sulfide Odor (C1) Rhizospheres along In Reduced Iron (Con Reduction in Place In Stressed Plants (Except MLRA g Living Roots (C3) (C4) (wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
<u> </u>	Type: Depth (inche Remarks: Plowed field HYDROLO Wetland Hy Primary Indi	d. OGY rdrology Indicator cators (minimum of Surface Water (A1)) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundator)	of one required (2) 32) 4) (B6) Aerial Ima	gery (B7)	Water sta 1, 2, 4A, Salt Crus Aquatic li Hydroger X Oxidized Presence Recent Ir Stunted o	and 4B) It (B11) Invertebrates (B13) In Sulfide Odor (C1) Rhizospheres along In Reduced Iron (Con Reduction in Place In Stressed Plants (Except MLRA g Living Roots (C3) (C4) (wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C2) X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
<u> </u>	Type: Depth (inche Remarks: Plowed field HYDROLC Wetland Hy Primary Indi	d. OGY rdrology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Invations:	of one required (2) 32) 4) (B6) Aerial Ima	gery (B7) urface (B8)	Water sta 1, 2, 4A, Salt Crus Aquatic II Hydroger X Oxidized Presence Recent Ir Stunted of Other (Ex	and 4B) It (B11) Invertebrates (B13) In Sulfide Odor (C1) Rhizospheres along In Reduced Iron (Con Reduction in Place In Stressed Plants (Except MLRA g Living Roots (C3) (C4) (wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C2) X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
(includes capillary fringe)	Type: Depth (inche Remarks: Plowed field HYDROLO Wetland Hy Primary Indi Field Obser Surface Water	d. OGY rdrology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundation Visible on Sparsely	of one required (2) 32) 4) (B6) Aerial Ima	gery (B7) urface (B8)	Water sta 1, 2, 4A, Salt Crus Aquatic II Hydroger X Oxidized Presence Recent Ir Stunted of Other (Ex)	and 4B) It (B11) Invertebrates (B13) In Sulfide Odor (C1) Rhizospheres along It of Reduced Iron (Con Reduction in Ploor Stressed Plants (Ixoplain in Remarks)	g Living Roots (C3) C4) weed Soils (C6) D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
	Type: Depth (inche Remarks: Plowed field HYDROLC Wetland Hy Primary Indi Field Obser Surface Water Water Table F Saturation Pre (includes capilla	d. OGY rdrology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundation Visible on Visible on Sparsely Vegetated (Inundation Visible on Visib	of one required (2) 32) 4) (B6) Aerial Ima Concave Si	gery (B7) urface (B8) No	Water sta 1, 2, 4A, Salt Crus Aquatic li Hydroger X Oxidized Presence Recent Ir Stunted of Other (Ex) Depth (inches): Depth (inches):	and 4B) It (B11) Invertebrates (B13) In Sulfide Odor (C1) Rhizospheres along It of Reduced Iron (Con Reduction in Place It or Stressed Plants (Ixplain in Remarks)	Except MLRA g Living Roots (C3) (C4) (Wed Soils (C6) (D1) (LRR A) Wetland Hyd	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

Project/Site:	Lochr	ner Road	<u>k</u>	City/Co	unty:	Α	lbany/Linn		Samp	ling Date:	10/1	5/2020
Applicant/Owner:	Hayden H	omes						State:	OR		Sampling Point:	2
nvestigator(s):	JT/	CM/SE/N	MS	Sect	ion, Tow	nship, Range:			20	/11S/3W		
_andform (hillslope, te	errace, etc.:)		Ter	race		Local relief (cor	ncave, convex, r	ione):	N	one	Slope (%):	5%
Subregion (LRR):		LRR	A		Lat:	44.6000	64°	Long:	-123.0	090617°	Datum:	WGS85
Soil Map Unit Name:		W	/oodburn	silt loam, 3-1	2% slo	pes		NWI Clas	ssification:		None	
Are climatic/hydrologi	c conditions of					Yes	X	No		(if no, expla	in in Remarks)	
Are vegetation	Soil	or H	lydrology	significar	ıtly distu	rbed?	Are "Normal (- Circumstanc		<u>.</u>		
Are vegetation			lydrology				, explain any an		•	, ,		•
	<u> </u>	_	, 0,				, ,		,			
SUMMARY OF I	FINDINGS	- Atta	ch site m	nap showing	g sam	pling point	locations, tı	ansects,	, import	ant featu	res, etc.	
Hydrophytic Vegetatio	on Present?	Yes	Х	No		Is Sampled Ar	oa within					
Hydric Soil Present?		Yes		No X		a Wetlan		Yes			lo X	-
Vetland Hydrology Pr	resent?	Yes		No X								
Remarks:												
/EGETATION -	Use scien	tific na	mes of p	lants.								
			absolu			Indicator	Dominance	Test worl	ksheet:			
Trop Stratum (-1)	oizo:		% cove	er Specie	s?	Status	Nisses 1.7		-:			
ree Stratum (plot	SIZE:)				Number of Do				4	(A)
2							That are OBL,	FACVV, OF F	-AC:		1	(A)
3							Total Number	of Dominant	•			
4					—		Species Acros				1	(B)
-			0	= Total C	over		Opeoies / toros	57tii Otiata.			•	(5)
Sapling/Shrub Stratur	<u>n</u> (plot size	e:	_)				Percent of Dor	•			000/	(A /D)
1 2							That are OBL,	FACVV, or	FAC:	1	00%	(A/B)
2 3				_			Prevalence	Index Wo	rkehoot:			
ے م							Total % Cover		iksileet.	Multiply by:		
5							OBL Spe			x 1 =	_ 0	
			0	= Total C	over		FACW sp	_		x 2 =	0	•
							FAC Spe	_		x 3 =	0	
lerb Stratum (plot	size:	5)				FACU Sp	ecies		x 4 =	0	
Unidentified g	ırass		50	X		(FAC)	UPL Spe	ecies		x 5 =	0	•
2							Column 1	otals	0	(A)	0	(B)
3												
4							Prevaler	ice Index =E	3/A =	#0	OIV/0!	•
5												
6							Hydrophytic	_				
7 8									-	est for Hydro nce Test is >	phytic Vegetatio	on
			50	= Total C	over .					ce Index is ≤		
				Total C	J V G I						ations ¹ (provide	supporting
Voody Vine Stratum	(plot size:)								a separate shee	
				<u> </u>				5	5- Wetland	Non-Vascul	ar Plants ¹	
1				_ _				F	Problemation	c Hydrophyti	c Vegetation ¹ (E	xplain)
-				T	over			•	nd wetland	hydrology n	nust be present,	unless
-			0	= Total C	010.							
-			0	= Total C	0101		disturbed or pr					
12 % Bare Ground in He	rh Stratum		50	= Total C	0101		disturbed or pre- Hydrophytic Vegetation		Yes	x	No	

Profile Description: (Description: (Descri				PHS#	6869	_		Sampling Point: Attachment £.21
	Profile Descr	iption: (Describe to	the depth	needed to docume	ent the indicator of	confirm the abs	ence of indicators.)	
1978 32	-			<u> </u>				
8-16 10YR 3/2 99 10YR 3/4 1 C M Silty Clay Loam Fine "Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains.								
"Type: C-Concentration, D-Depieton, RM-Reduced Matrix, CS-Covered or Coated Sand Grains. "Type: C-Concentration, D-Depieton, RM-Reduced Matrix, CS-Covered or Coated Sand Grains. "Hydric Soll Indicators; (Applicable to all LRRs, unless otherwise noted.) Hattic Epipedon (A2) Stripped Matrix (S6) Red Parent Material (TF2) Black Hattic (A3) Learny Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (FF2) Hydroger Sulfide (A4) Learny Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (FF2) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) Rodox Dark Surface (F7) Sandy Mucky Mineral (S1) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Rodox Dark Surface (F7) Price Coupht (inches): Probability (F1) (F1) (F1) (F1) (F1) (F1) (F1) (F1)							· —	Fine
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosol (A1) Histosol (A2) Histosol (A2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Depleted Black Histic (A3) Depleted Black Histic (A3) Depleted Black Histic (A3) Depleted Black Mark (F2) Other (explain in Remarks) Depleted Black Mark (A12) Thick Dark Surface (A12) Sandy Mucky Mineral (F1) (except MLRA 1) Depleted Black Mark (F3) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Depleted Dark Surface (F2) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Sandy Gleyed Matrix (S4) Restrictive Layer (if prosent): Type: Depth (inches): Primery Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA High Water Table (A2) Saturation (A3) Saturation (B4) Present? Yes No Z Depth (Inches): Saturation (B4) Saturation (B4) Saturation (B4) Saturation (B4) Saturation (B4) Sat	8-16	10YR 3/2	99	10YR 3/4		<u>M</u>	Silty Clay Loam	Fine
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Hislosod (A1) Hislosod (A2) Hislosod (A2) Stipped Matrix (SB) Black Hislos (A2) Loamy Mucky Mineral (F1) (except MLRA 1) Loamy Gleyed Matrix (F2) Other (explain in Remarks) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A12) Thick Dark Surface (A12) Sandy Mucky Mineral (F1) (except MLRA 1) Thick Dark Surface (A12) Sandy Mucky Mineral (G1) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S6) Sandy Gleyed Ma								
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosal (A1) Histosal (A2) Histosal (A2) Black Histo (A2) Black Histo (A2) Loamy Mucky Mineral (F1) (except MLRA 1) Depleted Below Dark Surface (A11) Depleted Dark Surface (A12) Redox Dark Surface (F2) Sandy Mucky Mineral (S3) Sandy Mucky Mineral (S4) Sandy Mucky Mineral (S5) Sandy Mucky Mineral (S6) Sandy Gleyed Matrix (S4) Redox Dark Surface (F2) Probleted Dark Surface (F2) Probleted Dark Surface (F2) Probleted Dark Surface (F3) Problematic Redox Dark Surface (F7) Problematic Redox Dark Surface (F8) Hydric Soil Present? Yes No X Water stained Leaves (B9) (Except MLRA (MLRA1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) Mucker Table (A2) Salturation (A3) Salt Cust (B1) Salturation (A3) Salt Cust (B1) Salturation (A3) Salturation (A4) Problematic Hydric Soil Present? Muchany Mucker Marks (B1) Dry-Season Water Table (C2) Salturation (A11) Salturation (A12) Salturation (A12) Salturation (A13) Salturation (A14) Salturation (
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosal (A1) Histosal (A2) Histose Epipedon (A2) Black Histo (A3) Loarny Mucky Mineral (F1) (except MLRA 1) Loarny Mucky Mineral (F1) (except MLRA 1) Loarny Mucky Mineral (F1) (except MLRA 1) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A12) Redox Dark Surface (F2) Sandy Mucky Mineral (F1) Sandy Mucky Mineral (F2) Sandy Mucky Mineral (F3) Sandy Mucky Mineral (F1) Sandy Mucky Mineral (F3) Sandy Mucky Mineral (F1) San								
Histosol (A1) Histosol (A2) Histosol (A2) Histosol (A2) Black Histo Epipedon (A2) Black Histo (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A12) Sandy Mucky Mineral (K1) Sandy Gleyed Matrix (K4) Redox Depressions (F8) Problematic. Restrictive Layer (if present): IVpe: Depth (inches): Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) Surface Water (A1) Water Salide Leaves (B9) (Except MLRA High Water Table (A2) Salt Crust (B11) Water Marks (B1) Salt Crust (B11) Dory-Season Water Table (C2) Sediment Deposits (B3) Dirif Deposits (B3) Agal Mat or Crust (B4) Presence? Recent Iron Reduction in Plowed Soils (C6) Surface Water (A6) Surface Water (A6) Surface (B6) Surface Water (A6) Surface (B6) Surface Water (A6) Surface Water (A6) Surface (B6) Surface Water (A6) Surface Wa	Type: C=Con	centration, D=Depleti	on, RM=Re	educed Matrix, CS=	Covered or Coated	Sand Grains.		² Location: PL=Pore Lining, M=Matrix.
Histic Epipedon (A2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (F12) Other (explain in Remarks) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A12) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Present (S2) Present (S3) Present (S2) Present (S3) Present (S4) Present (S2) Present (S3) Present (S4) Present (S2) Present (S4) Present (S4) Present (S4) Present (S4) Present (S4							Indica	
Black Histic (A3)		Histosol (A1)			Sandy R	edox (S5)		2 cm Muck (A10)
Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Depleted Below Dark Surface (A12) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Problematic. Restrictive Layer (if present): Type: Depth (inches): Primary Indicators Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Hydric Soil Present? Yes No X Water stained Leaves (B9) (Except MLRA High Water Table (A2) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Dry-Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Firest-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Firest-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Firest-Heave Hummocks (D7) Saturation Present? Yes No X Depth (inches): Veter No X Depth (inche		Histic Epipedon (A2)			Stripped	Matrix (S6)		Red Parent Material (TF2)
Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Thick Dark Surface (A12) Redox Dark Surface (F5) Sandy Mucky Minera (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Redox Depressions (F8) Restrictive Layer (if present): Type: Depth (inches): Primary Indicators Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Saturation (A3) Salt Crust (B11) Water stained Leaves (B9) (Except MLRA Hydrology Indicators (2 or more required) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Dry-Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Firest-Heave Hummocks (D7) Saturation Present? Yes No X Depth (inches): Very No X Depth (inches): 2-16 Wettand Hydrology Present? Wettand Hydrology Present? Ves No X Depth (inches): 2-16 Wettand Hydrology Present? Ves No X Depth (inches): 2-16 Wettand Hydrology Present? Ves No X Depth (inches): 2-16 Wettand Hydrology Present? Ves No X Depth (inches): 2-16 Wettand Hydrology Present?		Black Histic (A3)			Loamy N	lucky Mineral (F1)	(except MLRA 1)	Very Shallow Dark Surface (TF12)
Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Sandy Gleyed Matrix (S4) Restrictive Layer (if present): Type: Depth (inches): Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA High Water Table (A2) High Water Table (A2) Saturation (A3) Salt Crust (B11) Water Marks (B1) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) Surface Soil Crusts (B6) Fescher Tron Reduction in Plowed Soils (C6) Surface Soil Crusts (B6) Surface Soil Crusts (B6) Surface Soil Crusts (B6) Surface Soil Crusts (B8) Surface Water Present? Yes No X Depth (inches): Surface Water Present? Yes N		-	1)		Loamy (Bleyed Matrix (F2)		
Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Serictive Layer (if present): Popeleted Dark Surface (F7) Redox Depressions (F8) Problematic.			-	A11)				
Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Restrictive Layer (if present): Type:		-	•	,				
Restrictive Layer (if present): Power		,	,)	
Restrictive Layer (if present): Type: Depth (inches): Hydric Soil Present? Yes		-				·	,	
Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Stained Leaves (B9) (Except MLRA High Water Table (A2) Saturation (A3) Salt Crust (B11) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Agaid Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Water Stained Leaves (B9) (Except MLRA Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Saturation Visible on Aerial Imagery Water Stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Drainage Patterns (B10) Drainage Patterns (B10) Saturation Visible on Aerial Imagery Water Stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Saturation Visible on Aerial Imagery Water Stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Saturation Visible on Aerial Imagery Brack Patterns (B10) Water Stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Mater Stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Saturation Visible on Aerial Imagery Brack Patterns (B10) Ordized Riccy (C1) Saturation Visible on Aerial Imagery Brack Patterns (B10) Ordized Riccy (C1) Saturation Visible on Aerial Imagery Brack Patterns (B10) Ordized Riccy (C1) Saturation Visible on Aerial Imagery Brack Patterns (B10) Ordized Riccy (C1) Saturation Visible on Aerial Imagery	Depth (inches						Hydric Soil Pres	ent? Yes NoX
Surface Water (A1) High Water Table (A2) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Water Marks (B1) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) X Geomorphic Position (D2) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Surface Plants (D1) Surface Water Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Source Water Stained Leaves (B9) (Except MLRA (MLRA1, 2, 4A, and 4B) (Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Image (B10) Dry-Season Water Table (C2) Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X	Depth (inchest Remarks: Plowed field	d. OGY					Hydric Soil Pres	eent? Yes NoX
Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Sediment Deposits (B2) Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table (Present? Yes No X Depth (inches): Saturation Visible on Agriater (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Frost-Heave Hummocks (D7) Wetland Hydrology Present? Yes No X Depth (inches): X De	Depth (inchest Remarks: Plowed field HYDROLC Wetland Hy	d. PGY drology Indicator		uired; check all th	nat apply)		Hydric Soil Pres	
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Depth (inches): No X Depth (inches): No X Depth (inches): Depth (inches): No X Depth (inches): Depth (inches): No X Depth (inches):	Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary Indi	d. OGY drology Indicator cators (minimum o		uired; check all th		ained Leaves (B9)		Secondary Indicators (2 or more required)
Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Drift Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery (B7) Saturation Visible on Aerial Imagery (B7) Double (Explain in Remarks) Saturation Present? Yes No X Depth (inches): Presence of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Presence of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Present? Yes No X Depth (inches): No X Depth (inches): Present? Yes No X Depth (inches): No X	Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary Indi	d. OGY drology Indicator cators (minimum of Surface Water (A1)	of one req	uired; check all th	Water st			Secondary Indicators (2 or more required) Water stained Leaves (B9)
Drift Deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Prosence of Reduced Iron (C4) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Doubt (inches): Sourface Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Sourface Water	Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary Indi	d. drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2)	of one req	uired; check all th	Water st	and 4B)		Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B)
Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Presence of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Fac-Neutral Test (Depth (inches Remarks: Plowed field HYDROLC Wetland Hy Primary Indi	d. d. drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3)	of one req	uired; check all th	Water st 1, 2, 4A,	and 4B)	(Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10)
Iron Deposits (B5)	Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary Indi	d. drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)	of one req	uired; check all th	Water st 1, 2, 4A, Salt Cru Aquatic	and 4B) st (B11) nvertebrates (B13	(Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10)
Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): >16 Wetland Hydrology Present? Yes No X Depth (inches): >16 Yes No X	Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary Indi	d. OGY drology Indicator cators (minimum of Surface Water (A1)) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B	of one req	uired; check all th	Water st 1, 2, 4A, Salt Cru Aquatic Hydroge	and 4B) st (B11) nvertebrates (B13 n Sulfide Odor (C	(Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (
Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >16 Saturation Present? Yes No X Depth (inches): >16 Wetland Hydrology Present? Yes No X Depth (inches): >16 Yes No X	Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary Indi	d. OGY drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3)	of one requiper (2)	uired; check all th	Water st 1, 2, 4A, Salt Cru Aquatic Hydroge Oxidized	and 4B) st (B11) nvertebrates (B13 n Sulfide Odor (C	(Except MLRA)) ng Living Roots (C3)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (
Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes	Depth (inchese Remarks: Plowed field HYDROLO Wetland Hy Primary Indi	d. d. drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B	of one requiper (2)	uired; check all th	Water st 1, 2, 4A, Salt Cru Aquatic Hydroge Oxidized Presence	and 4B) st (B11) nvertebrates (B13 n Sulfide Odor (C Rhizospheres ald e of Reduced Iron	(Except MLRA) i) ng Living Roots (C3) (C4)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (X Geomorphic Position (D2) Shallow Aquitard (D3)
Field Observations: Surface Water Present? Yes	Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary Indi	d. OGY drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5)	of one req 2) 32) 4)	uired; check all th	Water st 1, 2, 4A, Salt Cru Aquatic Hydroge Oxidizec Presenc Recent I	and 4B) st (B11) nvertebrates (B13 n Sulfide Odor (C Rhizospheres ald e of Reduced Iron ron Reduction in F	(Except MLRA)) ng Living Roots (C3) (C4) Plowed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5)
Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >16 Wetland Hydrology Present? Saturation Present? Yes No X Depth (inches): >16 Yes No X	Depth (inchese Remarks: Plowed field HYDROLO Wetland Hy Primary Indi	d. OGY drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on	of one request. 2) 32) 4) (B6) Aerial Ima	gery (B7)	Water st 1, 2, 4A, Salt Cru Aquatic Hydroge Oxidized Presenc Recent I Stunted	and 4B) st (B11) nvertebrates (B13 n Sulfide Odor (C Rhizospheres ald e of Reduced Iron ron Reduction in For Stressed Plants	(Except MLRA) ing Living Roots (C3) (C4) clowed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Water Table Present? Yes No X Depth (inches): >16 Wetland Hydrology Present? Saturation Present? Yes No X Depth (inches): >16 Yes No X	Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary Indi	d. OGY drology Indicator cators (minimum of Surface Water (A1)) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundation Veg	of one request. 2) 32) 4) (B6) Aerial Ima	gery (B7)	Water st 1, 2, 4A, Salt Cru Aquatic Hydroge Oxidized Presenc Recent I Stunted	and 4B) st (B11) nvertebrates (B13 n Sulfide Odor (C Rhizospheres ald e of Reduced Iron ron Reduction in For Stressed Plants	(Except MLRA) ing Living Roots (C3) (C4) clowed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Saturation Present? Yes No X Depth (inches): >16 Yes No X	Depth (inchest Remarks: Plowed field HYDROLC Wetland Hy Primary Indi	d. OGY drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Invations:	of one request. 2) 32) 4) (B6) Aerial Ima	gery (B7) urface (B8)	Water st 1, 2, 4A, Salt Cru Aquatic Hydroge Oxidizec Presenc Recent I Stunted Other (E	and 4B) st (B11) nvertebrates (B13 n Sulfide Odor (C Rhizospheres alc e of Reduced Iron ron Reduction in F or Stressed Plants xplain in Remarks	(Except MLRA) ing Living Roots (C3) (C4) clowed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
	Depth (inchese Remarks: Plowed field HYDROLO Wetland Hy Primary Indi Field Obser Surface Water	d. OGY drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundations: Present? Yes	of one request. 2) 32) 4) (B6) Aerial Ima	gery (B7) urface (B8) No <u>X</u>	Water st 1, 2, 4A, Salt Cru Aquatic Hydroge Oxidized Presenc Recent I Stunted Other (E	and 4B) st (B11) nvertebrates (B13 n Sulfide Odor (C Rhizospheres alc e of Reduced Iron ron Reduction in F or Stressed Plants xplain in Remarks	(Except MLRA) i) ing Living Roots (C3) (C4) clowed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
	Pield Obser Surface Water Table P Saturation Pre (includes capillar	d. OGY drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B3) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundation Visible on Visi	of one request. (2) (32) (4) (86) Aerial Ima	gery (B7) urface (B8) No	Water st 1, 2, 4A, Salt Cru Aquatic Hydroge Oxidized Presenc Recent I Stunted Other (E	and 4B) st (B11) nvertebrates (B13 n Sulfide Odor (C' Rhizospheres alder of Reduced Iron ron Reduction in For Stressed Plants xplain in Remarks >16 >16	(Except MLRA))) ng Living Roots (C3) (C4) lowed Soils (C6) (D1) (LRR A) Wetland Hydi	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
	Pield Obser Surface Water Table P Saturation Pre (includes capillar	d. OGY drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (C) vations: Present? Yes Iresent? Yes	of one request. (2) (32) (4) (86) Aerial Ima	gery (B7) urface (B8) No	Water st 1, 2, 4A, Salt Cru Aquatic Hydroge Oxidized Presenc Recent I Stunted Other (E	and 4B) st (B11) nvertebrates (B13 n Sulfide Odor (C' Rhizospheres alder of Reduced Iron ron Reduction in For Stressed Plants xplain in Remarks >16 >16	(Except MLRA))) ng Living Roots (C3) (C4) lowed Soils (C6) (D1) (LRR A) Wetland Hydi	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

Project/Site:	Lochr	ner Road		_	City/County:	A	lbany/Linn		Samp	ling Date:	10	15/2020
Applicant/Owner:	Hayden H	omes						State:	OR	•	Sampling Poin	t: 3
Investigator(s):	JT/	CM/SE/N	IS		Section, To	ownship, Range:			20	/11S/3W		
Landform (hillslope, te	rrace, etc.:)		F	lat		Local relief (cor	icave, convex,	none):	N	one	Slope (%): ~1%
Subregion (LRR):		LRR A	Δ		Lat:	44.6037	83°	Long:	-123.	086721°	Datur	n: WGS85
Soil Map Unit Name:			D	ayton s	ilt loam			NWI Clas	sification:		None	
Are climatic/hydrologic	conditions o	on the site t	typical for t	this time o	of year?	Yes	Х	No		(if no, expl	ain in Remarks)
Are vegetation	Soil	or Hy	ydrology	siç	gnificantly dis	turbed?	Are "Normal	Circumstance	es" presen	t? (Y/N)	Υ	
Are vegetation	Soil						, explain any ar	nswers in Rer	marks.)			
SUMMARY OF F	INDINGS	- Attac	ch site n	nap sh	owing san	npling point	ocations, t	ransects,	import	ant feati	ures, etc.	
Hydrophytic Vegetatio	n Present?	Yes _	Х	No		Is Sampled Ar	ea within					
Hydric Soil Present?		Yes	Х	No		a Wetlan		Yes	Х	-	No	_
Wetland Hydrology Pro	esent?	Yes	Х	No								
Remarks:												
VEGETATION - I	Jse scien	tific nar					<u>. </u>					
			absolu % cov		Dominant Species?	Indicator Status	Dominance	e Test work	sneet:			
Tree Stratum (plot s	size:))	<u> </u>	,		Number of Do	minant Spec	ies			
1							That are OBL	•			1	_(A)
2												_
3							Total Number	of Dominant				
4							Species Acros	ss All Strata:			1	_(B)
			0	=	Total Cover							
Sapling/Shrub Stratum	<u>ı</u> (plot size	ə:)				Percent of Do	minant Speci	es			
1							That are OBL	, FACW, or F	FAC:		100%	_(A/B)
2												
3							Prevalence	Index Wo	rksheet:			
4							Total % Cove	r of		Multiply by	<u>/:</u>	
5							OBL Sp	_		x 1 =	0	_
			0	<u> </u>	Total Cover		FACW s			x 2 =	0	_
Herb Stratum (plot s	size.	5)	١				FAC Sp	_		x 3 = x 4 =	0	_
1 Schedonorus a		′	100)	X	FAC	UPL Sp	_		x 5 =		_
							Column	_	0	(A)	0	— (B)
3		·						_		. ` '		_``
4					-		Prevale	nce Index =B	/A =	#	DIV/0!	
5												_
6							Hydrophyti	c Vegetation	on Indic	ators:		
7								1	- Rapid Te	est for Hydr	ophytic Vegeta	tion
8										nce Test is		
			100	=	Total Cover					ce Index is		ounnertine
Woody Vine Stratum	(nlot size:)								tations ¹ (provide a separate she	
1	(PIUL SIZE.		_′							narks or on Non-Vascı		,o.,
2											rtic Vegetation ¹	(Explain)
-			0	— <u> </u>	Total Cover		1Indicators of				must be preser	
					. 3.0. 00001		disturbed or p	roblematic.		,	5.0001	, ==
o, 5			•				Hydrophyti					_
% Bare Ground in Her	b Stratum		0	-			Vegetation Present?		Yes	X	N	0
1												

Profile Description: (Description: (Descri	SOIL			PHS#	6869				Sampling Point: Attachm ent E.23
	Profile Descri	ption: (Describe to	the depth	needed to docume			firm the abse	ence of indicators.)	
10	-			 			. 2	_	
4-8				Color (moist)	<u></u> %	Type	Loc		Remarks
4-8 8-14 10YR A/1 95 10YR 3/16 5 C M Silty Clay Loam **Inper-Ce-Concentration, De-Depletion, RM-Reduced Matrix, CS=Covered or Coated Sand Grains.** **Inper-Ce-Concentration, De-Depletion, RM-Reduced Matrix, CS=Covered or Coated Sand Grains.** **Injure: Ce-Concentration, De-Depletion, RM-Reduced Matrix, CS=Covered or Coated Sand Grains.** **Injure: Ce-Concentration, De-Depletion, RM-Reduced Matrix, CS=Covered or Coated Sand Grains.** **Injure: Ce-Concentration, De-Depletion, RM-Reduced Matrix, CS=Covered or Coated Sand Grains.** **Injure: Ce-Concentration, De-Depletion, RM-Reduced Matrix, CS=Covered or Coated Sand Grains.** **Injure: Ce-Concentration, De-Depletion, RM-Reduced Matrix, CS=Covered or Coated Sand Grains.** **Injure: Ce-Concentration, De-Depletion, RM-Reduced Matrix, CS=Covered or Coated Sand Grains.** **Injure: Ce-Concentration, De-Depletion, RM-Reduced Matrix, CS=Covered or Coated Sand Grains.** **Injure: Ce-Concentration, De-Depletion, RM-Reduced Matrix, CS=Covered or Coated Sand Grains.** **Injure: Ce-Concentration, De-Depletion, RM-Reduced Matrix, CS=Covered or Coated Sand Grains.** **Injure: Ce-Concentration, De-Depletion, RM-Reduced Matrix, CS=Covered or Coated Sand Grains.** **Injure: Ce-Concentration, De-Depletion, RM-Reduced Matrix, CS=Covered Matrix,									- -
8-14 10YR 4/1 95 10YR 3/6 5 C M Sitty Clay Loam Medium Type: C-Concentration, D-Depletion, RM-Reduced Matrix, CS-Covered or Coated Sand Grains. Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histocal (A1) Sandy Redox (Ss) 2 cm Music (A11) Histocal (A1) Sandy Redox (Ss) 2 cm Music (A11) Hydrogen Suitide (A4) Learny Microty Minoral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Depleted Below Dark Surface (A12) Depleted Matrix (F2) Depleted Below Dark Surface (A12) X Redox Dark Surface (F2) Sandy Mucky Minoral (S1) Depleted Matrix (F3) Sandy Mucky Minoral (S1) X Depleted Dark Surface (F2) Sandy Mucky Minoral (S1) X Depleted Dark Surface (F2) Sandy Gleyed Matrix (S4) Rodox Dark Surface (F2) Sandy Gleyed Matrix (S4) Rodox Depressions (F3) Problematic Restrictive Layer (if present): Type: Depth (inches): HYDROLOGY Wetland Hydrology indicators: HYDROLOGY Wetland Hydrology indicators: HYDROLOGY Wetland Hydrology indicators: Hydric Soil Present? Yes X No Secondary Indicators (2 or more required): Mater Marks (31) Aqualic Invertebrates (S13) Depth (and Expert S13) Recommon (C2) Aqualic Invertebrates (S13) Depth (and Core (C1) X Saturation visited Table (C2) Surface Water (A1) Present (C2) Surface Water (A1) Departs (C3) Genomerate Plater (C3) Surface (C3) Genomerate Plater (C3) Surface (C3) Genomerate Plater (C3) Surface (C3) Genomerate (C3) Surface (C3) Genomerate (C3) Surface (C3) Genomerate (C3) Surface (C3) Genomerate (C3) Surface (C3) Surf		10YR 3/2	95	10YR 3/6					
Type: C-Concentration. D=Depletion, RM-Reduced Matrix, CS=Covered or Coated Sand Grains. Location: PL=Pore Lining, M=Matrix.							-		
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosol (A1) Histosol (A2) Histosol (A2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Hydrogen Sulfide (A4) Depleted Bleck Dark Surface (A11) Depleted Matrix (F2) Depleted Bleck Dark Surface (A12) Thick Dark Surface (A12) Sandy Mucky Mineral (F1) (except MLRA 1) Depleted Matrix (F3) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Water Surface (F2) Water (F3) Hydric Soil Present? Yes X No Restrictive Layer (if prosent): Type: Upopth (inches): Hydric Soil Present? Yes X No Remarks: Plowed field. HYDROLOGY Water Mark (A1) Water stained Leaves (B9) (Except MLRA High Water Table (A2) Saturation (A3) Saturation (A4) Saturation (A4) Saturation (A4) Satura	8-14	10YR 4/1	95	10YR 3/6		<u> </u>	М	Silty Clay Loam	Medium
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histocal (A1) Histocal (A2) Histocal (A2) Black Histocal (A2) Black Histocal (A2) Loamy Mucky Minoral (F1) (except MLRA 1) Loamy Mucky Minoral (F1) (except MLRA 1) Popieted Black Histocal (A2) Depleted Black Histocal (A2) Depleted Black Histocal (A2) Depleted Black Histocal (A2) Depleted Black Histocal (A1) Depleted Black Histocal (A1) Depleted Black Histocal (A1) Depleted Black Histocal (A2) Depleted Black Histocal (A2) Depleted Black Histocal (A1) Depleted Black Burkocal (A1) Thick Dark Surface (A12) Sandy Mucky Minoral (B1) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Hydric Soil Present? Yes X No Restrictive Layer (if present): Type: Purper Hydric Soil Present? Yes X No Remarks: Plowed field. HYDROLOGY Water Atland Hydrology indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA High Water Table (A2) Saturation (A3) Saturation (A4) Presence of Reduced Into (C4) Agail Mat or Crust (B4) Presence of Reduced Into (C4) Saturation (A4) Raised Ant Mounds (D6) (LRR A) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Fired Observations: Surface Water Present? Yes No X Depth (inches): Surface Water Present? Yes No X Depth (inches): Depth (inches): 214 Wetland Hydrology Present?									
Histosol (A1) Histo Epipedon (A2) Loamy Mucky Mineral (F1) (except MLRA 1) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (F12) Depleted Below Dark Surface (A12) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S6) Restrictive Layer (if present): Type: Depth (inches): Ployed field. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Saturati	• • • • • • • • • • • • • • • • • • • •								
Histic Epipedon (A2) Black Histic (A2) Hydrogen Sulfide (A4) Loarny Mucky Mineral (F1) (except MLRA 1) Depleted Belaw Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) **Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. **Restrictive Layer (if present):** Type: Depth (inches): Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) Water Marks (B1) Sediment Deposits (B2) Hydrice Soil Presents (B13) Dy-Season Water Table (A2) Drift Deposits (B3) X Oxidized Rhizospheres along Living Roots (C3) Geomorphic Position (D2) Surface Soil Cracks (B6) Surface (B6) Surf	Hydric Soil	Indicators: (Appl	icable to	all LRRs, unles				Indica	·
Black Histic (A3)		Histosol (A1)				•	, ,		
Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A12) X Redox Dark Surface (F5) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (F3) Redox Depressions (F8) Redo		Histic Epipedon (A2)							
Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Redox Depressions (F8) Restrictive Layer (if present): Type: Depth (inches): Plowed field. HYDROLOGY Wetland Hydrology indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Sutration (A3) Salt Crust (B11) Water Marks (B1) Depleted Matrix (F3) Aquatic invertebrates (B3) Drift Deposits (B3) A Coxidized Rhizospheres along Living Roots (C3) Geomorphic Position (D2) Algal Mat or Crust (B4) Inon Deposits (B5) Surface Soli Cracks (B6) Surface Soli Cracks (B6) Surface Soli Cracks (B6) Surface Soli Cracks (B6) Surface Soli Cracks (B7) Surface Mater (B1) Research (A1) Presence of Reduced Iron (C4) Surface Soli Cracks (B6) Surface Soli Cracks (B6) Surface Soli Cracks (B7) Surface Mater (D4) Research (D5) Research (D4) Research (D4) Research (D4) Research (D5) Research (D4) Research (D4) Research (D4) Research (D5) Research (D4) Research (D5) Research (D6) Research (D7) Research (D6) R		Black Histic (A3)			Loa	my Mucky	y Mineral (F1)	(except MLRA 1)	Very Shallow Dark Surface (TF12)
Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Redox Depressions (F8)		Hydrogen Sulfide (A	1)		Loa	my Gleye	ed Matrix (F2)		Other (explain in Remarks)
Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Redox Depressions		Depleted Below Dark	Surface (A	A11)	Dep	oleted Mat	trix (F3)		
Sandy Gleyed Matrix (S4) Redox Depressions (F8) hydrology must be present, unless disturbed or problematic. Restrictive Layer (if present): Type: Depth (inches): Hydric Soil Present? Yes X No Remarks: Plowed field. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA Water stained Leaves (B9) High Water Table (A2) 1, 2, 4A, and 4B) Saturation (A3) Salt Crust (B1) Drainage Patterns (B10) Water Marks (B1) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) X Saturation Visible on Aerial Imagery Drift Deposits (B3) X Oxidized Rhizospheres along Living Roots (C3) Geomorphic Position (C2) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Fac-Neutral Test (D5) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Field Observations: Water Table Present? Yes No X Depth (inches): >14 Wetland Hydrology Present? Yes No X Depth (inches): >14 Wetland Hydrology Present? Yes Saturation Present? Yes No X Depth (inches): >14 Wetland Hydrology Present? Yes X No		Thick Dark Surface (A12)		X Rec	dox Dark S	Surface (F6)		3
Restrictive Layer (if present): Type: Depth (inches): Hydric Soil Present? Yes X No Remarks: Plowed field. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Sediment Deposits (B1) Water Marks (B1) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) X Saturation (Visible on Aerial Imagery Drift Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Sturded or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Suter Table Present? Yes No X Depth (inches): Solit Crest (F8) Yes X No		Sandy Mucky Minera	ıl (S1)		X Dep	oleted Dar	k Surface (F7)	
Type: Depth (inches): Hydric Soil Present? Yes		Sandy Gleyed Matrix	(S4)		Red	dox Depre	essions (F8)		, ,
Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Stained Leaves (B9) (Except MLRA High Water Table (A2) Saturation (A3) Sati Crust (B11) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface Soil Cracks (B8) Field Observations: Surface Water Present? Yes No X Water stained Leaves (B9) (Except MLRA Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Oprainage Patterns (B10) Drainage Patterns (B10) Aquatic Invertebrates (B13) Aquatic Invertebrates (B13) Apuration Invertebrates (B13) Apuration Visible on Aerial Imagery X Oxidized Rhizospheres along Living Roots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Stunted or Stressed Plants (D1) (LRR A) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Frest-Heave Hummocks (D7) Frost-Heave Hummocks (D7) Frost-Heave Hummocks (D7) Water Table Present? Yes No X Depth (inches): Vestland Hydrology Present? Yes X No No X Depth (inches): Staturation Present? Yes No Z Depth (inches): Staturation Present? Yes No Depth (inches): Staturation Present? Yes No No No No No No No No No N	Type: Depth (inches Remarks:							Hydric Soil Pres	ent? Yes X No
High Water Table (A2) Saturation (A3) Salt Crust (B11) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Water Table (A2) 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Aquatic Invertebrates (B13) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) X Saturation Visible on Aerial Imagery Agenment Total (C1) X Saturation Visible on Aerial Imagery Applied Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No Saturation Present? Y	Type: Depth (inches Remarks: Plowed field	d. GY	rs:					Hydric Soil Pres	ent? Yes <u>X</u> No
Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Dry-Season Water Table (C2) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Salt Crust (B11) Aquatic Invertebrates (B13) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) X Saturation Visible on Aerial Imagery Aquatic Invertebrates (B13) Dry-Season Water Table (C2) X Saturation Visible on Aerial Imagery Bresence of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Frost-Heave Hummocks (D7) Wetland Hydrology Present? Yes No X Depth (inches): Yes X No	Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy	GY drology Indicator		uired; check all th	nat apply)			Hydric Soil Pres	ent? Yes X No Secondary Indicators (2 or more required)
Water Marks (B1) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) X Saturation Visible on Aerial Imagery Drift Deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Saturation Present? Paquatic Invertebrates (B13) Dry-Season Water Table (C2) X Saturation Visible on Aerial Imagery Saturation Present? Yes No X Depth (inches): >14 Wetland Hydrology Present? Saturation Present? Yes X No	Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India	GY drology Indicator		uired; check all th	,	ter stained	d Leaves (B9)		Secondary Indicators (2 or more required)
Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Saturation Versit (B2) Hydrogen Sulfide Odor (C1) X Saturation Visible on Aerial Imagery (B7) Saturation Visible on Aerial Imagery (B7) Depth (inches): Y Saturation Visible on Aerial Imagery (B7) Saturation Present? Yes No X Depth (inches): Yes No X Depth (inches): Depth (inches): Saturation Present? Yes No X Depth (inches): Depth (inches): Saturation Present? Yes No X No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturati	Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India	GY drology Indicator cators (minimum o	of one requ	uired; check all th	Wai				Secondary Indicators (2 or more required) Water stained Leaves (B9)
Drift Deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Presence of Reduced Iron (D4) Shallow Aquitard (D3) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Raised Ant Mounds (D6) (LRR A) Raised Ant Mounds (D6) (LRR A) Raised Ant Mounds (D7) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy	GY drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2)	of one requ	uired; check all th	Wat	2, 4A, and	4B)		Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B)
Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Shallow Aquitard (D3) Fac-Neutral Test (D5) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Frost-Heave Hummocks (D7) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Frost-Heave Hummocks (D7	Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2) Saturation (A3)	of one requ	uired; check all th	Wai 1, 2	2, 4A, and t Crust (B	4B) 11)	(Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10)
Iron Deposits (B5)	Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India	GY drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)	of one request	uired; check all th	War 1, 2 Salt	2, 4A, and t Crust (B ² uatic Inver	4B) 11) tebrates (B13)	(Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >14 Wetland Hydrology Present? Saturation Present? Yes No X Depth (inches): >14 Yes X No	Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B	of one request	uired; check all th	Wai 1, 2 Salt Aqu Hyd	2, 4A, and t Crust (B ² uatic Inver drogen Sul	4B) 11) tebrates (B13) lfide Odor (C1	(Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) X Saturation Visible on Aerial Imagery (
Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >14 Wetland Hydrology Present? Saturation Present? Yes No X Depth (inches): >14 Yes X No	Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B	of one required on	uired; check all th	Wat 1, 2 Salt Aqu Hyo X Oxid	2, 4A, and t Crust (B' uatic Inveri drogen Sul dized Rhiz sence of F	4B) 11) tebrates (B13) lfide Odor (C1 zospheres alor Reduced Iron	(Except MLRA) ng Living Roots (C3) (C4)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) X Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3)
Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes	Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B Iron Deposits (B5)	of one required (2) (32) (32) (4)	uired; check all th	Wat 1, 2 Salt Aqu Hyc X Oxi Pre	2, 4A, and t Crust (B' uatic Inveri drogen Sul dized Rhiz esence of F	4B) 11) tebrates (B13) Ifide Odor (C1 zospheres alor Reduced Iron Reduction in P	(Except MLRA) ng Living Roots (C3) (C4) lowed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) X Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5)
Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >14 Wetland Hydrology Present? Saturation Present? Yes No X Depth (inches): >14 Yes X No	Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum of Surface Water (A1)) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B3) Iron Deposits (B5) Surface Soil Cracks (B3)	of one requipe (2) (32) (4) (86)		Wai 1, 2 Salt Aqu Hyc X Oxio Pre Rec Stur	2, 4A, and t Crust (B' uatic Inver- drogen Sul dized Rhiz esence of F cent Iron F nted or St	4B) 11) tebrates (B13) lfide Odor (C1 zospheres aloi Reduced Iron Reduction in P rressed Plants	(Except MLRA) ng Living Roots (C3) (C4) lowed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) X Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Water Table Present? Yes No X Depth (inches): >14 Wetland Hydrology Present? Saturation Present? Yes No X Depth (inches): >14 Yes X No	Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on	of one required (2) 32) 4) (B6) Aerial Ima	gery (B7)	Wai 1, 2 Salt Aqu Hyc X Oxio Pre Rec Stur	2, 4A, and t Crust (B' uatic Inver- drogen Sul dized Rhiz esence of F cent Iron F nted or St	4B) 11) tebrates (B13) lfide Odor (C1 zospheres aloi Reduced Iron Reduction in P rressed Plants	(Except MLRA) ng Living Roots (C3) (C4) lowed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) X Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Saturation Present? Yes No X Depth (inches): >14 Yes X No	Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B3) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundator)	of one required (2) 32) 4) (B6) Aerial Ima	gery (B7)	Wai 1, 2 Salt Aqu Hyc X Oxio Pre Rec Stur	2, 4A, and t Crust (B' uatic Inver- drogen Sul dized Rhiz esence of F cent Iron F nted or St	4B) 11) tebrates (B13) lfide Odor (C1 zospheres aloi Reduced Iron Reduction in P rressed Plants	(Except MLRA) ng Living Roots (C3) (C4) lowed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) X Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
	Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Invations:	of one required (2) 32) 4) (B6) Aerial Ima	gery (B7) urface (B8)	Wat 1, 2 Salt Aqu Hyc X Oxi Pre Rec Stur Oth	2, 4A, and t Crust (B' uatic Inver- drogen Sul dized Rhiz sence of F cent Iron F nted or St aer (Explain	4B) 11) tebrates (B13) lfide Odor (C1 zospheres aloi Reduced Iron Reduction in P rressed Plants	(Except MLRA) ng Living Roots (C3) (C4) lowed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) X Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
	Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India Field Obser Surface Water	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundations: Present? Yes	of one required (2) 32) 4) (B6) Aerial Ima	gery (B7) urface (B8) No <u>X</u>	Wat 1, 2 Salt Aqu Hyc X Oxi Pre Rec Stur Oth	2, 4A, and t Crust (B' uatic Inver- drogen Sul dized Rhiz esence of R cent Iron F nted or St her (Explain	tebrates (B13) lfide Odor (C1 zospheres aloi Reduced Iron Reduction in P ressed Plants in in Remarks)	(Except MLRA) ng Living Roots (C3) (C4) lowed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) X Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
	Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India Field Obser Surface Water Water Table P Saturation Pre (includes capillar	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundation Visible on	of one required (2) 32) 4) (B6) Aerial Ima Concave Si	gery (B7) urface (B8) No	Wat 1, 2 Salt Aqu Hyc X Oxi Pre Rec Stul Oth Depth (inc	e, 4A, and t Crust (B' uatic Invertion of Sundant Crust (B' uatic Invertion of Sundant Crust (B' cent Iron F nted or St are (Explain ches):	11) tebrates (B13) Ifide Odor (C1 zospheres alor Reduced Iron Reduction in P ressed Plants in in Remarks) >14 >14	(Except MLRA) ng Living Roots (C3) (C4) lowed Soils (C6) (D1) (LRR A) Wetland Hydr	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) X Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

Project/Site:	Lochr	er Road	l	_	City/County:	A	lbany/Linn		Sampling Date	e:	10/15/2020
Applicant/Owner: H	layden H	omes						State:	OR	Sampling I	Point: 4
Investigator(s):		JT/CM			Section, To	wnship, Range:			20/11S/3\	N	
Landform (hillslope, terra	ace, etc.:)		Te	rrace		Local relief (cor	ncave, convex, no	one):	None	Slope	e (%): ~1%
Subregion (LRR):		LRR A	Α		Lat:	44.6038	326°	Long:	-123.086712	° Da	atum: WGS85
Soil Map Unit Name:			D	ayton	silt loam			NWI Classi	ification:	No	ne
Are climatic/hydrologic c	onditions o	n the site t	typical for	this time	e of year?	Yes	Х	No	(if no, e	xplain in Rema	arks)
Are vegetation	Soil	or Hy	ydrology		significantly dist	urbed?	Are "Normal Ci	rcumstances	s" present? (Y/N)	Y	
Are vegetation	Soil	or Hy	ydrology		naturally proble	matic? If needed	l, explain any ans	wers in Rem	arks.)		
		_									
SUMMARY OF FIN			ch site r	map s	howing san	npling point	locations, tra	ansects, i	mportant fea	atures, etc	•
Hydrophytic Vegetation I	Present?	Yes _	Х	No		Is Sampled Ar	ea within				
Hydric Soil Present?		Yes	Х	No		a Wetlar		Yes		No X	
Wetland Hydrology Pres	ent?	Yes		No	X						
Remarks:						•					
		4161									
VEGETATION - U	se scien	tífic nar				4 - مالم ما	Dom: !	Toot ····	haat		
			absolı % co\		Dominant Species?	Indicator Status	Dominance 1	est works	sneet:		
Tree Stratum (plot siz	re: _))				Number of Dom	ninant Specie	es		
1							That are OBL, F	FACW, or FA	.C:	2	(A)
2									· · · · · · · · · · · · · · · · · · ·		
3							Total Number of	f Dominant			
4							Species Across	All Strata:		2	(B)
			0		= Total Cover						
Sapling/Shrub Stratum	(plot size	e: 15)				Percent of Dom	inant Specie	s		
1 Rubus armeniac	eus		45		Х	FAC	That are OBL, F	FACW, or FA	AC:	100%	(A/B)
2											
3							Prevalence I	ndex Work	sheet:		
4							Total % Cover of		Multiply		
5					- Total Cavar		OBL Spec		x1		
			45		= Total Cover		FACW spe		x 2 x 3		
Herb Stratum (plot siz	ze:	5))				FACU Spe		x 4		
1 Schedonorus ar	undinace	eus	100)	Х	FAC	UPL Spec	cies	x 5	= 0	
2							Column To	otals	0 (A)	0	(B)
3											
4							Prevalenc	ce Index =B/A	A =	#DIV/0!	
5											
							Hydrophytic				
7									Rapid Test for Hy		getation
8			100		= Total Cover		<u> </u>		Dominance Test Prevalence Index		
			100	<u></u>	- TOTAL COVEL		<u> </u>		Morphological Ad		ovide supporting
Woody Vine Stratum ((plot size:)						ta in Remarks or		
1								5- '	Wetland Non-Va	scular Plants ¹	
								Pro	oblematic Hydrop	hytic Vegetati	on ¹ (Explain)
2							1 Indicators of by	vdric soil and	wetland hydrolog	gy must be pre	esent. unless
2			0		= Total Cover				,		,
2			0		= Total Cover		disturbed or pro	blematic.			,
2	Stratum		0		= Total Cover			blematic.	Yes X	,	No

			_				Sampling Point: Attachment £.25
		the depth	needed to docume	nt the indicator or cor	nfirm the abser	nce of indicators.)	
Depth	Matrix		0.1 (Redox Features	Loc ²	T .	D
(Inches)	Color (moist)	<u>%</u>	Color (moist)	% Type ¹	Loc	Texture	Remarks
0-6	10YR 3/2	100				Silty Clay Loam	·
6-14	10YR 3/1	98	10YR 3/3		<u> </u>	Silty Clay Loam	Fine
Гуре: C=Con	centration, D=Depletion	on, RM=Re	educed Matrix, CS=	Covered or Coated San	nd Grains.		² Location: PL=Pore Lining, M=Matrix.
lydric Soil	Indicators: (Appli	cable to	all LRRs, unless	s otherwise noted.)		Indica	tors for Problematic Hydric Soils ³ :
	Histosol (A1)			Sandy Redox	x (S5)		2 cm Muck (A10)
	Histic Epipedon (A2)			Stripped Mat	trix (S6)		Red Parent Material (TF2)
	Black Histic (A3)			Loamy Muck	y Mineral (F1)	except MLRA 1)	Very Shallow Dark Surface (TF12)
	Hydrogen Sulfide (A4	·)		Loamy Gleye	ed Matrix (F2)		Other (explain in Remarks)
	Depleted Below Dark	Surface (A	411)	Depleted Ma	trix (F3)		
	Thick Dark Surface (A	1 12)		X Redox Dark	Surface (F6)		_
	Sandy Mucky Mineral	I (S1)		Depleted Da	rk Surface (F7)		³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or
	Sandy Gleyed Matrix	(S4)		Redox Depre	essions (F8)		problematic.
ype: Oepth (inchestemarks:	s):					Hydric Soil Pres	ent? Yes <u>X</u> No
Type: Depth (inchest Remarks: Plowed field	d.					Hydric Soil Pres	ent? Yes <u>X</u> No
Type: Depth (inchest lemarks: Plowed field lemarks) TYDROLO Vetland Hy	d. OGY rdrology Indicators	s:	ured: check all th	at anniv)		Hydric Soil Pres	
Type: Depth (inchest Remarks: Plowed field HYDROLO Vetland Hy Primary Indi	d. OGY drology Indicators cators (minimum of	s:	uired; check all th		d Leaves (B9) (Secondary Indicators (2 or more required) Water stained Leaves (B9)
ype: Depth (inchest emarks: Clowed field EYDROLO Vetland Hy Crimary Indic	d. OGY rdrology Indicators	r s: f one requ	uired; check all th				Secondary Indicators (2 or more required)
ype: lepth (inchese emarks: lowed field IYDROLO Vetland Hy rimary India	d. OGY drology Indicators cators (minimum of Surface Water (A1)	r s: f one requ	uired; check all th	Water staine	i 4B)		Secondary Indicators (2 or more required) Water stained Leaves (B9)
ype: lepth (inches emarks: lowed field IYDROLO Vetland Hy rimary India	d. OGY drology Indicators cators (minimum of Surface Water (A1) High Water Table (A2)	r s: f one requ	uired; check all th	Water stained 1, 2, 4A, and Salt Crust (B	i 4B)		Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B)
lype: Depth (inchested field f	d. OGY drology Indicators cators (minimum of Surface Water (A1) High Water Table (A2 Saturation (A3)	r s: f one requ	uired; check all th	Water stainer 1, 2, 4A, and Salt Crust (B Aquatic Inver	i 4B)	Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
ype: lepth (inches emarks: lowed field lydroLO fetland Hy rimary India	d. OGY rdrology Indicators cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)	r s: f one requ	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inver	i 4B) i11) rtebrates (B13) ulfide Odor (C1)	Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
ype: lepth (inchese emarks: lowed field IYDROLO Vetland Hy rimary India	d. OGY Indrology Indicators cators (minimum of Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B	rs: f one requ	uired; check all th	Water stained 1, 2, 4A, and Salt Crust (B Aquatic Invertigation Hydrogen Su Oxidized Rhi	i 4B) i11) rtebrates (B13) ulfide Odor (C1)	Except MLRA g Living Roots (C3)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery
Pepth (inchest demarks: Plowed field HYDROLO Vetland Hy Primary India	d. OGY drology Indicators cators (minimum of Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B Drift Deposits (B3)	rs: f one requ	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inver Hydrogen Su Oxidized Rhi Presence of	1 4B) i11) rtebrates (B13) ulfide Odor (C1) izospheres alon Reduced Iron (0	Except MLRA g Living Roots (C3)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2)
Type: Depth (inchest Remarks: Plowed field HYDROLO Vetland Hy Primary India	d. OGY rdrology Indicator: cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B4)	rs: f one requ 2) 32) 4)	uired; check all th	Water stainer 1, 2, 4A, and Salt Crust (B Aquatic Invertigation Hydrogen Su Oxidized Rhi Presence of Recent Iron F	1 4B) i11) rtebrates (B13) ulfide Odor (C1) izospheres alon Reduced Iron (0	Except MLRA g Living Roots (C3) C4) owed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3)
Plowed field HYDROLO Vetland Hy	d. OGY Indrology Indicators cators (minimum of Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B4 Iron Deposits (B5)	rs: f one requ 2) 32) 4) B6)		Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inver Hydrogen Su Oxidized Rhi Presence of Recent Iron 6 Stunted or St	1 4B) Internates (B13) Ilfide Odor (C1) Izospheres alon Reduced Iron (C1)	Except MLRA g Living Roots (C3) C4) owed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5)
Pepth (inchest) Pepth (inchest) Plowed field Primary India	d. OGY rdrology Indicators cators (minimum of Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B4 Iron Deposits (B5) Surface Soil Cracks (I	rs: f one requ 2) 32) 4) B6) Aerial Imag	gery (B7)	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inver Hydrogen Su Oxidized Rhi Presence of Recent Iron 6 Stunted or St	at 4B) at 11) retebrates (B13) ulfide Odor (C1) izospheres alon Reduced Iron (C1) Reduction in Plattressed Plants (Except MLRA g Living Roots (C3) C4) owed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Plowed field HYDROLO Vetland Hy Primary India	d. OGY drology Indicators cators (minimum of Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B4 Iron Deposits (B5) Surface Soil Cracks (I Inundation Visible on Sparsely Vegetated Corvations:	rs: f one requ 2) 32) 4) B6) Aerial Imag	gery (B7)	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inver Hydrogen Su Oxidized Rhi Presence of Recent Iron 6 Stunted or St	at 4B) at 11) retebrates (B13) ulfide Odor (C1) izospheres alon Reduced Iron (C1) Reduction in Plattressed Plants (Except MLRA g Living Roots (C3) C4) owed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India	d. OGY cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (I Inundation Visible on Sparsely Vegetated Covations:	rs: f one requ 2) 32) 4) B6) Aerial Imag	gery (B7) urface (B8) No <u>X</u>	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Invertion Hydrogen Su Oxidized Rhi Presence of Recent Iron F Stunted or St Other (Explain	tatab) interpreter (B13) inter	g Living Roots (C3) C4) owed Soils (C6) D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Field Obser Surface Water Table P	d. OGY Indrology Indicators cators (minimum of Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B4 Iron Deposits (B5) Surface Soil Cracks (I Inundation Visible on Sparsely Vegetated Covations: In Present? Yes Present? Yes	rs: f one requ 2) 32) 4) B6) Aerial Imag	gery (B7) urface (B8) No X No X	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inver Hydrogen Su Oxidized Rhi Presence of Recent Iron f Stunted or St Other (Explain	at 4B) at 11) retebrates (B13) ulfide Odor (C1) izospheres alon Reduced Iron (C1) Reduction in Plot tressed Plants (C1) in in Remarks)	g Living Roots (C3) C4) owed Soils (C6) D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Field Obser Surface Water Table P Saturation Pre	d. OGY Indrology Indicators Cators (minimum of Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B4 Iron Deposits (B5) Surface Soil Cracks (I Inundation Visible on Sparsely Vegetated Covations: In Present? Yes Present? Yes Exercise Yes Exercise Surface Surfa	rs: f one requ 2) 32) 4) B6) Aerial Imag	gery (B7) urface (B8) No <u>X</u>	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Invertion Hydrogen Su Oxidized Rhi Presence of Recent Iron F Stunted or St Other (Explain	tatab) interpreter (B13) inter	g Living Roots (C3) C4) Divwed Soils (C6) D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Field Obser Surface Water Vater Table P Saturation Pre	d. OGY drology Indicators cators (minimum of Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B4 Iron Deposits (B5) Surface Soil Cracks (I Inundation Visible on Sparsely Vegetated Covations: Teresent? Yes Present? Yes	f one request. f one request. f one request. All the second of the se	gery (B7) urface (B8) NoX NoX NoX	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inver Hydrogen Su Oxidized Rhi Presence of Recent Iron f Stunted or St Other (Explain	at 4B) at 11) rebrates (B13) alfide Odor (C1) at 20spheres alon Reduced Iron (CR) Reduction in Plot tressed Plants (CR) in in Remarks)	Except MLRA g Living Roots (C3) C4) owed Soils (C6) D1) (LRR A) Wetland Hydi	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Field Obser Surface Water Table P Saturation Pre includes capillar	d. OGY drology Indicators cators (minimum of Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B4 Iron Deposits (B5) Surface Soil Cracks (I Inundation Visible on Sparsely Vegetated Covations: Teresent? Yes Present? Yes	f one request. f one request. f one request. All the second of the se	gery (B7) urface (B8) NoX NoX NoX	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Invertion Hydrogen Su Oxidized Rhi Presence of Recent Iron F Stunted or St Other (Explain Depth (inches): Depth (inches):	at 4B) at 11) rebrates (B13) alfide Odor (C1) at 20spheres alon Reduced Iron (CR) Reduction in Plot tressed Plants (CR) in in Remarks)	Except MLRA g Living Roots (C3) C4) owed Soils (C6) D1) (LRR A) Wetland Hydi	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

Project/Site:	Lochn	er Road	<u> </u>	_	City/County:	A	lbany/Linn		Samp	oling Date:	1	0/15/2020
Applicant/Owner:	Hayden Ho	omes						State:	OR	-	Sampling Po	int: 5
Investigator(s):	СМ	/JT/SE/N	18		Section, To	wnship, Range:			20	/11S/3W		
Landform (hillslope,	terrace, etc.:)		Sı	wale	· 	Local relief (cor	ncave, convex,	none):	N	lone	Slope (%): ~1%
Subregion (LRR):		LRR A	Α		Lat:	44.6026	607°	Long:	-123.	086946°	Datu	ım: WGS85
Soil Map Unit Name	:		Cı	oncor	d silt loam			NWI CI	assification:		None	•
Are climatic/hydrolog	gic conditions o	n the site t	typical for	this tim	e of year?	Yes	X	No		(if no, exp	lain in Remark	s)
Are vegetation	Soil	or Hy	ydrology		significantly dist	urbed?	Are "Normal	Circumstan	ces" preser	nt? (Y/N)	Υ	
Are vegetation	Soil	_	ydrology		<u>.</u> !	matic? If needed	, explain any a	nswers in R	emarks.)			
		_							•			
SUMMARY OF	FINDINGS	– Attac	ch site r	nap s	howing san	npling point	locations, t	ransects	s, import	ant feat	ures, etc.	
Hydrophytic Vegetat	tion Present?	Yes	Х	No		Is Sampled Ar	ea within					
Hydric Soil Present?	?	Yes	Х	_ No		a Wetlan		Yes	X	_	No	
Wetland Hydrology l	Present?	Yes	Х	No								
Remarks:						<u> </u>						
VEGETATION	- Use scien	tific nai				I P	In. ·	 .	-11 :			
			absolu % cov		Dominant Species?	Indicator Status	Dominance	e i est wo	rksneet:			
Tree Stratum (plo	ot size:))				Number of Do	ominant Spe	ecies			
1							That are OBL	, FACW, or	FAC:		1	(A)
2												
3							Total Number	of Domina	nt			
4							Species Acro	ss All Strata	a:		1	(B)
			0		= Total Cover							
Sapling/Shrub Stratu	um (plot size	:	_)				Percent of Do	minant Spe	ecies			
1							That are OBL	, FACW, o	r FAC:		100%	(A/B)
2												
3							Prevalence	Index W	orksheet:			
4							Total % Cove			Multiply by		
5							OBL Sp			- x1=	0	_
			0		= Total Cover		FACW s			x 2 = x 3 =	0	_
Herb Stratum (plo	ot size:	5))				FACU S			x 4 =	0	
1 Schedonorus	s arundinace	us	100)	X	FAC	UPL Sp	ecies		x 5 =	0	
2							Column	Totals	0	(A)	0	(B)
3												
4							Prevale	nce Index =	=B/A =	#	DIV/0!	_
5												
6							Hydrophyt	•				
7							<u> </u>	X	1- Rapid T 2- Domina	-	rophytic Veget	ation
8			100		= Total Cover		I —		2- Domina 3-Prevaler			
			100		- TOTAL COVE		-				tations¹ (provi	de supporting
Woody Vine Stratum	n (plot size:)						1		ı a separate sl	
1									5- Wetland	Non-Vasc	ular Plants ¹	
2									Problemati	c Hydrophy	tic Vegetation	¹ (Explain)
			0		= Total Cover					l hydrology	must be prese	ent, unless
			_				disturbed or p					
% Bare Ground in H	lerb Stratum		0				Hydrophyt Vegetation		Yes	Х	ı	No
							Present?					
Remarks:												
Monoculture cro	pp.											

SOIL			PHS#	68	69			Sampling Point: Attachm ent E⁵.27
Profile Descri	ption: (Describe to	the depth	needed to docume	ent the indi	cator or co	nfirm the abse	ence of indicators.)	
Depth	Matrix		0.1		Features	Loc ²		
(Inches)	Color (moist)	<u>%</u>	Color (moist)	<u>%</u>	Type ¹		Texture	Remarks
0-6	10YR 3/2	98	10YR 3/6		<u> </u>	M	Silty Clay Loam	Fine
6-13	10YR 3/2	90	7.5YR 3/4		<u> </u>	M	Silty Clay Loam	Medium
6-13			7.5YR 3/4	5	C	PL		Fine
¹ Type: C=Con	centration, D=Depleti	ion, RM=R	educed Matrix, CS=	Covered or	Coated San	nd Grains.		² Location: PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators: (Appl	icable to	all LRRs, unles	s otherwi	se noted.)		Indica	tors for Problematic Hydric Soils ³ :
	Histosol (A1)				Sandy Redo	x (S5)		2 cm Muck (A10)
	Histic Epipedon (A2)				Stripped Mat	trix (S6)		Red Parent Material (TF2)
	Black Histic (A3)				_oamy Muck	y Mineral (F1)	(except MLRA 1)	Very Shallow Dark Surface (TF12)
	Hydrogen Sulfide (A	1)		I	_oamy Gleye	ed Matrix (F2)		Other (explain in Remarks)
	Depleted Below Dark	Surface (A11)		Depleted Ma	trix (F3)		
	Thick Dark Surface (A12)		X	Redox Dark	Surface (F6)		2
	Sandy Mucky Minera	ıl (S1)			Depleted Da	rk Surface (F7)	³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or
	Sandy Gleyed Matrix	(S4)			Redox Depre	essions (F8)		problematic.
HYDROLO Wetland Hy	GY drology Indicator	rs:						
Primary Indi	cators (minimum o	of one req	juired; check all th	nat apply)				Secondary Indicators (2 or more required)
	Surface Water (A1)						(Except MLRA	Water stained Leaves (B9)
	High Water Table (A2	2)		•	1, 2, 4A, and	i 4B)		(MLRA1, 2, 4A, and 4B)
	Saturation (A3)				Salt Crust (B	11)		Drainage Patterns (B10)
	Water Marks (B1)				Aquatic Inve	rtebrates (B13))	Dry-Season Water Table (C2)
	Sediment Deposits (F	32)			-lydrogen Sι	ulfide Odor (C1)	X Saturation Visible on Aerial Imagery (
	Drift Deposits (B3)			<u>X</u>	Oxidized Rhi	izospheres alo	ng Living Roots (C3)	X Geomorphic Position (D2)
	Algal Mat or Crust (B	4)				Reduced Iron		Shallow Aquitard (D3)
	Iron Deposits (B5)						lowed Soils (C6)	Fac-Neutral Test (D5)
	Surface Soil Cracks (,	(0.7)			tressed Plants		Raised Ant Mounds (D6) (LRR A)
	Inundation Visible on Sparsely Vegetated (Jtner (Expla	in in Remarks)		Frost-Heave Hummocks (D7)
Field Obser	vations:							
Surface Water	Present? Yes		No <u>X</u>	Depth (inches):		.]	
Water Table P	resent? Yes		No X	Depth ((inches):	>13	Wetland Hydi	rology Present?
Saturation Pre (includes capillar			No X	Depth (inches):	>13		Yes X No
Describe Reco	orded Data (stream ga	auge, mon	itoring well, aerial pl	notos, previ	ous inspection	ons), if availab	le:	

Project/Site:	Lochi	ner Road		_	City/County:	A	lbany/Linn		Samplin	g Date:	10/1	5/2020
Applicant/Owner:	Hayden H	lomes						State:	OR	5	Sampling Point:	6
Investigator(s):		JT/CM			Section, To	wnship, Range:	-		20/1	1S/3W		
Landform (hillslope, te	errace, etc.:)		Te	rrace		Local relief (cor	ncave, convex,	none):	No	ne	Slope (%):	~1%
Subregion (LRR):		LRR A	4		Lat:	44.6026	28°	Long:	-123.08	7066°	Datum:	WGS85
Soil Map Unit Name:			C	oncor	d silt loam			NWI Clas	sification:		None	
Are climatic/hydrologic	c conditions	on the site t	typical for	this time	e of year?	Yes	Х	No_	(i	f no, expla	in in Remarks)	
Are vegetation	Soil	or Hy	/drology		significantly dist	urbed?	Are "Normal	Circumstance	es" present?	(Y/N)	Y	_
Are vegetation	Soil	or Hy	/drology		naturally proble	matic? If needed	, explain any ar	nswers in Rer	marks.)		1	<u>-</u> '
		_										
SUMMARY OF I			ch site ı	map s	howing san	npling point	locations, t	ransects,	importa	nt featu	res, etc.	
Hydrophytic Vegetation	n Present?	Yes _	Х	_ No		Is Sampled Ar	ea within					
Hydric Soil Present?		Yes	Х	_ No		a Wetlan		Yes_		N	lo X	-
Wetland Hydrology Pr	esent?	Yes		No	Х							
Remarks:						•						
VEGETATION		- 4: 6 :		-14-								
VEGETATION -	use scier	ititic nai	nes of absol		Dominant	Indicator	Dominance	Tost work	shoot			
			% co		Species?	Status	Dominance	I GOL WUIN	311661.			
Tree Stratum (plot	size:)					Number of Do	minant Spec	ies			
1							That are OBL	, FACW, or F	AC:		1	(A)
2												
3							Total Number					
4							Species Acros	ss All Strata:	_		1	(B)
			0		= Total Cover							
Sapling/Shrub Stratur	n (plot size	e:	_)				Percent of Do	minant Speci	es			
1							That are OBL	, FACW, or F	AC:	1	00%	(A/B)
2							Prevalence	Inday Wo	rkahaat:			
3 4				—			Total % Cove			lultiply by:		
5							OBL Sp		10	x 1 =	_ 0	
-			0		= Total Cover		FACW s	_		x 2 =	0	•
							FAC Sp	ecies		x 3 =	0	• •
Herb Stratum (plot		5)					FACU S	_		x 4 =	0	_
1 Schedonorus	arundinac	eus	100	<u> </u>	Х	FAC	UPL Sp	_		x 5 =	0	-
							Column	Totals	0 (A	4)	0	(B)
3							Provolo	naa Inday -P	/A -	#6	DIV/0!	
5							Frevale	nce Index =B	_	#L	71470:	-
6							Hydrophyti	c Vegetatio	on Indicat	ors:		
7							,				phytic Vegetation	on
8									· - Dominance	-		
			100)	= Total Cover				-Prevalence			
			,	_							tions ¹ (provide	
Woody Vine Stratum	(plot size:		_)								separate shee	t)
1							_		- Wetland N			Evolain\
2					- Total Carrar		1Indicators of				c Vegetation ¹ (E nust be present	
			0		= Total Cover		disturbed or p		u welland N	yarology M	iusi ne hiesent	, umcss
							Hydrophyti	С				
							Vegetation		Yes	Х	No	
% Bare Ground in He	rb Stratum		0	_			Present?					

Profile Description: (Description: (Description: Character is to the depth recorded to document the indicators or confirm the absence of indicators.) Description	Depth (Inches) 0-3 3-12	tion: (Describe to		_	6869			Sampling Point: Attachm ent £.29
	0-3 3-12	(=	the depth	needed to docume	nt the indicator or co	nfirm the absen	ce of indicators.)	
1978 32	0-3 3-12			 		. 2		
3-12	3-12			Color (moist)	% Type			Remarks
12-16 10YR 3/1 100 Silty Clay Loam 1*Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. 1*Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. 1*Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. 1*Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. 1*Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. 1*Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. 1*Indicators for Problematic Matrix Coalis*: 1*Indicators for Problematic Matrix, CS=Covered Matrix, CS=Cove								
Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Ceated Sand Grains. **Location: PL=Pore Lining, MeMatrix, PHydric Soil Indicators (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils **. Histose (A1)	12-16			7.5YR 3/4				
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histocal (A1) Histocal (A2) Histocal (A2) Black Histoc (A3) Depleted Solide (A4) Depleted Black (A10) Thick Dark Surface (A11) Depleted Matrix (F2) Depleted Black (A10) Thick Dark Surface (A12) Sandy Radox (B5) Depleted Matrix (F2) Depleted Matrix (F2) Depleted Matrix (F3) Depleted Matrix (F3) Depleted Matrix (F3) Depleted Matrix (F3) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Redox Depressions (F8) Phydric Soil Present? Yes X No Restrictive Layer (if present): Type: Depth (inches): Hydric Soil Present? Yes X No Water stained Leaves (89) (Except MLRA Water stained Leaves (89) (Except MLRA Water stained Leaves (89) (MLRA1, 2, 4, and 48) Water stained Leaves (89) Saturation (A3) Saturation		10YR 3/1	100				Silty Clay Loam	
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histoce (A1) Histoce (A1) Histoce (A2) Black Histo (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Depleted Matrix (F2) Depleted Below Dank Surface (A11) Depleted Matrix (F2) Depleted Matrix (F2) Sandy Rode Matrix (F2) Depleted Below Dank Surface (A11) Depleted Matrix (F2) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Depleted Dank Surface (F7) Needox Depressions (F8) Primary Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Apudic Invertebrates (B1) Saturation (A2) Saturat								
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histose (A1) Histose (A2) Histose (A2) Black Histo; (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Depleted Matrix (F2) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Rode Dark Surface (F7) Sandy Mucky Mineral (F1) (except MLRA 1) Depleted Below Dark Surface (A12) Sandy Mucky Mineral (F1) (except MLRA 1) Depleted Matrix (F2) Depleted Below Dark Surface (A12) Sandy Mucky Mineral (S1) Secondary Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Hydric Soil Present? Yes X No Water stained Leaves (B9) (Except MLRA Mucker stained Leaves (B9) (Except MLRA Mucker stained Leaves (B9) (Except MLRA Mucker stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Mucker stained Leaves (B9) (Except MLRA Mucker stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Mucker stained Leaves (B9) (Except MLRA Mucker stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Mucker stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Mucker stained Leaves (B9) (Except MLRA Mucker stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Mucker stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Mucker stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Mucker stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Mucker stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Mucker stained Leaves (B9) (MLRA1, 2, 4A, and 4B								
Histosol (A1) Histosol (A2) Histosol (A2) Histosol (A2) Black Histic Epipedon (A2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Very Shallow Dark Surface (TF12) Other (explain in Remarks) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A12) X Radox Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Problematic. Restrictive Layer (if present): Type: Depth (inches): Primary Indicators (Innimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA High Water Table (A2) Salt Crust (B11) Water Marks (B1) Saturation (A3) Salt Crust (B11) Sediment Deposits (B2) Prisener (B2) Agai Mat or Crust (B4) Prisener (B3) Surface Water (A1) Prisener (B3) Redox Depressions (B3) Oxidized Rhizospheres along Living Roots (C3) Sediment Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) Sediment Deposits (B3) Surface Water (A1) Prisener (B6) Surface Water (A1) Salt Crust (B1) Sediment Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) Sediment Deposits (B3) Surface Water (A1) Prisener (R6) Surface Water (A1) Salt Crust (B1) Sediment Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) Sediment Deposits (B3) Surface Water (A1) Prisener (R6) Surface Water (A1) Salt Crust (B1) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Surface Water Present? Yes No X Depth (inches): Depth (inches): Sufface Water Present? Yes No X Depth (inches):	Type: C=Conce	entration, D=Depleti	on, RM=Re	educed Matrix, CS=	Covered or Coated Sar	nd Grains.		² Location: PL=Pore Lining, M=Matrix.
Histic Epipedon (A2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Loamy Mucky Mineral (F2) (except MLRA 1) Depleted Balow Dark Surface (R11) Depleted Balow Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Bloyd Matrix (S4) Redox Dark Surface (F6) Redox Depressions (F8) Hydric Soil Present? Yes X No Restrictive Layer (if present): Type: Depth (inches): Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Saturation (A4) Saturation (A3) Saturation (A4) Saturation	Hydric Soil In	ndicators: (Appl	icable to	all LRRs, unless	otherwise noted.))	Indica	tors for Problematic Hydric Soils ³ :
Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Other (explain in Remarks) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Thick Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Persent; Redox Depressions (F8) Problematic. Restrictive Layer (if present): Type: Deplit (inches): Hydric Soil Present? Yes X No Remarks: Plowed field. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA (MLRA1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) High Water Table (A2) 1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) Water Marks (B1) Aquatic Invertebrates (B13) Dring-Beatem (B10) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery (Drift Deposits (B3)) Oxidized Rhizospheres along Living Roots (C3) Geomorphic Position (D2) Sparsely Vegetated Concave Surface (B8) Frost-Heave Hummocks (D7) Sparsely Vegetated Present? Yes No X Depth (inches): 2-16 Wetland Hydrology Present? Ves No X Depth (inches): 2-16 Wetland Hydrology Present?	Hi	listosol (A1)			Sandy Redo	x (S5)		2 cm Muck (A10)
Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Depleted Matrix (F3) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F5) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Problematic. Redox Depressions (F8) Repleted Dark Surface (F7) Problematic. Restrictive Layer (if present): Type: Depth (inches): Hydric Soil Present? Yes X No Remarks: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Hydric Soil Present? Yes (Matrix (S4) Water stained Leaves (B9) (Except MLRA (MLRA, 2, 4A, and 4B) Hydric Soil Present? (S10) Surface Water (A1) Water Soil Cust (B11) Saturation (A3) Salt Crust (B11) Water Marks (B1) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Jorit Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) Surface Soil Cracks (B8) Frost-Heave Hummocks (D7) Sparsely Vegetaled Concave Surface (B8) Frost-Heave Hummocks (D7) Saturation (Present? Yes No X Depth (inches): 166 Wetter Table Present? Yes No X Depth (inches): 216 Wetter Table Present? Yes No X Depth (inches): 216 Wettand Hydrology Present?	Hi	listic Epipedon (A2)			Stripped Ma	trix (S6)		Red Parent Material (TF2)
Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Redox Depressions (F8) Restrictive Layer (if present): Type: Depth (inches): Hydric Soil Present? Yes X No Hydric Soil Present? Yes X No Water stained Leaves (B9) (Except MLRA (MLRA1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) Surface Water (A1)	BI	lack Histic (A3)			Loamy Muck	cy Mineral (F1) (e	xcept MLRA 1)	Very Shallow Dark Surface (TF12)
Thick Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Redox Depressions (F8) Restrictive Layer (if present): Type: Depth (inches): Plowed field. Hydric Soil Present? Yes X No Remarks: Plowed field. Hydric Soil Present? Yes X No Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Societable (A2) So	H	lydrogen Sulfide (A	!)		Loamy Gley	ed Matrix (F2)		Other (explain in Remarks)
Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Andicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if present): Type: Depth (inches): Hydric Soil Present? Yes X No Remarks: Plowed field. Hydric Soil Present? Yes X No Remarks: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA (MLRA1, 2, 4A, and 4B) High Water Table (A2) 1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) Saturation (A3) Sait Crust (B11) Drainage Patterns (B13) Dry-Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery (A) Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) Geomorphic Position (D2) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Solution of Present? Yes No X Depth (inches): Solution (Inches): Solution Present? Yes No X Depth (inches): Solution Present? Yes N	De	epleted Below Dark	Surface (A	\11)	Depleted Ma	atrix (F3)		
Sandy Gleyed Matrix (S4) Redox Depressions (F8) hydrology must be present, unless disturbed or problematic. Restrictive Layer (if present): Type: Depth (inches): Hydric Soil Present? Yes X No Remarks: Plowed field. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA (MLRA1, 2, 4A, and 4B) High Water Table (A2) 1, 2, 4A, and 4B) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Water Marks (B1) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery (B7) Drift Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Fac-Neutral Test (D5) Surface Soil Cracks (B6) Sturtled or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Wetland Hydrology Present? Yes No X Depth (inches): 16 Wetland Hydrology Present? Saturation Present? Yes No X Depth (inches): 16 Wetland Hydrology Present? Yes No X Depth (inches): 16 Yes No X	Th	hick Dark Surface (A12)		X Redox Dark	Surface (F6)		3
Restrictive Layer (if present): Type: Depth (inches): Plowed field. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Sediment Deposits (B1) Drift Deposits (B2) Hydrogen Sulfide Odor (C1) Drift Deposits (B3) Drift Deposits (B3) Surface Sail Crust (B4) Presence of Reduced Iron (C4) Iron Deposits (B5) Surface Sail Cracks (B6) Surface Sail Cracks (B6) Surface Sail Cracks (B6) Surface Sail Cracks (B7) Surface Sail Cracks (B8) Surface Water Present? Yes No X Depth (inches): Sufface Water Present? Yes No X Depth (inches): Suff	S	andy Mucky Minera	I (S1)		Depleted Da	rk Surface (F7)		
Type: Depth (inches): Hydric Soil Present? Yes X No	Sa	andy Gleyed Matrix	(S4)		Redox Depr	essions (F8)		
Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface Water Soil Cracks (B8) Surface Water No. Surface Water Present? Yes No. Water stained Leaves (B9) (Except MLRA Water Stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Saturation Visible on Aerial Imagery Bresente of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Sunface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Agaised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No. X Depth (inches): Water Table Present? Yes No. X Depth (inches): Saturation Present? Yes No. X Depth (inches): Presence of Reduced Iron (C4) Shallow Aquitard (D3) Frost-Heave Hummocks (D7) Wetland Hydrology Present? Yes No. X Depth (inches): Saturation Present? Yes No. X Depth (inches): Depth (inches): Saturation Present? Yes No. X Depth (inches): Depth (inches): Depth (inches): No. No. No. No. No. No. No. No								
Surface Water (A1) High Water Table (A2) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Dry-Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Saturation Present? Yes No X Depth (inches): Surface Piene (A2) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Drainage Patterns (B10) Drainage Patterns (B10) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (B2) Self Crust (B11) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (B2) Self Crust (B11) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Piesent? Yes No X Depth (inches): Self Wetland Hydrology Present? Yes No X Depth (inches): Self Wetland Hydrology Present? Yes No X Depth (inches): Self Crust (B9) Wetland Hydrology Present? Yes No X Depth (inches): Self Crust (B9) Wetland Hydrology Present? Yes No X Depth (inches): Self Crust (B9) Wetland Hydrology Present? Yes No X Depth (inches): Self Crust (B9) Wetland Hydrology Present? Yes No X Depth (inches): Self Crust (B11) Drainage Patterns (B10) Drid (B2) Saturation Piesent? Yes No X Depth (inches): Self Crust (B11) Drainage Patterns (B10) Dry-Season Water Path (B10) Drid (B2) Dry-Season Water Path (B10) Dry-Season Water Path (B10) Drid (B2) Dry-Season Water Path (B10) Dry-Season Water	-	••		uired; check all th	at apply)			
Salt Crust (B11) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Water Table (C2) Salt Crust (B11) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (B7) Stunted Present? Yes No X Depth (inches): Presence of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Frost-Heave Hummocks (D7) Wetland Hydrology Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches		,			11 7/			Secondary Indicators (2 or more required)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Day of Deposits (B3)) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (B7) Saturation Visible on Aerial Imagery (B7) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (B7) Saturation Visible on Aerial Imagery (B7) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (B7) Saturation Present? Yes No X Depth (inches): Saturation	Hi	ligh Water Table (A			Water staine	d Leaves (B9) (E	Except MLRA	
Sediment Deposits (B2) Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Depth (inches): Saturation Visible Odor (C1) Saturation Visible on Aerial Imagery (B2) Saturation Visible on Aerial Imagery (B3) Solution (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Recent Iron Reduction in Plowed Soils (C6) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Frost-Heave Hummocks (D7) Wetland Hydrology Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X		aturation (A3)	2)				Except MLRA	Water stained Leaves (B9)
Drift Deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Saurface Present? Yes No X	Sa	Vater Marks (B1)	2)		1, 2, 4A, and	d 4B)	Except MLRA	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B)
Algal Mat or Crust (B4) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Shallow Aquitard (D3) Fac-Neutral Test (D5) Fac-N			2)		1, 2, 4A, and Salt Crust (E	d 4B) 311)	Except MLRA	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10)
Iron Deposits (B5)	w	ediment Deposits (I			1, 2, 4A, and Salt Crust (E Aquatic Inve	d 4B) B11) ertebrates (B13)	Except MLRA	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >16 Surface Water Present? Yes No X Depth (inches): >16 Surface Water Present? Yes No X Depth (inches): >16 Surface Water Present? Yes No X Depth (inches): >16 Surface Water Present? Yes No X Depth (inches): >16 Surface Water Present? Yes No X Depth (inches): >16 Surface Water Present? Yes No X Depth (inches): >16 Surface Water Present? Yes No X Depth (inches): >16 Surface Water Present? Yes No X Depth (inches): >16 Surface Water Present? Yes No X	W Se				1, 2, 4A, and Salt Crust (E Aquatic Inve	d 4B) B11) ertebrates (B13) ulfide Odor (C1)		Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery
Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >16 Saturation Present? Yes No X Depth (inches): >16 Wetland Hydrology Present? Yes No X Depth (inches): >16 Yes No X	W Se Di	rift Deposits (B3)	32)		1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen St Oxidized Rh	d 4B) 311) ertebrates (B13) ulfide Odor (C1) izospheres along	g Living Roots (C3)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2)
Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes	W Se Di Al	rift Deposits (B3) Igal Mat or Crust (B	32)		1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen St Oxidized Rh Presence of	d 4B) B11) ertebrates (B13) ulfide Odor (C1) izospheres along Reduced Iron (C	g Living Roots (C3) 34)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3)
Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >16 Wetland Hydrology Present? Saturation Present? Yes No X Depth (inches): >16 Yes No X	W Se Di Al Irc	rift Deposits (B3) Igal Mat or Crust (B on Deposits (B5) urface Soil Cracks	32) 4) B6)		1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen Si Oxidized Rh Presence of Recent Iron Stunted or S	d 4B) step and the	g Living Roots (C3) C4) wed Soils (C6)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Water Table Present? Yes No X Depth (inches): >16 Wetland Hydrology Present? Saturation Present? Yes No X Depth (inches): >16 Yes No X	W Se Dr Al Iro St	orift Deposits (B3) Igal Mat or Crust (B on Deposits (B5) ourface Soil Cracks (a oundation Visible on	32) 4) B6) Aerial Ima		1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen Si Oxidized Rh Presence of Recent Iron Stunted or S	d 4B) step and the	g Living Roots (C3) C4) wed Soils (C6)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Water Table Present? Yes No X Depth (inches): >16 Wetland Hydrology Present? Saturation Present? Yes No X Depth (inches): >16 Yes No X	W Se Di Al Irc Si In	rift Deposits (B3) Igal Mat or Crust (B on Deposits (B5) urface Soil Cracks of nundation Visible on parsely Vegetated (32) 4) B6) Aerial Ima		1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen Si Oxidized Rh Presence of Recent Iron Stunted or S	d 4B) step and the	g Living Roots (C3) C4) wed Soils (C6)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
	W Se Di Al Iro Su In Sp Field Observa	rift Deposits (B3) Igal Mat or Crust (B on Deposits (B5) Iurface Soil Cracks (nundation Visible on parsely Vegetated (ations:	32) 4) B6) Aerial Ima	urface (B8)	1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen St Oxidized Rh Presence of Recent Iron Stunted or S Other (Explain	d 4B) step and the	g Living Roots (C3) C4) wed Soils (C6)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
	W Se Di Al Irc Si In Sp	rift Deposits (B3) Igal Mat or Crust (B on Deposits (B5) urface Soil Cracks in undation Visible on parsely Vegetated (ations: Present? Yes	32) 4) B6) Aerial Ima	No X	1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen Si Oxidized Rh Presence of Recent Iron Stunted or S Other (Explain	d 4B) stribrates (B13) ulfide Odor (C1) sizospheres along Reduced Iron (C Reduction in Ploteressed Plants (I ain in Remarks)	g Living Roots (C3) (24) wed Soils (C6) (C1) (LRR A)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
	W Se Di Al Irc Su In Sp Field Observa Surface Water P Water Table Pre Saturation Prese (includes capillary f	rift Deposits (B3) Igal Mat or Crust (B on Deposits (B5) Iurface Soil Cracks (I nundation Visible on parsely Vegetated (I ations: Present? Yes esent? Yes ent? Yes fringe)	32) 4) B6) Aerial Ima	No X No X No X	1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen Si Oxidized Rh Presence of Recent Iron Stunted or S Other (Explain	d 4B) at 1) britebrates (B13) ulfide Odor (C1) brizospheres along Reduced Iron (C Reduction in Plot stressed Plants (I ain in Remarks) >16 >16	g Living Roots (C3) (24) wed Soils (C6) (D1) (LRR A) Wetland Hydi	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
	W Se Di Al Irc Su In Sp Field Observa Surface Water P Water Table Pre Saturation Prese (includes capillary f	rift Deposits (B3) Igal Mat or Crust (B on Deposits (B5) Iurface Soil Cracks (I nundation Visible on parsely Vegetated (I ations: Present? Yes esent? Yes ent? Yes fringe)	32) 4) B6) Aerial Ima	No X No X No X	1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen St Oxidized Rh Presence of Recent Iron Stunted or S Other (Expla	d 4B) at 1) britebrates (B13) ulfide Odor (C1) brizospheres along Reduced Iron (C Reduction in Plot stressed Plants (I ain in Remarks) >16 >16	g Living Roots (C3) (24) wed Soils (C6) (D1) (LRR A) Wetland Hydi	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

Project/Site:	Lochner	Road		City/County:	A	lbany/Linn		Sampling	Date:	10/1	5/2020
Applicant/Owner:	Hayden Hom	es					State:	OR	8	Sampling Point:	7
Investigator(s):	JT	CM		Section, To	ownship, Range:			20/11	S/3W		
Landform (hillslope, terr	race, etc.:)		Terr	ace	Local relief (co	ncave, convex, non	e):	Non	е	Slope (%):	1%
Subregion (LRR):		LRR A		Lat:	44.6003	864°	Long:	-123.088	3106°	Datum:	WGS85
Soil Map Unit Name:			Aı	mity silt loam			NWI Classif	fication:		None	
Are climatic/hydrologic	conditions on th	ne site typic	al for th	is time of year?	Yes	X	No	(if	no, explai	in in Remarks)	
Are vegetation	Soil	or Hydrol	ogy	significantly dis	sturbed?	Are "Normal Circ	cumstances'	" present?	(Y/N)	Υ	_
Are vegetation	Soil	or Hydrol	ogy	naturally proble	ematic? If needed	l, explain any answ	ers in Rema	arks.)			
		•									
SUMMARY OF FI				ap showing sar	npling point	locations, trar	nsects, ir	mportan	t featur	res, etc.	
Hydrophytic Vegetation			<u>X</u>	No	Is Sampled A	rea within					
Hydric Soil Present?			<u> </u>	No	a Wetlai		Yes	<u> </u>	N	0	•
Wetland Hydrology Pres	sent? Y	es	<u> </u>	No							
Remarks:											
VECETATION	laa aalantifi	la namas	of n	lanta							
VEGETATION - U	ise scientifi		bsolut		Indicator	Dominance Te	est worke	heet:			
			% cove		Status	25arice 16	JOE WOINS				
Tree Stratum (plot size	ze:)				Number of Domir	nant Species	s			
1						That are OBL, FA	ACW, or FAC	C:		1	(A)
2											
3						Total Number of I					(5)
4						Species Across A	All Strata:	_		1	(B)
		_	0	= Total Cover							
Sapling/Shrub Stratum	(plot size:)				Percent of Domin	•				
1						That are OBL, FA	ACW, or FA	.C:	10	00%	(A/B)
3						Prevalence Inc	dov Mork	ahaat:			
4						Total % Cover of			ıltiply by:		
5						OBL Specie		IVIC	x 1 =	_ 0	
-			0	= Total Cover		FACW speci			x 2 =	0	•
						FAC Specie	es		x 3 =	0	
Herb Stratum (plot size	ze: 5)				FACU Speci	ies		x 4 =	0	•
1 Schedonorus ai	rundinaceus	<u> </u>	100	X	FAC	UPL Specie	-		x 5 =	0	<u>-</u>
						Column Tota	als	0 (A)		0	(B)
3						Describer	IID/A	_	#5	IV/0!	
5						Prevalence	index =B/A		#1	JIV/U!	=
6						Hydrophytic V	/egetation	n Indicato	rs:		
7						,,,	_			phytic Vegetation	on
8						x		Dominance	-	-	
			100	= Total Cover				revalence l			
										tions ¹ (provide	
	(plot size:)								separate shee	t)
1								Netland No			·
-						¹ Indicators of hyd				c Vegetation ¹ (E	
2			^				inc soll and	weuand ny	arology m	iusi de present.	uriiess
			0	= Total Cover				•	0,		
		_	0	= Total Cover		disturbed or problem Hydrophytic					
	Stratum	0	0	= Total Cover		disturbed or prob		Yes		No	

Profile Description: (Describe to the depth - seeded to document the indicator or confirm the absence of indicators.) Depth Matrix Redux Features Remarks	•			PHS#	6869				Sampling Point: Attachment F.31
Color (moles) Solid (color (moles) Soli	Depth	otion: (Describe to	the depth	needed to docume	ent the indicate	or or conf	firm the abse	ence of indicators.)	
10-2		-					. 2	i	
2-10				Color (moist)	%	Type'	Loc		Remarks
10-14 10YR 3/2 95 7.5YR 3/4 2 C PL 7.5YR 3/4 2									
Type: C-Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C-Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. Thistosed (A1) Sandy Redox (S5) Loarny Mucky (S5) Black Hetic (A3) Histic Epipedon (A2) Sirpped Matrix (S8) Black Hetic (A3) Loarny Mucky Mineral (F1)(except MLRA 1) Very Shallow Dark Surface (FF1 Hydrogen Sulfide (A4) Loarny Mucky Mineral (F1)(except MLRA 1) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Hydric Soil Present? Yes X No Restrictive Layer (if present): Type: Popth (inches): Popth (inches): Wetran Hydrology indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required Saturboed	2-10	10YR 3/2		_					Fine
Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. 2 Location: PL=Pore Lining, M=Matrix.	10-14	10YR 3/2	95					Silty Clay Loam	Fine
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Histosol (A2) Stripped Matrix (S8) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF1) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Other (explain in Remarks) Thick Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Redox Depressions (F8) Problematic Type: Plowed field. Hydric Soil Present? Yes X No Remarks: Plowed field. Hydric Soil Present? Yes X No Water stained Leaves (B9) Hydric Soil Present MLRA Water stained Leaves (B9) Hydric Soil Present MLRA Water stained Leaves (B9) Hydric Soil Present MLRA Water stained Leaves (B9) Saturation (A3) Soil Crust (B11) Drainage Patterns (B10) Drainage Patterns (B10) Drainage Patterns (B10) Presence of Reduced Iron (C4) Agal Mat or Crust (B4) Presence of Reduced Iron (C4) Frost-Heave Hummooks (D7) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Frost-Heave Hummooks (D7) Frost-Heave Hummooks (D7) Frost-Heave Hummooks (D7) Frost-Heave Hummooks (D7) Sparsely Vegetated Concave Surface (B8)				7.5YR 3/4		С	PL		
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosol (A1) Sandy Redox (S5) Zem Muck (A10) Histic Epipedon (A2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Uery Shallow Dark Surface (F1-1) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Pepleted Dark Surface (F6) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Problematic. Restrictive Layer (if present): Type: Deplited Brown Surface (F8) Prowed field. Hydric Soil Present? Yes X No Remarks: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Surface Water (A1) Surface Water (A1) Water stained Leaves (B9) (Except MLRA Hydric Soil Present Minimum of One required; Check all that apply) Saturation (A3) Sati Crust (B1) Saturation (A3) Sati Crust (B1) Aquatic Invertebrates (B13) Drainage Patterns (B10) Water Marks (B1) Aquatic Invertebrates (B13) Drainage Patterns (B10) Presence of Reduced Iron (C4) Agal Mat or Crust (B4) Present (B1) Presente of Reduced Iron (C4) Presence of Reduced Iron (C4) Frost-Heave Hummooks (D7) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Frost-Heave Hummooks (D7) Frost-Heave Hummooks (D7) Frost-Heave Hummooks (D7) Prost-Heave Hummooks (D7)									
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Histosol (A2) Stripped Matrix (S8) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF1) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Other (explain in Remarks) Thick Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Redox Depressions (F8) Problematic Type: Plowed field. Hydric Soil Present? Yes X No Remarks: Plowed field. Hydric Soil Present? Yes X No Water stained Leaves (B9) Hydric Soil Present MLRA Water stained Leaves (B9) Hydric Soil Present MLRA Water stained Leaves (B9) Hydric Soil Present MLRA Water stained Leaves (B9) Saturation (A3) Soil Crust (B11) Drainage Patterns (B10) Drainage Patterns (B10) Drainage Patterns (B10) Presence of Reduced Iron (C4) Agal Mat or Crust (B4) Presence of Reduced Iron (C4) Frost-Heave Hummooks (D7) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Frost-Heave Hummooks (D7) Frost-Heave Hummooks (D7) Frost-Heave Hummooks (D7) Frost-Heave Hummooks (D7) Sparsely Vegetated Concave Surface (B8)									
Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Histo: Epipedon (A2) Stripped Matrix (S6) Red Parent Material (TF2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF1 Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F3) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S11) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Problematic. Restrictive Layer (if present): Type: Depth (inches): Hydric Soil Present? Yes X No	¹ Type: C=Conc	entration, D=Depleti	ion, RM=Re	educed Matrix, CS=	Covered or Co	ated Sand	d Grains.		² Location: PL=Pore Lining, M=Matrix.
Histic Epipedon (A2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF1 Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted David Surface (A12) Redox Depressions (F8) Problematic. Redox Depressions (F8) Redox Depressions (F8) Restrictive Layer (if present): Type: Depth (inches): Plowed field. Hydric Soil Present? Yes X No Remarks: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA High Water Table (A2) Salt uration (A3) Salt uration (A3) Salt uration (A3) Salt uration (A3) Self Cinst (B11) Water Marks (B1) Aquatic Invertebrates (B13) Drift Deposits (B2) Hydrogen Sulfide Odor (C1) Squared North (B4) Presence of Reduced Iron (C4) Squared Finesh (A2) Squared Sulface (B6) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Sturface of Presency (A1) Red Prent Marks (B1) Alease of Primary Indicators (David Aquitard (D3) Fresence of Reduced Iron (C4) Squared North (C4) Squared North (C5) Squared North (C6) Squared North (C7) Real Prent Marks (B7) Red Prent Marks (B7) Redox Depressions (F8) Primary Indicators of hydrophytic vegetation and well hydrology indicators of hydrophytic vegetation and well hydrology indicators (F7) Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)	Hydric Soil I	ndicators: (Appl	icable to	all LRRs, unless	s otherwise	noted.)		Indica	ators for Problematic Hydric Soils ³ :
Black Histic (A3) Loamy Mucky Mineral (F1)(except MLRA 1) Very Shallow Dark Surface (TF1 Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Other (explain in Remarks) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Refeat Dark Surface (F7) Problematic. Restrictive Layer (If present): Type: Depth (inches): Hydric Soil Present? Yes X No Remarks: Plowed field. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Surface Water (A1) Water stained Leaves (B9) (Except MLRA High Water Table (A2) High Water Table (A2) Saturation (A3) Salt Crust (B11) Water Marks (B1) Aquatio Invertebrates (B13) Driange Patterns (B10) Drift Deposits (B3) X Oxidized Rhizospheres along Living Roots (C3) Geomorphic Position (D2) Agal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8)		listosol (A1)			San	dy Redox	(S5)		2 cm Muck (A10)
Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Depleted Below Dark Surface (A12) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Redox Depressions (F8) Restrictive Layer (if present): Type: Depleted Below Dark Surface (F7) Population (F8) Remarks: Plowed field. Hydric Soil Present? Yes X No Remarks: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Water stained Leaves (B13) Water Marks (B1) Aquatic Invertebrates (B13) Drinnage Patterns (B10) Drinnage Patterns (B10) Sedomorphic Position (D2) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Surface Soil Cracks (B6) Sturface Matrix (F2) Popleted Matrix (F3) Redox Depressions (F8) Phydric Soil Present? Yes X No Hydric Soil Present? Yes X No Phydric Soil Present? Yes X No Secondary Indicators (2 or more required to the control of the cont		Histic Epipedon (A2)			Strip	ped Matri	ix (S6)		Red Parent Material (TF2)
Depleted Below Dark Surface (A11) Thick Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Redox Depressions (F8) Problematic. Restrictive Layer (if present): Type: Depth (inches): Plowed field. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) High Water Table (A2) Saturation (A3) Saturation (A4) Saturation (A4) Saturation (A5) Satura	E	Black Histic (A3)			Loar	ny Mucky	/ Mineral (F1)	(except MLRA 1)	Very Shallow Dark Surface (TF12)
Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Redox Depressions (F8) Redox Depressions (F8) Restrictive Layer (if present): Type: Depth (inches): Hydric Soil Present? Yes X No Remarks: Plowed field. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Sati Crust (B11) Saturation (A3) Sati Crust (B11) Water Marks (B1) Water Marks (B1) Aquatic Invertebrates (B13) Drift Deposits (B2) Hydrogen Sulfide Odor (C1) Algal Mat or Crust (B4) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface Soil Cracks (B8) Satiration Remarks) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8)		Hydrogen Sulfide (A4	1)		Loar	my Gleyed	d Matrix (F2)		Other (explain in Remarks)
Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Redo		Depleted Below Dark	Surface (A	A11)	Dep	leted Matr	rix (F3)		
Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Re		hick Dark Surface (A12)		X Red	ox Dark S	Surface (F6)		
Redox Depressions (FB) Redox		Sandy Mucky Minera	ıl (S1)		Dep	leted Dark	k Surface (F7)	³ Indicators of hydrophytic vegetation and wetland
Restrictive Layer (if present): Type: Depth (inches): Newarks: Plowed field. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required surface (B1)) High Water (A1) High Water Table (A2) Saturation (A3) Satt Crust (B11) Water Marks (B1) Water Marks (B1) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Sediment Deposits (B3) X Oxidized Rhizospheres along Living Roots (C3) Foresence of Reduced Iron (C4) Shallow Aquitar (D3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Sparsely Vegetated Concave Surface (B8)			,				·	,	, ,
Surface Water (A1) High Water Table (A2) Saturation (A3) Salt Crust (B11) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Water stained Leaves (B9) (Except MLRA Water stained Leaves (B9) (Except MLRA Water Stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Drainage Patterns (B10) Drainage Patterns (B10) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8)	Remarks:							nyaric Soil Pres	ent: les X NO
High Water Table (A2) Saturation (A3) Salt Crust (B11) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) 11, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (B7) Saturation Visible on Aerial Imagery (B7) Other (Explain in Remarks) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (B7) Saturation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Frost-Heave Hummocks (D7)	Remarks: Plowed field HYDROLO	GY	rs:					nyaric Soil Pres	ent: les <u>X</u> No
Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Water Marks (B1) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Image Drift Deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Salt Crust (B11) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Image Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Image Patterns (B10) Recent Iron Reduction (C1) Saturation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Frost-Heave Hummocks (D7)	Remarks: Plowed field HYDROLOG Wetland Hyc	GY Irology Indicator		uired; check all th	nat apply)			Hydric Soil Pres	Secondary Indicators (2 or more required)
Water Marks (B1) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Image Drift Deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Image Pry-Season Water Table (C2) Saturation Visible on Aerial Image Pry-Season Water Table (C2) Saturation Visible on Aerial Image Presence of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Sparsely Vegetated Concave Surface (B8)	Remarks: Plowed field HYDROLOG Wetland Hyc	GY Irology Indicator ators (minimum o		uired; check all th	Wate				Secondary Indicators (2 or more required) Water stained Leaves (B9)
Sediment Deposits (B2) Drift Deposits (B3) X Oxidized Rhizospheres along Living Roots (C3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery (B7) Squared Odor (C1) Saturation Visible on Aerial Imagery (B7) Squared Odor (C1) Saturation Visible on Aerial Imagery (B7) Squared Odor (C1) Saturation Visible on Aerial Imagery (B7) Squared Odor (C1) Saturation Visible on Aerial Imagery (B3) Squared Odor (C1) Squared Odor (C2) Squared Odor (C2) Squared Odor (C2) Squared Odor (C2) Squared Odor (C3) Squared Odor (C3) Squared Odor (C2) Squared Odor (C3) Squared Odor (C4) Squared Odor (C	Remarks: Plowed field HYDROLOG Wetland Hyc Primary Indic	GY Irology Indicator ators (minimum o Surface Water (A1)	of one requ	uired; check all th	Wate				Secondary Indicators (2 or more required) Water stained Leaves (B9)
Drift Deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) X Oxidized Rhizospheres along Living Roots (C3) Recent Iron Reduction (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)	Remarks: Plowed field HYDROLOG Wetland Hyc Primary Indic	GY Irology Indicator ators (minimum o Surface Water (A1) Iigh Water Table (A2	of one requ	uired; check all th	Wate	4A, and	4B)		Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B)
Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)	Remarks: Plowed field HYDROLOG Wetland Hyc Primary Indic	GY Irology Indicator ators (minimum of Surface Water (A1) digh Water Table (A2) Saturation (A3)	of one requ	uired; check all th	Wate 1, 2,	4A, and Crust (B1	4B)	(Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10)
Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Recent Iron Reduction in Plowed Soils (C6) Stunted or Stressed Plants (D1) (LRR A) Other (Explain in Remarks) Frost-Heave Hummocks (D7)	Remarks: Plowed field HYDROLOG Wetland Hyc Primary Indic	GY Irology Indicator ators (minimum of Surface Water (A1) digh Water Table (A2 Saturation (A3) Vater Marks (B1)	of one requ	uired; check all th	Wate 1, 2, Salt Aque	4A, and Crust (B1 atic Invert	4B) 11) tebrates (B13) fide Odor (C1)	(Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Stunted or Stressed Plants (D1) (LRR A) Other (Explain in Remarks) Frost-Heave Hummocks (D7)	Remarks: Plowed field HYDROLOG Wetland Hyc Primary Indic	GY Irology Indicator ators (minimum of surface Water (A1) digh Water Table (A2 saturation (A3) Vater Marks (B1) Sediment Deposits (B3)	of one requipers of the second	uired; check all th	Wate 1, 2, Salt Aqui	4A, and Crust (B1 atic Invert rogen Sulilized Rhiz	4B) 11) tebrates (B13) Ifide Odor (C1) zospheres alo	(Except MLRA))) ng Living Roots (C3)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Other (Explain in Remarks) Frost-Heave Hummocks (D7)	Remarks: Plowed field HYDROLOG Wetland Hyd Primary Indic	GY Irology Indicator ators (minimum of Surface Water (A1) digh Water Table (A2 Saturation (A3) Vater Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B	of one requipers of the second	uired; check all th	Wate 1, 2, Salt Aque Hyde X Oxice Pres	4A, and Crust (B1 atic Invert rogen Suli lized Rhiz sence of R	4B) 11) tebrates (B13 ffide Odor (C1 cospheres alo Reduced Iron	(Except MLRA)) ng Living Roots (C3) (C4)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3)
Sparsely Vegetated Concave Surface (B8)	Remarks: Plowed field HYDROLOG Wetland Hyc Primary Indic	GY Irology Indicator ators (minimum of Surface Water (A1) digh Water Table (A2) Saturation (A3) Vater Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B3) or Deposits (B5)	of one requiper (2) (32) (32) (4)	uired; check all th	Wate 1, 2, Salt Aque Hyde X Oxic Pres	4A, and Crust (B1 atic Invert rogen Sul- lized Rhiz sence of R	4B) 11) tebrates (B13 ffide Odor (C1 cospheres alo Reduced Iron Reduction in P	(Except MLRA)) ng Living Roots (C3) (C4) lowed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5)
Field Observations:	Remarks: Plowed field HYDROLOG Wetland Hyc Primary Indic	GY Irology Indicator ators (minimum of Surface Water (A1) digh Water Table (A2) Saturation (A3) Vater Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B ron Deposits (B5) Surface Soil Cracks (of one required (2) (32) (4) (86)		Wate 1, 2, Salt Aqui Hydi X Oxid Pres Reco	4A, and Crust (B1 atic Invert rogen Suli lized Rhiz sence of R ent Iron R	4B) 11) tebrates (B13 flide Odor (C1 cospheres alo Reduced Iron Reduction in Pressed Plants	(Except MLRA))) ng Living Roots (C3) (C4) lowed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
	Remarks: Plowed field HYDROLOG Wetland Hyc Primary Indic	drology Indicators (minimum of Surface Water (A1) digh Water Table (A2) digh Water Marks (B1) dediment Deposits (B3) algal Mat or Crust (B3) dron Deposits (B5) durface Soil Cracks (mundation Visible on	of one required (2) 32) 4) (B6) Aerial Ima	gery (B7)	Wate 1, 2, Salt Aqui Hydi X Oxid Pres Reco	4A, and Crust (B1 atic Invert rogen Suli lized Rhiz sence of R ent Iron R	4B) 11) tebrates (B13 flide Odor (C1 cospheres alo Reduced Iron Reduction in Pressed Plants	(Except MLRA))) ng Living Roots (C3) (C4) lowed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Surface Water Present? Yes No X Depth (inches):	Remarks: Plowed field HYDROLOG Wetland Hyc Primary Indic	ators (minimum of Surface Water (A1) digh Water Table (A2) Saturation (A3) Vater Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Surface Soil Cracks (Conundation Visible on Sparsely Vegetated (Constant)	of one required (2) 32) 4) (B6) Aerial Ima	gery (B7)	Wate 1, 2, Salt Aqui Hydi X Oxid Pres Reco	4A, and Crust (B1 atic Invert rogen Suli lized Rhiz sence of R ent Iron R	4B) 11) tebrates (B13 flide Odor (C1 cospheres alo Reduced Iron Reduction in Pressed Plants	(Except MLRA))) ng Living Roots (C3) (C4) lowed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Water Table Present? Yes No X Depth (inches): >14 Wetland Hydrology Present?	Remarks: Plowed field HYDROLOG Wetland Hyd Primary Indic	drology Indicators ators (minimum of Surface Water (A1) digh Water Table (A2) dight Water Marks (B1) dediment Deposits (B3) adjal Mat or Crust (B3) dron Deposits (B5) durface Soil Cracks (mundation Visible on Sparsely Vegetated (Vations:	of one required (2) 32) 4) (B6) Aerial Ima	gery (B7) urface (B8)	Wate 1, 2, Salt Aqui Hydi X Oxic Pres Recc Stur Othe	4A, and Crust (B1 atic Invert rogen Sul dized Rhiz sence of R ent Iron R ated or Str	4B) 11) tebrates (B13 flide Odor (C1 cospheres alo Reduced Iron Reduction in Pressed Plants	(Except MLRA))) ng Living Roots (C3) (C4) lowed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Saturation Present? Yes No X Depth (inches): >14 Yes X No (includes capillary fringe)	Remarks: Plowed field HYDROLOG Wetland Hyo Primary Indic S In S Field Observ Surface Water	GY Irology Indicator ators (minimum of Surface Water (A1) digh Water Table (A2) Saturation (A3) Vater Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) For Deposits (B5) Surface Soil Cracks (Indicator Visible on Sparsely Vegetated (Indicator) Vations: Present? Yes	of one required (2) 32) 4) (B6) Aerial Ima	gery (B7) urface (B8) No <u>X</u>	Wate 1, 2, Salt Aqui Hydi X Oxic Pres Reco Stur Othe	4A, and Crust (B1 atic Invert rogen Sul dized Rhiz sence of R ent Iron R atted or Str er (Explair	4B) 11) tebrates (B13 Ifide Odor (C1 cospheres alo Reduced Iron Reduction in P ressed Plants n in Remarks)	(Except MLRA)) ng Living Roots (C3) (C4) lowed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

Project/Site:	Lochner R	Road	City/County:	A	lbany/Linn		Sampling Da	ıte:	10/1	5/2020
Applicant/Owner:	Hayden Home	s				State:	OR	Sa	ampling Point:	8
Investigator(s):	CM/JT/S	SE/MS	Section, To	ownship, Range:			20/11S/	3W		
Landform (hillslope,	terrace, etc.:)	Terrace		Local relief (cor	ncave, convex, no	ne):	None		Slope (%):	~<1%
Subregion (LRR):	L	RR A	Lat:	44.6003	398°	Long:	-123.08817	8°	Datum:	WGS85
Soil Map Unit Name	e:	Amity	silt loam			NWI Class	ification:		None	
Are climatic/hydrolo	gic conditions on the	site typical for this tim	ne of year?	Yes	Х	No	(if no,	explain	in Remarks)	
Are vegetation	Soil	or Hydrology	significantly dis	turbed?	Are "Normal Ci	rcumstances	s" present? (Y/	N)	Υ	
Are vegetation	Soil	or Hydrology	naturally proble	matic? If needed	l, explain any ans	wers in Rem	arks.)			
			_							
		Attach site map s	showing san	npling point	locations, tra	ansects, i	mportant fo	ature	es, etc.	
Hydrophytic Vegeta				Is Sampled Ar	ea within					
Hydric Soil Present			X	a Wetlar		Yes		No	X	
Wetland Hydrology	Present? Yes	No	X							
Remarks:										
VECETATION	lles esignific									
VEGETATION	- Use scientific	names of plant	S. Dominant	Indicator	Dominance 1	Fast works	shoot:			
		% cover	Species?	Status	Dominance	est WOIKS	oneet.			
Tree Stratum (plo	ot size:)			Number of Dom	inant Specie	es			
1					That are OBL, F	ACW, or FA	AC:		1	(A)
2										
3					Total Number o					
4					Species Across	All Strata:			1	(B)
		0	= Total Cover							
Sapling/Shrub Strat	um (plot size:)			Percent of Dom	•				
1					That are OBL, F	FACW, or FA	AC:	10	0%	(A/B)
2					Dravalance I	ndov Morl	rohoot:			
3					Prevalence In Total % Cover of			ly by:		
5					OBL Spec		<u>Multip</u> x	1 =	0	
			= Total Cover		FACW spe			2 =	0	•
					FAC Spec			3 =	0	•
Herb Stratum (plo	ot size: 5)			FACU Spe	cies	x	4 =	0	ī
	s arundinaceus	80	X	FAC	UPL Spec	ies		5 =	0	
					Column To	otals	0 (A)		0	(B)
3								# DI		
5					Prevalenc	e Index =B/	A =	וט#	V/0!	•
6					Hydrophytic	Vegetatio	n Indicators			
7					i iyaropiiyao	_	Rapid Test for		nvtic Vegetatio	on
8							Dominance Te			
		80	= Total Cover				Prevalence Inde			
							Morphological A			
Woody Vine Stratun	n (plot size:)					ta in Remarks			t)
1					I —		Wetland Non-V			
2			- T-4 ! O		1Indicators of		oblematic Hydro			
		0	= Total Cover		¹ Indicators of hy disturbed or pro		i weliana nyaro	ogy mu	isι be present,	uniess
					Hydrophytic					
% Bare Ground in F	lerb Stratum	20			Vegetation		Yes	X	_ No	
Remarks:					Present?					
Monoculture cro	op.									

Profile Descripti Depth (Inches) 0-4 4-16 16-20	tion: (Describe to Matrix Color (moist)					Sampling Point: Attachm ent E.33
0-4 4-16		the depth	needed to docume	nt the indicator or co	nfirm the absence of indicators.	
0-4 4-16	Color (moist)			Redox Features		
4-16	40375 010	<u>%</u>	Color (moist)	% Type ¹	Loc ² Texture	Remarks
	10YR 3/2	100			Silty Clay Loar	_
16-20	10YR 2/2	99	10YR 3/4	<u>1</u> <u>C</u>	M Silty Clay Loar	
	10YR 3/2	100			Silty Clay Loan	<u>n</u> <u>Fine</u>
				Covered or Coated Sar otherwise noted.)		² Location: PL=Pore Lining, M=Matrix. cators for Problematic Hydric Soils ³ :
-	stosol (A1)	icable to	all LKKS, utiless	Sandy Redo		2 cm Muck (A10)
	stic Epipedon (A2)			Stripped Mat		Red Parent Material (TF2)
					y Mineral (F1)(except MLRA 1)	
_	ack Histic (A3)	4)				Very Shallow Dark Surface (TF12)
	ydrogen Sulfide (A	•			ed Matrix (F2)	Other (explain in Remarks)
-	epleted Below Dark	•	(11)	Depleted Ma		
	nick Dark Surface (•		Redox Dark		³ Indicators of hydrophytic vegetation and wetland
Sa	andy Mucky Minera	ıl (S1)		Depleted Da	rk Surface (F7)	hydrology must be present, unless disturbed or
Sa	andy Gleyed Matrix	(S4)		Redox Depre	essions (F8)	problematic.
HYDROLOG	Y rology Indicator					
TTGUANA NIYAN	ology illulcator					
	itors (minimum o		uired: check all th	at apply)		Secondary Indicators (2 or more required)
Primary Indicat	,		uired; check all th	1.7/	d Leaves (B9) (Except MLRA	- · · · · · · · · · · · · · · · · · · ·
Primary Indicat	urface Water (A1)	of one requ	uired; check all th	1.7/	d Leaves (B9) (Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B)
Primary Indicat	,	of one requ	uired; check all th	Water staine	I 4B)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B)
Primary Indicat Su Hig	urface Water (A1) gh Water Table (A2 aturation (A3)	of one requ	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (B	1 4B) 11)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10)
Primary Indicat Su Hiç Sa Wa	urface Water (A1) gh Water Table (A: aturation (A3) ater Marks (B1)	of one requ	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (B	1 4B) 11) rtebrates (B13)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
Primary Indicat Su Hig Sa Wa	urface Water (A1) gh Water Table (A: aturation (A3) ater Marks (B1) ediment Deposits (I	of one requ	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve	1 4B) 11) rtebrates (B13) ulfide Odor (C1)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery
Primary Indicat Su Hiç Sa Wa Se Dri	urface Water (A1) gh Water Table (A2 aturation (A3) fater Marks (B1) ediment Deposits (B3)	of one requ 2) B2)	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve Hydrogen St	I 4B) 11) rtebrates (B13) ulfide Odor (C1) zospheres along Living Roots (C3	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2)
Primary Indicate Su Hiç Sa Wa Se Dri	urface Water (A1) gh Water Table (A: aturation (A3) ater Marks (B1) ediment Deposits (I rift Deposits (B3) gal Mat or Crust (B	of one requ 2) B2)	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve Hydrogen St Oxidized Rhi Presence of	1 4B) 11) rtebrates (B13) Ilfide Odor (C1) zospheres along Living Roots (C3) Reduced Iron (C4)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3)
Primary Indicat Su Hig Sa Wa Se Dri Alg	urface Water (A1) gh Water Table (A: aturation (A3) ater Marks (B1) ediment Deposits (I ift Deposits (B3) gal Mat or Crust (B on Deposits (B5)	of one requ 2) B2) B4)	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve Hydrogen St Oxidized Rhi Presence of Recent Iron	1 4B) 11) rtebrates (B13) ulfide Odor (C1) zospheres along Living Roots (C3) Reduced Iron (C4) Reduction in Plowed Soils (C6)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5)
Primary Indicat Su Hig Sa Wa Se Dri Alg	urface Water (A1) gh Water Table (A: aturation (A3) ater Marks (B1) ediment Deposits (B3) gal Mat or Crust (B on Deposits (B5) urface Soil Cracks	2) B2) B4) (B6)		Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve Hydrogen St Oxidized Rh Presence of Recent Iron Stunted or S	14B) 11) rtebrates (B13) ulfide Odor (C1) zospheres along Living Roots (C3) Reduced Iron (C4) Reduction in Plowed Soils (C6) tressed Plants (D1) (LRR A)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Primary Indicate Su Hiç Sa Wa Se Dri Alg Iron Su	urface Water (A1) gh Water Table (A: aturation (A3) ater Marks (B1) ediment Deposits (I ift Deposits (B3) gal Mat or Crust (B on Deposits (B5)	pof one request. 2) B2) 34) (B6) a Aerial Imag	gery (B7)	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve Hydrogen St Oxidized Rh Presence of Recent Iron Stunted or S	1 4B) 11) rtebrates (B13) ulfide Odor (C1) zospheres along Living Roots (C3) Reduced Iron (C4) Reduction in Plowed Soils (C6)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5)
Primary Indicat Su Hig Sa Wa Se Dri Alg Iron Su Inu	urface Water (A1) gh Water Table (A: aturation (A3) ater Marks (B1) ediment Deposits (B3) gal Mat or Crust (B on Deposits (B5) urface Soil Cracks (undation Visible on parsely Vegetated (A)	pof one request. 2) B2) 34) (B6) a Aerial Imag	gery (B7)	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve Hydrogen St Oxidized Rh Presence of Recent Iron Stunted or S	14B) 11) rtebrates (B13) ulfide Odor (C1) zospheres along Living Roots (C3) Reduced Iron (C4) Reduction in Plowed Soils (C6) tressed Plants (D1) (LRR A)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Primary Indicate Su High Sa Wa Se Dri Alg Iron Su Inu Sp	urface Water (A1) gh Water Table (A: aturation (A3) ater Marks (B1) ediment Deposits (I rift Deposits (B3) gal Mat or Crust (B on Deposits (B5) urface Soil Cracks undation Visible on parsely Vegetated (pof one request. 2) B2) 34) (B6) a Aerial Imag	gery (B7)	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve Hydrogen St Oxidized Rh Presence of Recent Iron Stunted or S	14B) 11) rtebrates (B13) ulfide Odor (C1) zospheres along Living Roots (C3) Reduced Iron (C4) Reduction in Plowed Soils (C6) tressed Plants (D1) (LRR A)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Primary Indicate Su Hig Sa Wa Se Dri Alg Iron Su Inu Sp Field Observa Surface Water Pr	urface Water (A1) gh Water Table (A) aturation (A3) ater Marks (B1) ediment Deposits (B3) gal Mat or Crust (B5) urface Soil Cracks (undation Visible on parsely Vegetated (ations: resent? Yes	pof one request. 2) B2) 34) (B6) a Aerial Imag	gery (B7) urface (B8)	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve Hydrogen St Oxidized Rh Presence of Recent Iron Stunted or S Other (Expla	I 4B) 11) rtebrates (B13) Ilfide Odor (C1) zospheres along Living Roots (C3) Reduced Iron (C4) Reduction in Plowed Soils (C6) tressed Plants (D1) (LRR A) in in Remarks)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Primary Indicat Su Hig Sa Wa Se Dri Alg Iroi Su Inu Sp Field Observa Surface Water Pr Water Table Prese Saturation Presei	gh Water (A1) gh Water Table (A: aturation (A3) ater Marks (B1) ediment Deposits (B3) gal Mat or Crust (B on Deposits (B5) urface Soil Cracks (undation Visible on barsely Vegetated (ations: resent? Yes ent? Yes	pof one request. 2) B2) 34) (B6) a Aerial Imag	gery (B7) urface (B8)	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve Hydrogen St Oxidized Rhi Presence of Recent Iron Stunted or S Other (Expla	I 4B) 11) rtebrates (B13) Ilfide Odor (C1) zospheres along Living Roots (C3) Reduced Iron (C4) Reduction in Plowed Soils (C6) tressed Plants (D1) (LRR A) in in Remarks)	(MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Primary Indicate Su Hig Sa Wa Se Dri Alg Iron Su Inu Sp Field Observa Surface Water Pr Water Table Prese (includes capillary fr	gh Water (A1) gh Water Table (A) aturation (A3) ater Marks (B1) ediment Deposits (B3) gal Mat or Crust (B3) gal Mat or Crust (B5) urface Soil Cracks (undation Visible on parsely Vegetated (ations: resent? Yes sent? Yes ent? Yes ringe)	B2) B4) Aerial Imag	gery (B7) urface (B8) NoX NoX NoX	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve Hydrogen St Oxidized Rhi Presence of Recent Iron Stunted or S Other (Explain Depth (inches): Depth (inches):	tatab) 11) Intebrates (B13) Ilfide Odor (C1) Izospheres along Living Roots (C3) Reduced Iron (C4) Reduction in Plowed Soils (C6) Itressed Plants (D1) (LRR A) in in Remarks) >20	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Primary Indicate Su Hig Sa Wa Se Dri Alg Iron Su Inu Sp Field Observa Surface Water Pr Water Table Prese (includes capillary fr	gh Water (A1) gh Water Table (A) aturation (A3) ater Marks (B1) ediment Deposits (B3) gal Mat or Crust (B3) gal Mat or Crust (B5) urface Soil Cracks (undation Visible on parsely Vegetated (ations: resent? Yes sent? Yes ent? Yes ringe)	B2) B4) Aerial Imag	gery (B7) urface (B8) NoX NoX NoX	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve Hydrogen St Oxidized Rh Presence of Recent Iron Stunted or S Other (Expla	tatab) 11) Intebrates (B13) Ilfide Odor (C1) Izospheres along Living Roots (C3) Reduced Iron (C4) Reduction in Plowed Soils (C6) Itressed Plants (D1) (LRR A) in in Remarks) >20	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

Project/Site:	ochner Road	d	City/County:	A	lbany/Linn	Sampl	ing Date:	10/1	6/2020
Applicant/Owner: Hayd	en Homes				State:	OR	5	Sampling Point:	9
Investigator(s):	SE/MS		Section, To	wnship, Range:		20/	11S/3W	•	
Landform (hillslope, terrace,	etc.:)	Terrac	<u>е</u>	Local relief (cor	ncave, convex, none):	N	one	Slope (%):	1%
Subregion (LRR):	LRR	A	Lat:	44.6019	D 51° Long:	-123.0)90627°	Datum:	WGS85
Soil Map Unit Name:	1	Noodburn sil	— t loam, 0-3% sl	opes	NWI Cla	assification:		 None	
Are climatic/hydrologic condi				Yes		-		in in Remarks)	
			significantly dist	urbed?	Are "Normal Circumstan			Y	
Are vegetation Soil					, explain any answers in R	•	(, , , ,		
					, explain any ameners in the	J			
SUMMARY OF FINDI	NGS – Atta	ch site map	showing san	pling point	locations, transects	, importa	ant featu	res, etc.	
Hydrophytic Vegetation Pres	ent? Yes	X N	0	Is Sampled Ar	aa within				
Hydric Soil Present?	Yes	X N	0	a Wetlar		Х	N	lo	
Wetland Hydrology Present?	Yes	X N	o						
Remarks:									
VEGETATION - Use s	cientific na	mes of plar	its.						
		absolute	Dominant	Indicator	Dominance Test wo	rksheet:			
Tree Stratum (plot size:		% cover	Species?	Status	Niverbar of Danis and Co				
1 (piot size.		'			Number of Dominant Spe That are OBL, FACW, or			1	(Λ)
2		· -			That are OBL, FACW, or	FAC:		1	(A)
3					Total Number of Domina	nt.			
4					Species Across All Strata			1	(B)
•		0	= Total Cover		oposios / toroco / tir otrate	•		<u>. </u>	(5)
Canling/Chrush Ctratum									
	ot size:)			Percent of Dominant Spe			000/	(A /D)
1					That are OBL, FACW, or	· FAC:	1	00%	(A/B)
3					Prevalence Index We	orkshoot:			
4					Total % Cover of		Multiply by:		
5		· -			OBL Species	-	x 1 =	_ 0	
<u></u>		0	= Total Cover		FACW species		x 2 =	0	
					FAC Species		x 3 =	0	
Herb Stratum (plot size:	5)			FACU Species		x 4 =	0	
1 Schedonorus arund	inaceus	100	X	FAC	UPL Species		x 5 =	0	
2					Column Totals	0	(A)	0	(B)
3									
4					Prevalence Index =	B/A =	#0	OIV/0!	
5							_		
6					Hydrophytic Vegeta			1 0 1/ 1 0	
7					x	1- Rapid Te 2- Dominan	•	phytic Vegetatio	n
0		100	= Total Cover			3-Prevalence			
8		100	- Total Cover					o.o itions ¹ (provide s	upporting
8						5	arke or on a	a separate sheet)
	size:)				data in Rem	iains oi oii c		
	size:)				5- Wetland			
Woody Vine Stratum (plot	size:)				5- Wetland	Non-Vascul		xplain)
Woody Vine Stratum (plot	size:)	= Total Cover		Indicators of hydric soil a	5- Wetland Problematic	Non-Vascul Hydrophyti	ar Plants ¹ c Vegetation ¹ (E	
Woody Vine Stratum (plot	size:	0	= Total Cover		¹ Indicators of hydric soil a disturbed or problematic.	5- Wetland Problematic	Non-Vascul Hydrophyti	ar Plants ¹ c Vegetation ¹ (E	
Woody Vine Stratum (plot		0	= Total Cover		Indicators of hydric soil a	5- Wetland Problematic	Non-Vascul Hydrophyti hydrology n	ar Plants ¹ c Vegetation ¹ (E nust be present,	

Profile Descri			_				
Depth	ption: (Describe to	the depth	needed to docume	nt the indicator or co	nfirm the absen	ce of indicators.)	Sampling Point: Attachment E.35
*	Matrix			Redox Features	. 2		
(Inches)	Color (moist)	%	Color (moist)	% Type ¹	Loc ²	Texture	Remarks
0-7	10YR 2/2	92	10YR 4/6	3C	PL_	Sandy Loam	OR's
0-7			7.5YR 2.5/3		M		Medium
7-9	10YR 2/2	95	10YR 2.5/3		M	Sandy Loam	Fine to Medium
9-13	10YR 2/2	97	10YR 3/3	3C	M	Sandy Loam	Fine
13-15	10YR 3/2	98	10YR 3/3	2 C	<u>M</u>	Sandy Loam	Fine
Type: C=Con	centration, D=Depleti	ion, RM=R	educed Matrix, CS=0	Covered or Coated Sar	nd Grains.		² Location: PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators: (Appl	icable to	all LRRs, unless	otherwise noted.)	Indic	ators for Problematic Hydric Soils ³ :
-	Histosol (A1)			Sandy Redo			2 cm Muck (A10)
	Histic Epipedon (A2)			Stripped Ma			Red Parent Material (TF2)
	Black Histic (A3)				ky Mineral (F1) (e	except MLRA 1)	Very Shallow Dark Surface (TF12)
	Hydrogen Sulfide (A4	1)					
	,	•	A44)		ed Matrix (F2)		Other (explain in Remarks)
	Depleted Below Dark		A11)	Depleted Ma			
	Thick Dark Surface (A	*			Surface (F6)		³ Indicators of hydrophytic vegetation and wetland
;	Sandy Mucky Minera	al (S1)		Depleted Da	ark Surface (F7)		hydrology must be present, unless disturbed or
,	Sandy Gleyed Matrix	(S4)		Redox Depr	essions (F8)		problematic.
Restrictive I Type: Depth (inches	·					Hydric Soil Pres	sent? Yes X No
Restrictive I Type: Depth (inches Remarks: Plowed field	s):d.			<u> </u>		Hydric Soil Pres	sent? Yes <u>X</u> No
Restrictive I Type: Depth (inches Remarks: Plowed field	d. OGY					Hydric Soil Pres	sent? Yes <u>X</u> No
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd	d. GY drology Indicator	rs:	uired: check all th	at apply)		Hydric Soil Pres	
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd	d. OGY drology Indicator cators (minimum o	rs:	uired; check all th	,	ed Leaves (B9) (I		Secondary Indicators (2 or more required)
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd	d. OGY drology Indicator cators (minimum o Surface Water (A1)	rs: of one req	uired; check all th	,	ed Leaves (B9) (I d 4B)		
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2	rs: of one req	uired; check all th	Water staine	d 4B)		Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B)
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd	d. GY drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3)	rs: of one req	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (E	d 4B) 311)		Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10)
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1)	r s: of one req	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (E	d 4B) 311) ertebrates (B13)		Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd Primary India	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B	r s: of one req	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve	d 4B) 311) ertebrates (B13) ulfide Odor (C1)	Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd Primary India	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3)	rs: of one req	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen Si X Oxidized Rh	d 4B) 311) ertebrates (B13) ulfide Odor (C1) iizospheres along	Except MLRA g Living Roots (C3)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2)
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd Primary India	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B Drift Deposits (B3) Algal Mat or Crust (B	rs: of one req	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen S X Oxidized Rh Presence of	d 4B) B11) ertebrates (B13) ulfide Odor (C1) izospheres along Reduced Iron (C	Except MLRA g Living Roots (C3) C4)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3)
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd Primary India	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B Iron Deposits (B5)	rs: of one req 2) B2)	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen Si X Oxidized Rh Presence of Recent Iron	d 4B) B11) ertebrates (B13) ulfide Odor (C1) izospheres along Reduced Iron (C	Except MLRA g Living Roots (C3) (C4) (Wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5)
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd Primary India	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B Iron Deposits (B5) Surface Soil Cracks (rs: of one req 2) B2) 44) (B6)		Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen Si X Oxidized Rh Presence of Recent Iron Stunted or S	d 4B) strebrates (B13) ulfide Odor (C1) izospheres along Reduced Iron (C Reduction in Plo	Except MLRA g Living Roots (C3) (C4) (Wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd Primary India	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B Iron Deposits (B5)	rs: of one req 2) B2) 44) (B6) Aerial Ima	agery (B7)	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen Si X Oxidized Rh Presence of Recent Iron Stunted or S	d 4B) B11) ertebrates (B13) ulfide Odor (C1) izospheres along Reduced Iron (C	Except MLRA g Living Roots (C3) (C4) (Wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5)
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd Primary India	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundation Visible on	rs: of one req 2) B2) 44) (B6) Aerial Ima	agery (B7)	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen Si X Oxidized Rh Presence of Recent Iron Stunted or S	d 4B) strebrates (B13) ulfide Odor (C1) izospheres along Reduced Iron (C Reduction in Plo	Except MLRA g Living Roots (C3) (C4) (Wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Calcal Control Contro
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd Primary India	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B3) Algal Mat or Crust (B3) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundations:	rs: of one req 2) B2) 44) (B6) Aerial Ima	agery (B7) turface (B8)	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen Si X Oxidized Rh Presence of Recent Iron Stunted or S Other (Explain	d 4B) strebrates (B13) ulfide Odor (C1) izospheres along Reduced Iron (C Reduction in Plo	Except MLRA g Living Roots (C3) (C4) (Wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Calcal Control Contro
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd Primary India	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundations: Present? Yes	rs: of one req 2) B2) 44) (B6) Aerial Ima	agery (B7) surface (B8)	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen Si X Oxidized Rh Presence of Recent Iron Stunted or S Other (Explain	d 4B) B11) Prtebrates (B13) Julfide Odor (C1) Jizospheres along Reduced Iron (C Reduction in Plo Stressed Plants (I Jain in Remarks)	g Living Roots (C3) C4) weed Soils (C6) D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Casteria) Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd Primary India Field Obser Surface Water Water Table P	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundation Visible on Vations: Present? Yes resent? Yes	rs: of one req 2) B2) 44) (B6) Aerial Ima	agery (B7) furface (B8) No X No X	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen Si X Oxidized Rh Presence of Recent Iron Stunted or S Other (Explain	d 4B) state (B13) ulfide Odor (C1) izospheres along Reduced Iron (C Reduction in Plo Stressed Plants (I ain in Remarks)	g Living Roots (C3) C4) weed Soils (C6) D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C2) Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd Primary India Field Obser Surface Water Water Table Pi Saturation Pres	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundation Visible on Vations: Present? Yes resent? Yes sent? Yes	rs: of one req 2) B2) 44) (B6) Aerial Ima	agery (B7) surface (B8)	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen Si X Oxidized Rh Presence of Recent Iron Stunted or S Other (Explain	d 4B) B11) Prtebrates (B13) Julfide Odor (C1) Jizospheres along Reduced Iron (C Reduction in Plo Stressed Plants (I Jain in Remarks)	g Living Roots (C3) C4) weed Soils (C6) D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd Primary India Field Obser Surface Water Water Table Posaturation President includes capillar	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B3) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Catoria) Vations: Present? Yes resent? Yes resent? Yes y fringe)	rs: of one requestion of the second	agery (B7) surface (B8) No X No X No X	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen Si X Oxidized Rh Presence of Recent Iron Stunted or S Other (Explain	d 4B) 311) britebrates (B13) ulfide Odor (C1) izospheres along Reduced Iron (C Reduction in Plo Stressed Plants (I ain in Remarks) >15 >15	Except MLRA g Living Roots (C3) C4) wed Soils (C6) D1) (LRR A) Wetland Hyd	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hyd Primary India Field Obser Surface Water Water Table Posaturation President includes capillar	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B3) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Catoria) Vations: Present? Yes resent? Yes resent? Yes y fringe)	rs: of one requestion of the second	agery (B7) surface (B8) No X No X No X	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen Si X Oxidized Rh Presence of Recent Iron Stunted or S Other (Explain Depth (inches): Depth (inches):	d 4B) 311) britebrates (B13) ulfide Odor (C1) izospheres along Reduced Iron (C Reduction in Plo Stressed Plants (I ain in Remarks) >15 >15	Except MLRA g Living Roots (C3) C4) wed Soils (C6) D1) (LRR A) Wetland Hyd	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

Project/Site:	Lochne	r Road		_	City/County:	A	lbany/Linn		Samı	oling Date:	10/	16/2020
Applicant/Owner:	Hayden Hon	nes						State:	OR	_	Sampling Point	: 10
Investigator(s):	SI	E/MS			Section, To	wnship, Range:			20	-)/11S/3W		
Landform (hillslope, te	errace, etc.:)		F	lat		Local relief (cor	cave, convex, n	one):	N	lone	Slope (%)	: 1%
Subregion (LRR):	_	LRR A			Lat:	44.6019	80°	Long:	-123.	090721°	 Datum	: WGS85
Soil Map Unit Name:		Wo	odburn	n silt lo	am, 0-3% sl	opes		NWI CI	assification:		— None	
Are climatic/hydrologic						Yes	X	No		(if no, expl	ain in Remarks)	
Are vegetation					ignificantly dist	turbed?	Are "Normal C	ircumstar	nces" prese	- '	Y	
Are vegetation		-	•		•	matic? If needed			•	(')		_
		o, u		 "	a.a.a, p. 02.0		, explain any an					
SUMMARY OF F	INDINGS -	Attach	n site m	nap sh	owing san	npling point	ocations, tr	ansect	s, import	ant featu	ıres, etc.	
Hydrophytic Vegetatio	on Present? `	Yes	X	No		la Camplad Ar	ithi					
Hydric Soil Present?	`	Yes		No	X	Is Sampled Ar		Yes		_	No X	_
Wetland Hydrology Pr	resent?	Yes		No	Х					_		
Remarks:												
VEGETATION -	Use scientif	fic nam	es of p	olants.								
			absolu		Dominant	Indicator	Dominance	Test wo	rksheet:			
		,	% cov	er	Species?	Status						
Tree Stratum (plot	size:)					Number of Dor					
1							That are OBL,	FACW, or	FAC:	i.	1	_(A)
2												
3							Total Number					
4							Species Acros	s All Strata	a:	-	1	_(B)
			0	=	Total Cover							
Sapling/Shrub Stratun	n (plot size:)				Percent of Dor	ninant Spe	ecies			
1							That are OBL,	FACW, o	r FAC:		100%	_(A/B)
2												
3							Prevalence	Index W	orksheet	:		
4							Total % Cover	of	_	Multiply by	:	
5							OBL Spe			x 1 =	0	_
		,	0	=	Total Cover		FACW sp			x 2 =	0	_
Herb Stratum (plot	size: 5	,					FAC Spe			x 3 = x 4 =	0	_
1 Schedonorus		′	100		X	FAC	UPL Spe			- x 4 - x 5 =	0	-
^			100			1 40	Column T			(A)	0	(B)
3							Column	otais		_('')		_(5)
4							Prevalen	ce Index :	=B/A =	#	DIV/0!	
5												_
6							Hydrophytic	Vegeta	tion Indic	ators:		
7								•			ophytic Vegetat	ion
8								Х	•	nce Test is		
			100		Total Cover					ice Index is		
		'							-		tations ¹ (provide	
Woody Vine Stratum	(plot size:)								a separate she	et)
									-	l Non-Vascu		
1									-		tic Vegetation ¹ (
2							I'ladiootore of b	vdric soil	and wetland	hydrology	must be presen	t, unless
-			0	=	Total Cover			-			•	
-			0	=	Total Cover		disturbed or pr	oblematic				
-	rb Stratum		0	=	Total Cover			oblematic		x	No)

			PHS#	6869			Sampling Point: Attachm ent £:37
Profile Descr	iption: (Describe to	the depth	needed to docume	nt the indicator	or confirm the	absence of indicators.)	
Depth	Matrix			Redox Feat			
(Inches)	Color (moist)	<u></u> %	Color (moist)		pe ¹ Loc ²		Remarks
0-10	10YR 2/2	98	10YR 3/3		<u> </u>	Sandy Loam	Fine to Medium
10-14	10YR 3/2	95	7.5YR 3/3		<u>с м</u>	Sandy Clay Loar	Fine to Medium
14-17	10YR 3/2	95	10YR 3/4		<u> </u>	Sandy Clay Loar	Medium
Type: C=Cor	centration, D=Depleti	on, RM=R	educed Matrix, CS=	Covered or Coat	ed Sand Grains.		² Location: PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators: (Appl	icable to	all LRRs, unless	s otherwise n	oted.)	Indic	ators for Problematic Hydric Soils ³ :
	Histosol (A1)			Sandy	Redox (S5)		2 cm Muck (A10)
	Histic Epipedon (A2)			Stripp	ed Matrix (S6)		Red Parent Material (TF2)
	Black Histic (A3)			Loam	Mucky Mineral	(F1) (except MLRA 1)	Very Shallow Dark Surface (TF12)
	Hydrogen Sulfide (A4	1)		Loam	y Gleyed Matrix (F2)	Other (explain in Remarks)
	Depleted Below Dark	Surface (A11)	Deple	ted Matrix (F3)		
	Thick Dark Surface (A	A12)		Redo	Dark Surface (F	6)	
	Sandy Mucky Minera	ıl (S1)		Deple	ted Dark Surface	(F7)	³ Indicators of hydrophytic vegetation and wetland
	Sandy Gleyed Matrix				Depressions (F		hydrology must be present, unless disturbed or problematic.
Depth (inche						Hydric Soil Pre	sent? Yes NoX
Depth (inche Remarks: Plowed fiel	d. DGY					Hydric Soil Pre	sent? Yes NoX
Depth (inche Remarks: Plowed fiel HYDROLO Vetland Hy	d. DGY drology Indicator		uired: check all th	nat apply)		Hydric Soil Pre	
Depth (inche Remarks: Plowed fiel HYDROLO Vetland Hy	d. DGY		uired; check all th	11.77	stained Leaves	Hydric Soil Pre	
Depth (inche Remarks: Plowed fiel HYDROLO Vetland Hy	d. OGY rdrology Indicator cators (minimum o	of one req	uired; check all th	Water	stained Leaves A, and 4B)		Secondary Indicators (2 or more required)
Depth (incher demarks: Plowed fiel HYDROLO Vetland Hy	d. OGY drology Indicator cators (minimum o Surface Water (A1)	of one req	uired; check all th	Water 1, 2, 4			Secondary Indicators (2 or more required) Water stained Leaves (B9)
Depth (inche Remarks: Plowed fiel HYDROLO Vetland Hy	d. OGY drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2)	of one req	uired; check all th	Water 1, 2, 4	A, and 4B)	B9) (Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B)
Depth (inche Remarks: Plowed fiel HYDROLO Vetland Hy	d. OGY drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2) Saturation (A3)	of one req	uired; check all th	Water 1, 2, 4 Salt C	A, and 4B) rust (B11)	(B9) (Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
Depth (incher demarks: Plowed fiel HYDROLO Vetland Hy	d. OGY rdrology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1)	of one req	uired; check all th	Water 1, 2, 4 Salt C Aquat	A, and 4B) rust (B11) ic Invertebrates (gen Sulfide Odo	(B9) (Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
Depth (incher demarks: Plowed fiel HYDROLO Vetland Hy	d. OGY drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B	of one requiped (2)	uired; check all th	Water 1, 2, 4 Salt C Aquat Hydro	A, and 4B) rust (B11) ic Invertebrates (gen Sulfide Odo	(B9) (Except MLRA B13) (C1) s along Living Roots (C3)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery
Depth (incher demarks: Plowed fiel HYDROLO Vetland Hy	d. OGY cators (minimum of Surface Water (A1)) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3)	of one requiped (2)	uired; check all th	Water 1, 2, 4 Salt C Aquat Hydro Oxidiz Prese	A, and 4B) rust (B11) ic Invertebrates (gen Sulfide Odo ed Rhizosphere: nce of Reduced	(B9) (Except MLRA B13) (C1) s along Living Roots (C3)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2)
Depth (inche Remarks: Plowed fiel HYDROLO Vetland Hy	d. OGY cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B	of one req 2) 32) 4)	uired; check all th	Water 1, 2, 4 Salt C Aquat Hydro Oxidiz Prese	A, and 4B) rust (B11) ic Invertebrates (gen Sulfide Odo ed Rhizosphere: nce of Reduced at Iron Reduction	(B9) (Except MLRA B13) (C1) s along Living Roots (C3) ron (C4)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3)
Depth (inche Remarks: Plowed fiel HYDROLO Vetland Hy	d. OGY Idrology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5)	of one req (2) (32) (4) (86)		Water 1, 2, 4 Salt C Aquat Hydro Oxidiz Prese Recer Stunte	A, and 4B) rust (B11) ic Invertebrates (gen Sulfide Odo ed Rhizosphere: nce of Reduced at Iron Reduction	(B9) (Except MLRA B13) (C1) s along Living Roots (C3) ron (C4) in Plowed Soils (C6) ants (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5)
Depth (incher demarks: Plowed fiel HYDROLO Vetland Hy	d. OGY rdrology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B Iron Deposits (B5) Surface Soil Cracks (of one req 2) 32) 4) (B6) Aerial Ima	igery (B7)	Water 1, 2, 4 Salt C Aquat Hydro Oxidiz Prese Recer Stunte	A, and 4B) rust (B11) ic Invertebrates (gen Sulfide Odo ted Rhizosphere: nce of Reduced at Iron Reduction and or Stressed Pl	(B9) (Except MLRA B13) (C1) s along Living Roots (C3) ron (C4) in Plowed Soils (C6) ants (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Depth (inche Remarks: Plowed fiel HYDROLC Vetland Hy Primary Indi	d. OGY Idrology Indicator cators (minimum of Surface Water (A1)) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundator)	of one req 2) 32) 4) (B6) Aerial Ima	igery (B7)	Water 1, 2, 4 Salt C Aquat Hydro Oxidiz Prese Recer Stunte	A, and 4B) rust (B11) ic Invertebrates (gen Sulfide Odo ted Rhizosphere: nce of Reduced at Iron Reduction and or Stressed Pl	(B9) (Except MLRA B13) (C1) s along Living Roots (C3) ron (C4) in Plowed Soils (C6) ants (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Depth (inche Remarks: Plowed fiel HYDROLO Wetland Hy Primary Indi	d. OGY cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Creations:	of one req 2) 32) 4) (B6) Aerial Ima	igery (B7)	Water 1, 2, 4 Salt C Aquat Hydro Oxidiz Prese Recer Stunte	A, and 4B) rust (B11) ic Invertebrates (gen Sulfide Odo red Rhizosphere: nce of Reduced at Iron Reduction red or Stressed Pi (Explain in Rem.	(B9) (Except MLRA B13) (C1) s along Living Roots (C3) ron (C4) in Plowed Soils (C6) ants (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Depth (inche Remarks: Plowed fiel HYDROLC Wetland Hy Primary Indi	d. OGY Idrology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (C) Tvations: r Present? Yes	of one req 2) 32) 4) (B6) Aerial Ima	igery (B7) urface (B8)	Water 1, 2, 4 Salt C Aquat Hydro Oxidiz Prese Recer Stunte Other	A, and 4B) rust (B11) ic Invertebrates (gen Sulfide Odo ed Rhizosphere: nce of Reduced at Iron Reduction ed or Stressed Pl (Explain in Rem.	(B9) (Except MLRA B13) (C1) s along Living Roots (C3) ron (C4) in Plowed Soils (C6) ants (D1) (LRR A) arks)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
_	d. OGY Idrology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundation Visible on Visible on Sparsely Vegetated (Inundation Visible on Visib	of one req 2) 32) 4) (B6) Aerial Ima	gery (B7) urface (B8) No <u>X</u>	Water 1, 2, 4 Salt C Aquat Hydro Oxidiz Prese Recer Stunte Other	A, and 4B) rust (B11) ic Invertebrates (gen Sulfide Odo red Rhizosphere: nce of Reduced at Iron Reduction ad or Stressed Pl (Explain in Rem.	(B9) (Except MLRA B13) (C1) s along Living Roots (C3) ron (C4) in Plowed Soils (C6) ants (D1) (LRR A) arks)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Primary Indi Field Obse Surface Wate Water Table F Saturation Pre includes capilla	d. OGY Idrology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundation Visible on Visible on Sparsely Vegetated (Inundation Visible on Visib	of one req 2) 32) 4) (B6) Aerial Ima Concave S	gery (B7) urface (B8) No X No X No X	Water 1, 2, 4 Salt C Aquat Hydro Oxidiz Prese Recer Stunte Other Depth (inche Depth (inche	A, and 4B) rust (B11) ic Invertebrates (gen Sulfide Odo red Rhizosphere: nce of Reduced at Iron Reduction red or Stressed Pi (Explain in Rem. s): s): >17	B13) (C1) s along Living Roots (C3) ron (C4) in Plowed Soils (C6) ants (D1) (LRR A) arks) Wetland Hyc	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Primary Indi Field Obse Surface Wate Water Table F Saturation Pre (includes capilla	d. OGY cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Cryations: The Present? The Sesent of Cryater (A) The Sesent of Cryater (A) The Sesent of Cryations	of one req 2) 32) 4) (B6) Aerial Ima Concave S	gery (B7) urface (B8) No X No X No X	Water 1, 2, 4 Salt C Aquat Hydro Oxidiz Prese Recer Stunte Other Depth (inche Depth (inche	A, and 4B) rust (B11) ic Invertebrates (gen Sulfide Odo red Rhizosphere: nce of Reduced at Iron Reduction red or Stressed Pi (Explain in Rem. s): s): >17	B13) (C1) s along Living Roots (C3) ron (C4) in Plowed Soils (C6) ants (D1) (LRR A) arks) Wetland Hyc	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

Project/Site: Lochr	er Road		City/County:	A	lbany/Linn	Sam	pling Date:	10/1	5/2020
Applicant/Owner: Hayden Ho	omes				Sta	te: OR		Sampling Point:	11
Investigator(s):			Section, To	wnship, Range:		2	0/11S/3W	•	
Landform (hillslope, terrace, etc.:)		Terra	ce	Local relief (cor	ncave, convex, none):		None	Slope (%):	<5%
Subregion (LRR):	LRR A	4	Lat:	44.6023	40° Lor	ng: -12 3	3.090318°	Datum:	WGS85
Soil Map Unit Name:	V	loodburn s	— ilt loam, 0-3% sl	opes	NWI	Classification	n:	 None	
Are climatic/hydrologic conditions o				Yes		No		in in Remarks)	
Are vegetation Soil			significantly dist	urbed?	Are "Normal Circums	tances" prese	_ `	Y	
Are vegetation Soil					, explain any answers ir	•	(' '	-	
	_				, explain any ameners in	tomamo.,			
SUMMARY OF FINDINGS	- Attac	ch site ma	p showing san	pling point	locations, transe	cts, impoi	tant featu	res, etc.	
Hydrophytic Vegetation Present?	Yes	1 X	No						
Hydric Soil Present?	Yes	1	No X	Is Sampled Ar a Wetlan		es		lo X	
Wetland Hydrology Present?	Yes	1	No X						
Remarks:									
VEGETATION - Use scien	tific naı	mes of pla	nts.						
		absolute	Dominant	Indicator	Dominance Test v	vorksheet:			
To a Charter /alataine	,	% cover	Species?	Status					
Tree Stratum (plot size:	,				Number of Dominant	•		4	(A)
2		-			That are OBL, FACW,	, or FAC:		1	(A)
3		-			Total Number of Domi	inant			
4					Species Across All Str			1	(B)
		0	= Total Cover		opeoies / toross / tir oti	ata.			(5)
One lie of Ohards Ohards and			_						
Sapling/Shrub Stratum (plot size	e:	_)			Percent of Dominant S	•		000/	(A (D)
2		-	_		That are OBL, FACW,	or FAC:	1	00%	(A/B)
3		-			Prevalence Index	Workshoo	ļ.		
4					Total % Cover of	VVOIKSIICC	 Multiply by:		
5		-			OBL Species	<u> </u>	x 1 =	_ 0	
		0	= Total Cover		FACW species		x 2 =	0	
			_		FAC Species		x 3 =	0	
Herb Stratum (plot size:	5)				FACU Species		x 4 =	0	
1 Schedonorus arundinace	eus	85	X	FAC	UPL Species		x 5 =	0	
2 Lolium perenne		10		FAC	Column Totals	0	_ (A)	0	(B)
3									
4					Prevalence Inde	ex =B/A =	#1	OIV/0!	
5		-			Harden a badia Mara	4-41 111			
6					Hydrophytic Vege			nhytia Vagatatia	
7			_		x		rest for Hydro ance Test is >	phytic Vegetatio	11
		95	= Total Cover				nce Index is ≤		
								ations¹ (provide s	supporting
Woody Vine Stratum (plot size:)				data in Re	emarks or on	a separate sheet	:)
						5- Wetlan	d Non-Vascul	ar Plants ¹	
1						Problema	tic Hydrophyti	c Vegetation¹ (E	xplain)
12									
-		0	= Total Cover		¹ Indicators of hydric so		ıd hydrology n	nust be present,	unless
-		0	= Total Cover		disturbed or problema		ıd hydrology r	nust be present,	unless
-		0	= Total Cover		1		,	•	unless

			PHS#	6869			Sampling Point: Attachm ent £:39
Profile Descri	• •	the depth	needed to docume	ent the indicator or co	nfirm the absen	ce of indicators.)	
Depth	Matrix			Redox Features	. 2		
(Inches)	Color (moist)	%	Color (moist)	% Type ¹	Loc ²	Texture	Remarks
0-6	10YR 4/2	100				Silt Loam	
6-9	10YR 4/2	99	5YR 5/8	1C	PL	Silt Loam	Fine
9-16	10YR 3/2	90	5YR 5/8		PL	Silt Loam	Medium
Type: C=Con	centration. D=Depleti	ion. RM=Re	educed Matrix. CS=	Covered or Coated San	nd Grains.		² Location: PL=Pore Lining, M=Matrix.
				s otherwise noted.)		Indic	ators for Problematic Hydric Soils ³ :
	Histosol (A1)			Sandy Redo	x (S5)		2 cm Muck (A10)
	Histic Epipedon (A2)			Stripped Mat	trix (S6)		Red Parent Material (TF2)
	Black Histic (A3)			Loamy Muck	ky Mineral (F1) (ex	(cept MLRA 1)	Very Shallow Dark Surface (TF12)
	Hydrogen Sulfide (A4	1)			ed Matrix (F2)		Other (explain in Remarks)
	Depleted Below Dark	,	Δ11)	Depleted Ma	` '		outsi (explain in remaine)
	Thick Dark Surface (A	•	(11)	Redox Dark			
	,	,			rk Surface (F7)		³ Indicators of hydrophytic vegetation and wetland
	Sandy Mucky Minera Sandy Gleyed Matrix			Redox Depre			hydrology must be present, unless disturbed or problematic.
ype: epth (inches	s):					Hydric Soil Pres	sent? Yes NoX
ype: epth (inchesemarks:						Hydric Soil Pres	sent? Yes NoX
Type: Depth (inchest demarks: Plowed field	d. OGY					Hydric Soil Pres	sent? Yes NoX
Type: Depth (inchesternarks: Plowed field HYDROLO Vetland Hy	d. OGY drology Indicator		ired; check all th	at apply)		Hydric Soil Pres	
Type: Depth (inchest demarks: Plowed field HYDROLO Vetland Hy	d. OGY drology Indicator cators (minimum o		uired; check all th				Secondary Indicators (2 or more required)
lype: Depth (inchested and inchested and inc	d. drology Indicator cators (minimum o Surface Water (A1)	of one requ	uired; check all th		ed Leaves (B9) (E		
ype: epth (inchese emarks: lowed field IYDROLO /etland Hy rimary India	d. OGY drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2)	of one requ	uired; check all th	Water staine 1, 2, 4A, and	ed Leaves (B9) (E d 4B)		Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B)
ype: epth (inches emarks: lowed field YDROLO /etland Hy rimary Indi	d. drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3)	of one requ	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (B	ed Leaves (B9) (E 1 4B) 811)		Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10)
ype: epth (inchesemarks: lowed field YDROLO /etland Hy rimary India	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1)	of one requ	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (B	ed Leaves (B9) (E d 4B) 311) rtebrates (B13)		Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
ype: epth (inchesemarks: lowed field YDROLO /etland Hy rimary India	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B	of one requ	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve	ed Leaves (B9) (E d 4B) B11) rtebrates (B13) ulfide Odor (C1)	except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery
ype: epth (inches emarks: lowed field YDROLO /etland Hy rimary India	d. drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B Drift Deposits (B3)	of one requipers of the second	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve Hydrogen Su Oxidized Rhi	ed Leaves (B9) (E 1 4B) 311) rtebrates (B13) ulfide Odor (C1) izospheres along	Except MLRA Living Roots (C3)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2)
ype: epth (inchesemarks: lowed field YDROLO Vetland Hy rimary India	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B Drift Deposits (B3) Algal Mat or Crust (B-	of one requipers of the second	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Invel Hydrogen St Oxidized Rhi Presence of	ed Leaves (B9) (E 1 4B) 311) rtebrates (B13) ulfide Odor (C1) izospheres along Reduced Iron (C	Except MLRA Living Roots (C3)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3)
emarks: Plowed field IYDROLO Vetland Hy Primary India	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B Iron Deposits (B5)	of one requests 2) B2)	uired; check all th	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Invel Hydrogen St Oxidized Rhi Presence of Recent Iron	ed Leaves (B9) (E d 4B) 311) rtebrates (B13) ulfide Odor (C1) izospheres along Reduced Iron (C Reduction in Plov	Except MLRA Living Roots (C3) 4) wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5)
emarks: Plowed field IYDROLO Vetland Hy	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B- Iron Deposits (B5) Surface Soil Cracks (of one reque 2) B2) 64) (B6)		Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve Hydrogen Su Oxidized Rhi Presence of Recent Iron I Stunted or S	ed Leaves (B9) (E d 4B) 311) rtebrates (B13) ulfide Odor (C1) izospheres along Reduced Iron (C Reduction in Plov tressed Plants (E	Except MLRA Living Roots (C3) 4) wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
ype: epth (inches emarks: lowed field YDROLO /etland Hy rimary India	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B Iron Deposits (B5)	of one request. B2) B4) (B6) Aerial Ima	igery (B7)	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve Hydrogen Su Oxidized Rhi Presence of Recent Iron I Stunted or S	ed Leaves (B9) (E d 4B) 311) rtebrates (B13) ulfide Odor (C1) izospheres along Reduced Iron (C Reduction in Plov	Except MLRA Living Roots (C3) 4) wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5)
ype: lepth (inches emarks: lowed field lydrond Hy rimary India	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B- Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (of one request. B2) B4) (B6) Aerial Ima	igery (B7)	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve Hydrogen Su Oxidized Rhi Presence of Recent Iron I Stunted or S	ed Leaves (B9) (E d 4B) 311) rtebrates (B13) ulfide Odor (C1) izospheres along Reduced Iron (C Reduction in Plov tressed Plants (E	Except MLRA Living Roots (C3) 4) wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Plowed field HYDROLO Vetland Hy Primary India	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B- Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Covations:	of one request. B2) B4) (B6) Aerial Ima	igery (B7) urface (B8)	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inveity Hydrogen St. Oxidized Rhi Presence of Recent Iron I Stunted or S Other (Explain	ed Leaves (B9) (E d 4B) 311) rtebrates (B13) ulfide Odor (C1) izospheres along Reduced Iron (C Reduction in Plov tressed Plants (E	Except MLRA Living Roots (C3) 4) wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B- Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundations: Present? Yes	of one request. B2) B4) (B6) Aerial Ima	igery (B7) urface (B8) No X	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inverted Presence of Recent Iron Both Stunted or S Other (Explain	ed Leaves (B9) (Ed 4B) 311) Intebrates (B13) Ulfide Odor (C1) Izospheres along Reduced Iron (C Reduction in Plov Itressed Plants (Edinin in Remarks)	Living Roots (C3) 4) wed Soils (C6) 01) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India Field Obser Surface Water Vater Table P	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1 Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated C vations: Present? Yes resent? Yes	of one request. B2) B4) (B6) Aerial Ima	gery (B7) urface (B8) No X No X	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve Hydrogen Su Oxidized Rhi Presence of Recent Iron I Stunted or S Other (Expla	ad Leaves (B9) (Ed 4B) Bill) Intebrates (B13) Intebrates (B13) Intebrates (B13) Intebrates (B13) Intebrates (B13) Interest along Reduced Iron (C Reduction in Ploy Interest along Reduced Iron (C Reduction in Ploy Interest along Reduced Iron (C Reduction in Ploy Interest along Interest	Living Roots (C3) 4) wed Soils (C6) 01) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Primary Indi	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B- Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundation Visible on Vations: Present? Yes resent? Yes sent? Yes	of one request. B2) B4) (B6) Aerial Ima	igery (B7) urface (B8) No X	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inverted Presence of Recent Iron Both Stunted or S Other (Explain	ed Leaves (B9) (Ed 4B) 311) Intebrates (B13) Ulfide Odor (C1) Izospheres along Reduced Iron (C Reduction in Plov Itressed Plants (Edinin in Remarks)	Living Roots (C3) 4) wed Soils (C6) 01) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Field Obser Surface Water Table P Saturation Pre noludes capillar	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B3 Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Catoria) Present? Yes resent? Yes sent? Yes y fringe)	B2) B4) Aerial Ima	ngery (B7) urface (B8) No	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve Hydrogen Su Oxidized Rhi Presence of Recent Iron I Stunted or S Other (Expla	ad Leaves (B9) (Est 4B) 311) Intebrates (B13) Ilfide Odor (C1) Izospheres along Reduced Iron (C Reduction in Plove Itressed Plants (C Inin in Remarks) >16 >16	Living Roots (C3) 4) wed Soils (C6) 01) (LRR A) Wetland Hyd	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Field Obser Surface Water Table P Saturation Pre includes capillar	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B3 Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Catoria) Present? Yes resent? Yes sent? Yes y fringe)	B2) B4) Aerial Ima	ngery (B7) urface (B8) No	Water staine 1, 2, 4A, and Salt Crust (B Aquatic Inve Hydrogen St Oxidized Rhi Presence of Recent Iron Stunted or S Other (Expla	ad Leaves (B9) (Est 4B) 311) Intebrates (B13) Ilfide Odor (C1) Izospheres along Reduced Iron (C Reduction in Plove Itressed Plants (C Inin in Remarks) >16 >16	Living Roots (C3) 4) wed Soils (C6) 01) (LRR A) Wetland Hyd	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

Project/Site:	Lochn	er Road		_	City/County:	A	lbany/Linn		Samp	ling Date:	10	/15/2020
Applicant/Owner:	Hayden Ho	omes						State:	OR	-	Sampling Poir	it: 12
Investigator(s):		MS			Section, To	wnship, Range:			20	/11S/3W		
Landform (hillslope,	terrace, etc.:)		Ter	race		Local relief (cor	ncave, convex,	none):	N	one	Slope (%): <5%
Subregion (LRR):		LRR A	4		Lat:	44.6024	106°	Long:	-123.	090338°	Datur	n: WGS85
Soil Map Unit Name:	:	w	/oodburr	silt l	oam, 0-3% sl	opes		NWI Cla	ssification:		 None	<u> </u>
Are climatic/hydrolog	gic conditions o	n the site t	ypical for t	his tim	e of year?	Yes	Х	No		(if no, expl	ain in Remarks)
Are vegetation	Soil	or Hy	drology		significantly dist	urbed?	Are "Normal	Circumstan	ces" presen	t? (Y/N)	Υ	
Are vegetation	Soil	or Hy	/drology		naturally proble	matic? If needed	, explain any a	nswers in Re	emarks.)			_
		_								_		
SUMMARY OF				nap s	howing san	npling point	locations, t	transects	, import	ant feati	ures, etc.	
Hydrophytic Vegetat	ion Present?	Yes _	X	No		Is Sampled Ar	ea within					
Hydric Soil Present?		Yes _	X	No		a Wetlar		Yes	X		No	_
Wetland Hydrology F	Present?	Yes _	X	No								
Remarks:												
VEGETATION -	llee eelen	tifia nan		lante								
VEGETATION .	- ose scien	unc nar	nes or p absolu		Dominant	Indicator	Dominance	e Test wor	ksheet.			
			% cov		Species?	Status	Dominano	. 1001 1101	Koncet.			
Tree Stratum (plo	t size:)					Number of Do	ominant Spe	cies			
1							That are OBL	., FACW, or	FAC:		1	_ (A)
2												
3							Total Number				4	(D)
4					- Total Cavar		Species Acro	ss All Strata	:		1	_(B)
					= Total Cover							
Sapling/Shrub Stratu	<u>ım</u> (plot size	:	_)				Percent of Do					
1							That are OBL	., FACW, or	FAC:		100%	_(A/B)
3							Prevalence	Index We	orkshoot:			
4							Total % Cove		JI KSIICCL.	Multiply by	r.	
5							OBL Sp			x 1 =	0	
_			0		= Total Cover		FACW s			x 2 =	0	_
							FAC Sp	ecies		x 3 =	0	_
	t size:	5)					FACU S	•		x 4 =	0	_
1 Schedonorus		eus	90		X	FAC	UPL Sp	•		x 5 =	0	
2 Lolium peren	ine		5			FAC	Column	Totals	0	(A)	0	(B)
3							Provale	ence Index =	B/A -	+	DIV/0!	
5							Trevale	ilice ilidex –	D/A -		-51470:	_
6							Hydrophyt	ic Vegetat	ion Indic	ators:		
7								_			ophytic Vegeta	tion
8				_				Х	2- Dominar	nce Test is	>50%	
			95	_	= Total Cover				3-Prevalen			
),, , , , , , , , , , , , , , , , , , ,	(ml-+-'		,				<u> </u>				tations ¹ (provid	
Woody Vine Stratum	(plot size:		_'						data in Rer 5- Wetland		a separate she	eet)
1				_			<u> </u>				tic Vegetation ¹	(Explain)
			0		= Total Cover		1Indicators of				must be preser	
				—			disturbed or p		a wouldilu	, a. ology	aut 20 pi036i	, 4111000
0.5			_				Hydrophyt					
% Bare Ground in H	erb Stratum		5	-			Vegetation Present?		Yes	X	N	0
Remarks:							J. 1000/IC:					
1												

Profile Description: (Description: (Descri				PHS#				/ tttd://// = 1 / 1
Color (moist)	Denth	ption: (Describe to	the depth	needed to docume	ent the indicator or	confirm the abse	nce of indicators.)	Sampling Point: Attachm ent E:41
10	•	-						
3-8				Color (moist)	% Type	Loc [*]		Remarks
B-14 10YR 3/2 90 7.5YR 3/4 10 C M,PL Silt Loam Fine								
Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. **Location: PL=Pore Lining, M=Matrix, Ptyrics Soil Indicators: (Applicable to all LRRs, unloss otherwise noted.) Histoic Epipedon (A2) Sandy Redox (S5) Acan All Matrix (S6) Black Histis (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (F1) Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Thick Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (G1) Sandy Mucky Mineral (G1) Plepleted Dark Surface (F7) **Indicators of hydrophytic vegetation and w hydrology must be present, unless disturts and the problematic. **Restrictive Layer (if prosent):** Type: Depth (inches): Hydric Soil Present? Yes X No Remarks: **Plowed field. **HYDROLOGY** Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA (MLRA), 24, 44, and 48) Saturation (A3) Saturation (A4) Saturation (A4) Saturation (A4) Saturati	3-8						Silt Loam	Fine
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosoi (A1)	8-14	10YR 3/2	90	7.5YR 3/4	10 C	M,PL	Silt Loam	Fine
Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Histo Epipedon (A2) Stripped Matrix (S6) Red Parent Material (TF2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Other (explain in Remarks) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Other (explain in Remarks) Thick Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Indicators of hydrophytic vegetation and we hydrology must be present, unless disturb problematic. Redox Depressions (F8) Hydric Soil Present? Yes X No Restrictive Layer (if present): Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA (MLRA1, 2, 4A, and 4B) High Water Table (A2) 1, 2, 4A, and 4B) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Water Marks (B1) Aquatic Invertebrates (B13) Dry-Season Water Table (C2 Sediment Deposits (B3) X Oxidized Rhizospheres along Living Roots (C3) Fac-Neutral Test (D5) Surface Soil Cracks (B6) Stunde or Stressed Plants (D1) (LRRA) Raised Ant Mounds (D6) (LRRA)			<u> </u>					
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Histic Epipedon (A2) Stripped Matrix (S6) Red Parent Material (TF2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (F2) Hydrogen Suifide (A4) Loamy Gleyed Matrix (F2) Other (explain in Remarks) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Indicators of hydrophytic vegetation and we hydrology must be present, unless disturb problematic. Redox Depressions (F8) Redox Depressions (F8) Hydric Soil Present? Yes X No No Perpending of the problematic (A12) A Redox Depressions (F8) Hydric Soil Present? Yes X No No Problematic (A12) A Redox Depressions (F8) Redox Depressions (F8) Hydric Soil Present? Yes X No No Problematic (A13) Water Stained Leaves (B9) (Except MLRA Water st	Type: C=Cond	centration. D=Depleti	ion. RM=Re	educed Matrix. CS=	=Covered or Coated S	Sand Grains.		² Location: PL=Pore Lining. M=Matrix.
Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Histic Epipedon (A2) Stripped Matrix (S6) Red Parent Material (TF2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (T Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (T Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F3) Thick Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F6) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Poepleted Dark Surface (F7) Problematic. Restrictive Layer (if present): Type: Depth (inches): Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) High Water Table (A2) 1, 2, 4A, and 4B) Surface Water (A1) Drainage Patterns (B10) Water Marks (B1) Aquatic Invertebrates (B13) Dry-Season Water Table (C2 Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation (V3) Geomorphic Position (D2) Agal Mat or Crust (B4) Present of Reduced Iron (C4) Shallow Aquitard (D3) Face-Neutral Test (D5) Resent Iron Reduction in Plowed Soits (C6) Fac-Neutral Test (D5) Surface Sulf Cracks (B6) Stunted or Stressed Plants (D1) (LRRA) Raised Ant Mounds (D6) (LRRA)							Indi	
Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (F1) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Other (explain in Remarks) Depleted Below Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Problematic. Restrictive Layer (if present): Type: Depth (inches): Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required; Primary Indicators (minimum of one required; Check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA (MLRA1, 2, 4A, and 4B) High Water Table (A2) 1, 2, 4A, and 4B) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Water Marks (B1) Aquatic Invertebrates (B13) Dry-Season Water Table (C2 Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Vision en Areital (C2) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquatar (D3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Fac-Neutral Test (D5) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR		Histosol (A1)			Sandy Re	dox (S5)		2 cm Muck (A10)
Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (F1) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Other (explain in Remarks) Depleted Below Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Problematic. Restrictive Layer (if present): Type: Depth (inches): Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required; Primary Indicators (minimum of one required; Check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA (MLRA1, 2, 4A, and 4B) High Water Table (A2) 1, 2, 4A, and 4B) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Water Marks (B1) Aquatic Invertebrates (B13) Dry-Season Water Table (C2 Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Vision en Areital (C2) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquatar (D3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Fac-Neutral Test (D5) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR		Histic Epipedon (A2)			Stripped I	Matrix (S6)		Red Parent Material (TF2)
Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Depleted Below Dark Surface (A12) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Redox Depressions (F8) Problematic. Restrictive Layer (if present): Type: Depth (inches): Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required Surface (A12) Hydric Soil Present MLRA Water stained Leaves (B9) High Water Table (A2) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Sediment Deposits (B1) Aquatic Invertebrates (B13) Drainage Patterns (B10) Water Marks (B1) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation (C2) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquatra (D3) Fac-Neutral Test (D5) Surface Soil Cracks (B6) Sturface Soil Cracks (B6) Sturface Soil Cracks (B6) Sturface Soil Cracks (B6) Other (explain in Remarks) Depleted Matrix (F3) **Indicators of hydrophytic vegetation and we hydrology must be present, unless disturb and whydrology must be present, unless disturb and wydrology must be present, unless disturb hydrology must be present, unless disturb and wydrology must be present, unless disturb							except MLRA 1)	Very Shallow Dark Surface (TF12)
Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Pepteted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Popelted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Popelth (inches): Popelth (inches): Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) High Water Table (A2) Saturation (A3) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Sediment Deposits (B3) Drift Deposits (B3) A Qualized Rhizospheres along Living Roots (C3) Algal Mat or Crust (B4) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Sturled or Stressed Plants (D1) (LRR A) Redox Darks Surface (F6) "Indicators of hydrophytic vegetation and whydrology must be present, unless disturts problematic. "Indicators of hydrophytic vegetation and whydrology must be present, unless disturts on the hydrology must be present, unless disturts on hydrology must be present, unless disturts of hydrology must be present, unless disturts on hydrology must be present			4)					
Thick Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) hydrology must be present, unless disturbed problematic. Restrictive Layer (if present): Problematic Pr		, ,	•	^11 \				Culor (explain in Remarks)
Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Red		-	•	XII)				
Sandy Gleyed Matrix (\$4) Redox Depressions (\$6\$) Redox Depressions (\$6\$) Restrictive Layer (if present): Ifype: Depth (inches): Plowed field. Hydric Soil Present? Yes X No Remarks: Primary Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Saturation (A3) Saturation (A3) Water Marks (B1) Primary Indicators (B2) Aquatic Invertebrates (B13) Dry-Season Water Table (C2 Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Surface Soil Cracks (B6) Sturted or Stressed Plants (D1) (LRR A) Redox Depressions (F8) Redox Depressions (F8) Redox Depressions (F8) Redox Depressions (F8) Hydric Soil Present? Yes X No Secondary Indicators (2 or more required; check all that apply) Secondary Indicators (2 or more required; check all that apply) Secondary Indicators (2 or more required; check all that apply) Secondary Indicators (2 or more required; check all that apply) Water stained Leaves (B9) (Except MLRA (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2 Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial in the Call of Call o		,	•			` ,		³ Indicators of hydrophytic vegetation and wetland
Restrictive Layer (if present): Type: Depth (inches): Hydric Soil Present? Yes X No Remarks: Plowed field. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more req Surface Water (A1) High Water Table (A2) Saturation (A3) Salt Crust (B11) Water Marks (B1) Aquatic Invertebrates (B13) Drainage Patterns (B10) Water Marks (B2) Hydrogen Sulfide Odor (C1) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Sediment Deposits (B3) X Oxidized Rhizospheres along Living Roots (C3) Geomorphic Position (D2) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Surface Soil Cracks (B6) Resent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Resent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Resent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Resent Iron Reduction in Plowed Soils (C6) Reserved Ray No No A No								hydrology must be present, unless disturbed or
Type: Depth (inches): Hydric Soil Present? Yes X No		Sandy Gleyed Matrix	. (54)		Redox De	pressions (Fo)		problematic.
Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Water stained Leaves (B9) (Except MLRA Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Saturation Visible on Aerial In Presence of Reduced Iron (C4) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LR	Restrictive I Type: Depth (inches	s):): 				Hydric Soil Pre	esent? Yes X No
Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Water Stained Leaves (B9) (Except MLRA (MLRA1, 2, 4A, and 4B) Water Stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Prainage Patterns (B10) Dry-Season Water Table (C2 Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial In Cycle Care Reduced Iron (C4) Shallow Aquitard (D3) Recent Iron Reduction in Plowed Soils (C6) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LR	Restrictive I Type: Depth (inches Remarks: Plowed field	s):):				Hydric Soil Pre	esent? Yes X No
High Water Table (A2) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) 1, 2, 4A, and 4B) Aquatic Invertebrates (B13) Aquatic Invertebrates (B14) Aquatic Invertebrates (B14) Aquatic Invertebrates (B14) Aquatic Inve	Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy	d. GY drology Indicator	rs:	irodi obook all M	act apply)		Hydric Soil Pre	
Saturation (A3) Salt Crust (B11) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Salt Crust (B11) Aquatic Invertebrates (B13) Aquatic Invertebrates (B14) Aquatic Invertebrates (B14) Aquatic Invertebrates (B14) Aqu	Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy	d. GY drology Indicator cators (minimum c	rs:	uired; check all th		ined Leaves (B9)		Secondary Indicators (2 or more required)
Water Marks (B1) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial In Drift Deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Pry-Season Water Table (C2 Saturation Visible on Aerial In Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LR	Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy	drology Indicator cators (minimum o	rs: of one requ	uired; check all th	Water sta			Secondary Indicators (2 or more required) Water stained Leaves (B9)
Sediment Deposits (B2) Drift Deposits (B3) X Oxidized Rhizospheres along Living Roots (C3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial In Geomorphic Position (D2) Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Soils (C6) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LR	Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy	drology Indicator cators (minimum c Surface Water (A1) High Water Table (A	rs: of one requ	uired; check all th	Water sta	and 4B)		Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B)
Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) X Oxidized Rhizospheres along Living Roots (C3) Presence of Reduced Iron (C4) Recent Iron Reduction in Plowed Soils (C6) Stunted or Stressed Plants (D1) (LRR A) Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LR	Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A: Saturation (A3)	rs: of one requ	uired; check all th	Water sta 1, 2, 4A, a Salt Crust	(B11)	(Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10)
Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LR	Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)	rs: of one requ	uired; check all th	Water sta 1, 2, 4A, a Salt Crust Aquatic In	(B11) vertebrates (B13)	(Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LR	Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A) Saturation (A3) Water Marks (B1) Sediment Deposits (I	rs: of one requ	uired; check all th	Water sta 1, 2, 4A, a Salt Crust Aquatic In Hydrogen	(B11) vertebrates (B13) Sulfide Odor (C1)	(Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (
	Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A) Saturation (A3) Water Marks (B1) Sediment Deposits (B3)	rs: of one reques 2)	uired; check all th	Water sta 1, 2, 4A, a Salt Crust Aquatic In Hydrogen X Oxidized	and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres alor	(Except MLRA) ng Living Roots (C3)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C2) Geomorphic Position (D2)
	Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (I Drift Deposits (B3) Algal Mat or Crust (B	rs: of one reques 2)	uired; check all th	Water sta 1, 2, 4A, a Salt Crust Aquatic In Hydrogen X Oxidized In Presence	(B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres alor of Reduced Iron ((Except MLRA) ng Living Roots (C3) C4)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Frost-Heave Hummocks (D7)	Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5)	rs: of one requ 2) B2)	uired; check all th	Water sta 1, 2, 4A, a Salt Crust Aquatic In Hydrogen X Oxidized I Presence Recent Iro	and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres alor of Reduced Iron (on Reduction in Pl	(Except MLRA) ng Living Roots (C3) C4) owed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5)
Sparsely Vegetated Concave Surface (B8)	Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B Iron Deposits (B5) Surface Soil Cracks	rs: of one requ 2) B2) B4) (B6)		Water sta 1, 2, 4A, a Salt Crust Aquatic In Hydrogen X Oxidized I Presence Recent Iro Stunted o	(B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres alor of Reduced Iron (on Reduction in Plans Stressed Plants	(Except MLRA) ng Living Roots (C3) C4) owed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C2) Geomorphic Position (D2) Shallow Aquitard (D3)
Field Observations:	Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B) Iron Deposits (B5) Surface Soil Cracks of Inundation Visible on	rs: of one required: 2) B2) B4) (B6) n Aerial Image	gery (B7)	Water sta 1, 2, 4A, a Salt Crust Aquatic In Hydrogen X Oxidized I Presence Recent Iro Stunted o	(B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres alor of Reduced Iron (on Reduction in Plans Stressed Plants	(Except MLRA) ng Living Roots (C3) C4) owed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
	Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundation Vegetated (Inun	rs: of one required: 2) B2) B4) (B6) n Aerial Image	gery (B7)	Water sta 1, 2, 4A, a Salt Crust Aquatic In Hydrogen X Oxidized I Presence Recent Iro Stunted o	(B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres alor of Reduced Iron (on Reduction in Plans Stressed Plants	(Except MLRA) ng Living Roots (C3) C4) owed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
	Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Vations:	rs: of one required: 2) B2) B4) (B6) n Aerial Image	igery (B7) urface (B8)	Water sta 1, 2, 4A, a Salt Crust Aquatic In Hydrogen X Oxidized I Presence Recent In Stunted o Other (Ex	(B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres alor of Reduced Iron (on Reduction in Plans Stressed Plants	(Except MLRA) ng Living Roots (C3) C4) owed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
	Restrictive I Type: Depth (inches Remarks: Plowed field Wetland Hy Primary India Field Obser Surface Water	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B4) Inundation Visible on Sparsely Vegetated (C4) vations: Present? Yes	rs: of one required: 2) B2) B4) (B6) n Aerial Image	gery (B7) urface (B8)	Water sta 1, 2, 4A, a Salt Crust Aquatic In Hydrogen X Oxidized I Presence Recent In Stunted o Other (Ex	and 4B) (B11) vertebrates (B13) Sulfide Odor (C1) Rhizospheres alor of Reduced Iron (on Reduction in Plants plain in Remarks)	(Except MLRA) ng Living Roots (C3) C4) owed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Saturation Present? Yes No X Depth (inches): >16 Yes X No	Restrictive I Type: Depth (inches Remarks: Plowed field HYDROLO Wetland Hy Primary India Field Obser Surface Water Water Table P	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Vations: Present? Yes resent? Yes	rs: of one required: 2) B2) B4) (B6) n Aerial Image	gery (B7) urface (B8) No X	Water sta 1, 2, 4A, a Salt Crust Aquatic In Hydrogen X Oxidized I Presence Recent In Stunted o Other (Ex Depth (inches):	wertebrates (B13) Sulfide Odor (C1) Rhizospheres alor of Reduced Iron (on Reduction in Plants plain in Remarks)	(Except MLRA) ng Living Roots (C3) C4) owed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Comparison of December 1) Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

Project/Site:	Lochi	ner Road	l	_	City/County:	A	lbany/Linn		Samp	oling Date:	10/	15/2020
Applicant/Owner:	Hayden H	omes						State:	OR	_	Sampling Poin	t: 13
Investigator(s):		JT/CM			Section, To	wnship, Range:			20)/11S/3W		
Landform (hillslope, te	errace, etc.:)		Ter	race		Local relief (cor	cave, convex, n	one):	N	lone	Slope (%): <5%
Subregion (LRR):		LRR	A		Lat:	44.6021	50°	Long:	-123.	.088998°	Datum	WGS85
Soil Map Unit Name:			Co	ncor	d silt loam			NWI Clas	ssification:	:	None	
Are climatic/hydrologic	c conditions of	n the site	typical for t	his time	e of year?	Yes	X	No		(if no, expla	ain in Remarks))
Are vegetation	Soil	or H	ydrology		significantly dist	urbed?	Are "Normal C	 Circumstanc	es" preser	_		
Are vegetation			ydrology			matic? If needed			•	, ,		_
	· ·		, 0,		,,				,			
SUMMARY OF F	INDINGS	- Atta	ch site n	nap s	howing san	npling point	ocations, tr	ansects,	import	tant featu	res, etc.	
Hydrophytic Vegetatio	n Present?	Yes	X	No		Is Sampled Ar	na within					
Hydric Soil Present?		Yes	X	No		a Wetlan		Yes	X		No	_
Wetland Hydrology Pr	esent?	Yes	X	No								
Remarks:						1						
VEGETATION -	Use scier	tific na	mes of p	olants	;.							
			absolu		Dominant	Indicator	Dominance	Test work	sheet:			
T Ot			% cov	er	Species?	Status						
Tree Stratum (plot s	size:)				Number of Dor	-			4	(4)
1							That are OBL,	FACW, or F	AC:		1	_(A)
3		-					Total Number	of Dominant				
4							Total Number of Species Across				1	(B)
<u> </u>			0	—	= Total Cover		Opecies Acros	3 All Ottata.				_(D)
					- Total Govel							
Sapling/Shrub Stratum	<u>n</u> (plot size	e:	_)				Percent of Dor	•			1000/	(A (D)
1							That are OBL,	FACW, or I	-AC:		100%	_(A/B)
3							Prevalence	Index Wo	rkshoot			
<u> </u>							Total % Cover		i KSIIGGL	Multiply by		
5							OBL Spe			x 1 =	0	
			0		= Total Cover		FACW sp	_		x 2 =	0	_
							FAC Spe			x 3 =	0	<u> </u>
Herb Stratum (plot s	size:	5)				FACU Sp	ecies		x 4 =	0	_ _
1 Schedonorus a	arundinace	eus	100		X	FAC	UPL Spe	cies		x 5 =	0	_
2							Column T	otals _	0	(A)	0	(B)
3												
4							Prevalen	ce Index =B	s/A =	#	DIV/0!	_
5												
6							Hydrophytic	_				
7 8									-	est for Hydro nce Test is >	ophytic Vegetat	lion
·			100		= Total Cover					ice Index is:		
			100		rotal COVE						ations ¹ (provide	supporting
	(plot size:)								a separate she	
Woody Vine Stratum								5	- Wetland	l Non-Vascu	lar Plants ¹	
Woody Vine Stratum								F	² roblemati	ic Hydrophyt	ic Vegetation ¹ ((Explain)
1			0	<u> </u>	= Total Cover			•	nd wetland	d hydrology i	must be presen	t, unless
			0	<u> </u>	= Total Cover		disturbed or pr	oblematic.	nd wetland	d hydrology i	must be presen	t, unless
1	rb Stratum		0	<u> </u>	= Total Cover			oblematic.		d hydrology i		t, unless

Sardy Mucky Nineral (S1)				PHS#	6869	-		Sampling Point: Attachment £:43
Cocio Cocio Size		iption: (Describe to	the depth	needed to docume	ent the indicator or c	onfirm the abse	nce of indicators.)	
Secondary 1978 32 100 1978 34 3 C M Silty Clay Loam Fine	•					. 2		
Secondary Fine Fi				Color (moist)	% Type	Loc		Remarks
8-13 10YR 3/1 90 7.5YR 3/4 2 C PL 8-13 10YR 3/1 90 7.5YR 3/4 10 C M Silty Clay Loam Medium Type: O-Concentration. D-Depletion. RM-Reduced Matrix, CS=Covered or Coated Sand Grains. Type: O-Concentration. D-Depletion. RM-Reduced Matrix, CS=Covered or Coated Sand Grains. Type: O-Concentration. D-Depletion. RM-Reduced Matrix, CS=Covered or Coated Sand Grains. Type: O-Concentration. D-Depletion. RM-Reduced Matrix, CS=Covered or Coated Sand Grains. Type: O-Concentration. D-Depletion. RM-Reduced Matrix, CS=Covered or Coated Sand Grains. Thick Soll Indicators: (Applicable to all LRRs, unless otherwise noted.) Historic Eppedon (A2) Stripped Matrix (S5) Black Halis: (A3) Loamy Microxy Mineral (F1) (except MLRA 1) Vary Shallow Dark Surface (F12) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) X Rodox Dark Surface (F7) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Redox Depressions (F8) Problematic Restrictive Layer (If present): Type: Depletion (A12) X Rodox Depressions (F8) Present? Yes X No Remarks: Plowed field. Hydric Soil Present? Yes X No Water stained Leaves (B9) (Except MLRA (MLRA) (MLRA), 2.4A, and 48) Surface Water (A1) Water Albia (A2) 1, 2.4A, and 48) Surface Water (A1) Surface (A11) Depleted Coarles (B11) Depressions (B11) Depressions (B12) Depressions (B13) Depressions (B13) Depressions (B13) Depressions (B14) Depressions (B14) Depressions (B14) Depressions (B15) Depressions (B16) Depression (B16) Depressions (B16) Depressions (B16) Depression (B16) Depression (B16) Depression (B16) Depression (B16) Depression (B16) Surface (B16) Depression (B1								
8-13 10YR 3/1 90 7.5YR 3/4 10 C M Sitty Clay Loam Medium **Type: C**Concentration, D**Depletion, RM**Reduced Matrix, CS**Covered or Coated Sand Grains. **Type: C**Concentration, D**Depletion, RM**Reduced Matrix, CS**Covered or Coated Sand Grains. **Type: C**Concentration, D**Depletion, RM**Reduced Matrix, CS**Covered or Coated Sand Grains. **Type: C**Concentration, D**Depletion Sand, Reduced Matrix, CS**Covered or Coated Sand Grains. **Indicators of Problematic Hydric Soils**: **Histoic Epipedon (A2) Sandy Redox (Sis) 2 cm Musck (A10) **Back Histoic (A3) Loamy Mucky Minoral (F1) (except Matrix (F2)) **Depletion Blook Dark Surface (A11) **Depletion Blook Dark Surface (A11) **Thick Dark Surface (A12) X Rodox Dark Surface (F6) **Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) **Sandy Gloyed Matrix (S4) Redox Depressions (F8) **Redox Dark Surface (F7) **Sandy Gloyed Matrix (S4) Redox Depressions (F8) **Restrictive Layer (if present): **Type: *** **Pipeth (inches):** **Primary Indicators (minimum of one required; check all that apply) **Surface Water (A1) Water stained Leaves (B9) (Except MLRA Hydrology Indicators (2 or more required): **Primary Indicators (minimum of one required; check all that apply) **Saturation (A3) Sat Coats (B11) **Surface Water (A1) Ayand 4(B) Drainage Patterns (B10) **Surface Water (A1) Saturation (A3) Sat Coats (B11) **Surface Water (A1) Saturation (Vable on Arrial Imagery (B7) Surface of Reduced in in (C4) Shalaba Agal Matrix Croats (B4) Presence of Reduced in in (C4) Shalaba Agal Matrix Croats (B4) Presence of Reduced in in Remarks (B10) Problematic Hydrology Present? **Surface Water Research Yes No X Depth (inches): No Beth (inches): No Ayand Hydrology Present? **Wetland Hydrology Present?** **Wetland Hydrology Present?** **Wetland Hydrology Present?** **Wetland Hydrology Present?** **	5-8	10YR 3/2	95				Silty Clay Loam	Fine
Type: C-Concentration, D-Depletion, RM-Reduced Matrix, CS-Covered or Conted Sand Grains. Type: Co-Concentration, D-Depletion, RM-Reduced Matrix, CS-Covered or Conted Sand Grains. Type: Co-Concentration, D-Depletion, RM-Reduced Matrix, CS-Covered or Conted Sand Grains. Type: Co-Concentration, D-Depletion, RM-Reduced Matrix, CS-Covered or Conted Sand Grains. Thick Capital Capit	0.42	40VD 2/4				. ———	Cilta Clavel a am	Madine
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosol (A1) Histosol (A2) Black Histo (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Black Histo (A3) Depleted Matrix (F2) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Trick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Gieyed Matrix (S4) Redox Dark Surface (F7) Sandy Gieyed Matrix (S4) Redox Dark Surface (F7) Popht (inches): Popht (inches): Hydric Soil Present? Yes X No Restrictive Layer (if present): Wettand Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) High Water Table (A2) Saluration (A3) Saluration (A3) Saluration (A3) Saluration (A3) Saluration (A3) Saluration (B13) Mile Matrix (B1) Depleted Dark Surface (F7) Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required) High Water Table (A2) Saluration (A3) Saluration (A3) Saluration (A3) Saluration (A3) Saluration (A3) Saluration (A3) Saluration (B13) Dirich Deposits (B3) X Odidzed Rhizospheres along Living Roots (C3) Sediment Deposits (B3) X Odidzed Rhizospheres along Living Roots (C3) Saluration (Visible on Aerial Imagery (B7) Frost-Heave Hummocks (D7) Presence of Reduced Iron (C4) Frost-Heave Hummocks (D7) Preside Observations: Surface Water Present? Yes No X Depth (inches): Depth (inches): Surface Water Present? Yes No X Depth (inches): Depth (inches): Date Tables Present? Yes No Depth (inches): Depth (inch	0-13	101K 3/1		7.51K 3/4			Silty Clay Loain	Medium
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histocal (A1) Histocal (A2) Histocal (A2) Black Histoc (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Depleted Eleve Dark Surface (A12) Hydrogen Sulfide (A4) Depleted Marity (F3) Thick Dark Surface (A12) Sandy Mucky Mineral (F1) (except MLRA 1) Depleted Balow Dark Surface (A12) Sandy Mucky Mineral (F1) Sandy Mucky Mineral (F1) Sandy Mucky Mineral (F3) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (F3) Restrictive Layer (If present): Type: Depleted Dark Surface (F7) Problematic Restrictive Layer (If present): Type: Depleted Dark Surface (F7) Problematic Restrictive Layer (If present): Type: Depleted Dark Surface (F7) Problematic Restrictive Layer (If present): Type: Depleted Dark Surface (F7) Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Sediment Deposits (B3) X Oxidezed Rhizospheros along Living Roots (C3) Sediment Deposits (B3) X Oxidezed Rhizospheros along Living Roots (C3) Sediment Deposits (B3) X Oxidezed Rhizospheros along Living Roots (C3) Sediment Deposits (B3) X Oxidezed Rhizospheros along Living Roots (C3) Sediment Deposits (B3) X Oxidezed Rhizospheros along Living Roots (C3) Sediment Deposits (B3) X Oxidezed Rhizospheros along Living Roots (C3) Firest-Heave Hummocks (D7) Field Observations: Surface Water Fresent? Yes No X Depth (inches): Surface Water Fresent? Yes No X Depth (inches): Surface Wa								
Histosol (A1) Histo Epipedon (A2) Sitripped Matrix (S6) Red Parent Material (TF2) Sitripped Matrix (S6) Red Parent Material (TF2) Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) (except MLRA 1) Uvery Shallow Dark Surface (TF12) Uvery Shallow Dark Surface (TF12) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Depleted Below Dark Surface (A12) Sandy Mucky Mineral (S1) Sendy Mineral (S1) Sendy Mucky Mineral (S1) Sendy Mineral (S1)	¹ Type: C=Con	centration, D=Depleti	ion, RM=Re	educed Matrix, CS=	Covered or Coated Sa	and Grains.		² Location: PL=Pore Lining, M=Matrix.
Histic Epipedon (A2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Popeleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Phydric Soil Present? Yes X No Restrictive Layer (if present): Type: Depth (inches): Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Surface Water (A3) Salt Crust (B11) Salturation (A3) Salt Crust (B11) Sediment Deposits (B3) Agail Mat or Crust (B4) Iron Deposits (B5) Surface Surface (B8) Surface Water (B5) Surface Surface (B6) Surface Water (B6) Surface (B6) Surface Water (B6) Wettand Hydrology Present? Wettand Hydrology Present? Wettand Hydrology Present? Wettand Hydrology Present?	Hydric Soil	Indicators: (Appl	icable to	all LRRs, unles	s otherwise noted	.)	Indica	ators for Problematic Hydric Soils ³ :
Black Histic (A3) Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) Sandy Mucky Mineral (F1) (except MLRA 1) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Depleted Dark Surface (F6) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Pepteted Dark Surface (F7) Pepteted Dark Surface (F7) Pepteted Dark Surface (F7) Pepteted Dark Surface (F7) Problematic. Restrictive Layer (if present): Type: Depth (inches): Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required) Surface Water (A1) Water stained Leaves (B9) (Except MLRA High Water Table (A2) Surface Water (A1) Water Marks (B1) Surface Water (A1) Pepter Muchan Marks (B1) Surface Water (A1) Salt Crust (B11) Dorainage Patterns (B10) Dory-Season Water Table (C2) Salturation (A3) Salt Crust (B11) Dorainage Patterns (B10) Dory-Season Water Table (C2) Salturation (Valie) Agail Mat or Crust (B4) Presence of Reduced Iron (C4) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface Water (A1) Spersely Vegetated Concave Surface (B8) Frost-Heave Hummocks (D7) Spersely Vegetated Concave Surface (B8) Wetland Hydrology Present? Ves No Z Depth (inches): Surface Water Table Present? Ves No Z Depth (inches): Surface Water Table Present? Ves No Z Depth (inches): Surface Water Table Present? Ves No Z Depth (inches): Surface Water Table Present? Ves No Z Depth (inches): Surface Water Table Present? Ves No Z Depth (inches): Surface Water Table Present? Ves No Z Depth (inches): Surface Water Table Present? Ves No Z Depth (inches): Surface Water Table Present? Ves No Z Depth (inches): Surface Water Table Present? Ves No Z Depth (inches): Surface Water Present? Ves No Z Depth (inches): Surface Water Table Present? Ves No Z Depth (inches): Surface Water Present? Ves No Z Depth (inches): Surface Water Pre		Histosol (A1)			Sandy Red	ox (S5)		2 cm Muck (A10)
Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Depleted Matrix (F3) Thick Dark Surface (A12) X Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Pindicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if present): Type: Depth (inches): Plowed field. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Sediment Deposits (B1) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Sediment Deposits (B3) X Oxidized Rhizospheres along Living Roots (C3) Sediment Deposits (B3) Agal Mat or Crust (B4) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Frost-Heave Hummocks (D7) Frost-Heave Hummocks (D7) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Frost-Heave Hummocks (D7) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Frost-Heave Hummocks (D7)		Histic Epipedon (A2)			Stripped M	atrix (S6)		Red Parent Material (TF2)
Hydrogen Sulfide (A4)		Black Histic (A3)			Loamy Muc	ky Mineral (F1)	except MLRA 1)	Very Shallow Dark Surface (TF12)
Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Depleted Dark Surface (F6) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Problematic. Restrictive Layer (if present): Type: Depth (inches): Plowed field. Hydric Soil Present? Yes X No Remarks: Plowed field. Hydric Soil Present? Yes X No Remarks: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA High Water Table (A2) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Sufface Water (B1) Aquatic Invertebrates (B13) Drinage Patterns (B10) Drin Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery Drift Deposits (B5) Resenter (B4) Remarks: Primary Indicators (C2) Redox Depressions (F8) Primary Indicators (Pinimum of one required; check all that apply) Secondary Indicators (2 or more required) Water stained Leaves (B9) (Except MLRA (MLRA1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (Validation (C1)) Saturation (Validation (C2)) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery Drift Deposits (B3) Recent Iron Reduction in Plowed Soils (C6) Saturation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Frost-Heave Hummocks (D7)			1)		Loamy Gle	ed Matrix (F2)		
Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Secondary Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if present): Type: Depth (inches): Plowed field. Hydric Soil Present? Yes X No Remarks: Plowed field. Hydric Soil Present? Yes X No Remarks: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Dry-Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Algal Mat or Crust (B4) Presence of Reduced from (C4) Surface Water (B3) Field Observations: Water Saline Present? Yes No X Depth (inches): Wetland Hydrology Present?		, ,	,	A11)				
Sandy Mucky Mineral (\$1) Sandy Gleyed Matrix (\$4) Seed to Depleted Dark Surface (\$77) Seed Depleted Dark Surface (\$77) Seed Depressions (\$78) Redox Depressions (\$77) Redox Depressions (\$78) Redox Depressions (\$77) Redox Depression (\$77) Redox Depressions (\$77) Redox Depressions (\$77) Redox Depression (\$77) Redox Depressions (\$77) Redox Depression (\$77		•	•	,				
Redox Depressions (F8) problematic. Restrictive Layer (if present): Type: Depth (inches): Plowed field. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required) Surface Water (A1) High Water Table (A2) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Vater Marks (B1) Define Deposits (B2) Drift Deposits (B3) Drift Deposits (B3) A Qualide Invertebrates (B10) Drift Deposits (B3) A Codized Rhizospheres along Living Roots (C3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Surface Soil Cracks (B8) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Vater Table Present? Yes No Wetland Hydrology Present?			,			, ,		³ Indicators of hydrophytic vegetation and wetland
Restrictive Layer (if present): Type: Depth (inches): Hydric Soil Present? Yes X No Remarks: Plowed field. HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation (Na) Drift Deposits (B3) X Oxidized Rhizospheres along Living Roots (C3) Geomorphic Position (D2) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Total Cracks (B8) Surface Soil Cracks (B8) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches):			, ,			• •		
Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Iron Deposits (B6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Water Table (Present? Yes No X Depth (inches): Water Table (Present? Yes No X Depth (inches): Water Saturation of one required; check all that apply) Water stained Leaves (B9) (Except MLRA Water Stained Leaves (B9) Water Stained Leaves (B1) Water Stained Leaves (B1) Water Stained Leaves (B1) Wat	HYDROLO							
High Water Table (A2) Saturation (A3) Salt Crust (B11) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Water Table (A2) 1, 2, 4A, and 4B) Aquatic Invertebrates (B13) A			rs:					
Salt Crust (B11) Salt Crust (B11) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Salt Crust (B11) Aquatic Invertebrates (B13) Aquat	Wetland Hy	drology Indicator		uired; check all th	nat apply)			Secondary Indicators (2 or more required)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Aquatic Invertebrates (B13) Pry-Season Water Table (C2) Saturation Visible on Aerial Imagery Drift Deposits (B3) X Oxidized Rhizospheres along Living Roots (C3) Geomorphic Position (D2) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >13 Wetland Hydrology Present?	Wetland Hy Primary Indio	drology Indicator		uired; check all th	Water stair		Except MLRA	Water stained Leaves (B9)
Sediment Deposits (B2) Drift Deposits (B3) X Oxidized Rhizospheres along Living Roots (C3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery (B7) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Surface Water Present? Yes No X Depth (inches): Surface Water Table Present? Yes No X Depth (inches): Surface Water Present? Yes No X Depth (inches): Surface Water Present? Yes No X Depth (inches): Surface Water Table Present? Yes No X Depth (inches): Surface Water Present? Y	Wetland Hy Primary Indic	drology Indicator cators (minimum o Surface Water (A1)	of one requ	uired; check all th	Water stair		Except MLRA	Water stained Leaves (B9)
Drift Deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Recent Iron Reduction in Plowed Soils (C6) Fac-Neutral Test (D5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >13 Wetland Hydrology Present?	Wetland Hy Primary Indie	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2	of one requ	uired; check all th	Water stair	nd 4B)	Except MLRA	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B)
Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): Presence of Reduced Iron (C4) Reduction in Plowed Soils (C6) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Wetland Hydrology Present?	Wetland Hy Primary Indi	cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3)	of one requ	uired; check all th	Water stair 1, 2, 4A, at	nd 4B) B11)		Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10)
Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Fac-Neutral Test (D5)	Wetland Hy Primary Indio	cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1)	of one requ	uired; check all th	Water stair 1, 2, 4A, ai Salt Crust (nd 4B) B11) ertebrates (B13)		Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >13 Wetland Hydrology Present?	Wetland Hy Primary Indio	cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (E	of one requ	uired; check all th	Water stair 1, 2, 4A, ai Salt Crust (Aquatic Inv	ad 4B) B11) ertebrates (B13) Sulfide Odor (C1)		Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (
Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >13 Wetland Hydrology Present?	Wetland Hy Primary Indio	cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B Drift Deposits (B3) Algal Mat or Crust (B	of one requipers of the second	uired; check all th	Water stair 1, 2, 4A, ai Salt Crust (Aquatic Inv Hydrogen S X Oxidized R Presence c	ad 4B) B11) ertebrates (B13) Sulfide Odor (C1) hizospheres alon f Reduced Iron (ng Living Roots (C3)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3)
Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >13 Wetland Hydrology Present?	Wetland Hy Primary Indio	cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B- Iron Deposits (B5)	of one request. 2) 32)	uired; check all th	Water stair 1, 2, 4A, ai Salt Crust (Aquatic Inv Hydrogen S X Oxidized R Presence of	ad 4B) B11) ertebrates (B13) Sulfide Odor (C1) hizospheres alon f Reduced Iron (a	ng Living Roots (C3) C4) owed Soils (C6)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5)
Surface Water Present? Yes No X Depth (inches): Water Table Present? Yes No X Depth (inches): >13 Wetland Hydrology Present?	Wetland Hy Primary Indi	cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B- Iron Deposits (B5) Surface Soil Cracks (of one requests (2) (32) (4) (86)		Water stair 1, 2, 4A, ai Salt Crust (Aquatic Inv Hydrogen S X Oxidized R Presence c Recent Iron Stunted or	ad 4B) B11) ertebrates (B13) Sulfide Odor (C1) hizospheres alon f Reduced Iron (in Reduction in Pla	ng Living Roots (C3) C4) owed Soils (C6)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Water Table Present? Yes No X Depth (inches): >13 Wetland Hydrology Present?	Wetland Hy	cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B- Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on	of one request. 32) 4) (B6) Aerial Ima	gery (B7)	Water stair 1, 2, 4A, ai Salt Crust (Aquatic Inv Hydrogen S X Oxidized R Presence c Recent Iron Stunted or	ad 4B) B11) ertebrates (B13) Sulfide Odor (C1) hizospheres alon f Reduced Iron (in Reduction in Pla	ng Living Roots (C3) C4) owed Soils (C6)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Water Table Present? Yes No X Depth (inches): >13 Wetland Hydrology Present?	Wetland Hy	cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B- Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (of one request. 32) 4) (B6) Aerial Ima	gery (B7)	Water stair 1, 2, 4A, ai Salt Crust (Aquatic Inv Hydrogen S X Oxidized R Presence c Recent Iron Stunted or	ad 4B) B11) ertebrates (B13) Sulfide Odor (C1) hizospheres alon f Reduced Iron (in Reduction in Pla	ng Living Roots (C3) C4) owed Soils (C6)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
 	Wetland Hy Primary India	cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B- Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (of one request. 32) 4) (B6) Aerial Ima	gery (B7) urface (B8)	Water stair 1, 2, 4A, ar Salt Crust (Aquatic Inv Hydrogen S X Oxidized R Presence of Recent Iror Stunted or Other (Exp	ad 4B) B11) ertebrates (B13) Sulfide Odor (C1) hizospheres alon f Reduced Iron (in Reduction in Pla	ng Living Roots (C3) C4) owed Soils (C6)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Saturation Present? Yes NoX Depth (inches): >13 YesX No (includes capillary fringe)	Primary India Primary India Primary India	cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (C	of one request. 32) 4) (B6) Aerial Ima	gery (B7) urface (B8)	Water stair 1, 2, 4A, ai Salt Crust (Aquatic Inv Hydrogen S X Oxidized R Presence c Recent Iror Stunted or Other (Exp	ad 4B) B11) ertebrates (B13) Gulfide Odor (C1) hizospheres alon f Reduced Iron (in Reduction in Ple Stressed Plants (and in Remarks)	ng Living Roots (C3) C4) owed Soils (C6) (D1) (LRR A)	Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

Project/Site:	Lochr	er Road	t	City/Cou	unty:	A	bany/Linn		Sam	oling Date:	10/	15/2020
Applicant/Owner:	Hayden Ho	omes						State:	OR	_	Sampling Poin	t: 14
Investigator(s):	СМ	/JT/SE/I	MS	Secti	on, To	wnship, Range:			20)/11S/3W		
Landform (hillslope, te	rrace, etc.:)		Ter	race		Local relief (cor	cave, convex,	none):		lone	Slope (%): <1%
Subregion (LRR):		LRR	Α		Lat:	44.6021	95°	Long:	-123	.088831°	Datum	: WGS85
Soil Map Unit Name:			Co	ncord silt loa	ım			NWI CI	assification		None	
Are climatic/hydrologic	conditions o	n the site	typical for th	nis time of year?		Yes	Х	No		(if no, expla	ain in Remarks))
Are vegetation	Soil	or H	lydrology	significan	tly dist	urbed?	Are "Normal	Circumstar	ces" prese	nt? (Y/N)	Υ	
Are vegetation	Soil	or H	lydrology	naturally	probler	matic? If needed	explain any ar	nswers in R	emarks.)			
SUMMARY OF F	INDINGS	– Atta	ch site m	nap showing	g sam	pling point	ocations, t	ransect	s, impor	tant featu	ires, etc.	
Hydrophytic Vegetation	n Present?	Yes	Х	No		Is Sampled Ar	ea within					
Hydric Soil Present?		Yes		No X		a Wetlan		Yes		_ '	No X	_
Wetland Hydrology Pro	esent?	Yes		No X								
Remarks:						1						
VEGETATION - I	Use scien	tific na	mes of p	lants.			_					
			absolu			Indicator	Dominance	Test wo	rksheet:			
Γree Stratum (plot s	size:		% cove	er Specie	o!	Status	Number of Do	minant Sn	ecies			
1			,				That are OBL	-			1	(A)
2							mat are obt	, , , , , , , , , , , , , , , , , , , ,	17.0.		•	_ (' ')
3							Total Number	of Domina	nt			
4							Species Acros				1	(B)
			0	= Total C	over							_``
Sapling/Shrub Stratum	<u>1</u> (plot size	۸٠	`				Percent of Do	minant Sne	ocios			
1	<u>.</u> (plot 3i2e	·· <u></u>	- ′				That are OBL	•			100%	(A/B)
2							mat are obt	, , , , , , , , ,			.0070	_(,,,,)
3							Prevalence	Index W	orksheet	:		
4							Total % Cove	r of		Multiply by	:	
5							OBL Sp	ecies	_	x 1 =	0	
			0	= Total C	over		FACW sp	oecies		x 2 =	0	_
		_					FAC Sp			x 3 =	0	_
lerb Stratum (plot s		5)	v		F40	FACU S			_ x 4 =	0	_
1 Schedonorus a	arunainace	eus	100	X		FAC	UPL Sp			x 5 =	0	(D)
2 3							Column	lotais	0	_(A)		_(B)
4			-	_			Prevale	nce Index =	=R/A =	#	DIV/0!	
5							1 TOVAICE	noc index -	-Б// (–		51470.	_
6							Hydrophyti	c Vegeta	tion Indic	ators:		
7								Ū			ophytic Vegetat	ion
8								Х	2- Domina	nce Test is >	>50%	
			100	= Total C	over					nce Index is		
									•		ations ¹ (provide	
)								a separate she	et)
	(plot size:						Ī		5- Wetland	l Non-Vascu	iar Plants'	
1	(plot size:										1 .	
Noody Vine Stratum 1 2	(plot size:				_		1,	Local Control	•		ic Vegetation ¹ (
1	(plot size:		0	= Total C	over			-	and wetland		ic Vegetation ¹ (
	(plot size:		0	= Total C	over		¹ Indicators of disturbed or p Hydrophyti	roblematic	and wetland			

Profile Descri Depth (Inches)			-	6869	_		Sampling Point: Attachm ent E.45
-	ption: (Describe to	the depth	needed to docume	ent the indicator or	confirm the abse	nce of indicators.)	
(Inches)	Matrix		<u> </u>	Redox Feature			
0.40	Color (moist)	<u>%</u>	Color (moist)	% Type		Texture	Remarks
0-12	10YR 3/2	98	10YR 3/3		<u>M</u>	Silty Clay Loam	Fine
12-14	10YR 3/1	100				Silty Clay Loam	
							2 2. 2
	centration, D=Depleti Indicators: (Appl					Indica	² Location: PL=Pore Lining, M=Matrix. ators for Problematic Hydric Soils ³ :
-	Histosol (A1)				edox (S5)		2 cm Muck (A10)
	Histic Epipedon (A2)				Matrix (S6)		Red Parent Material (TF2)
	Black Histic (A3)				ucky Mineral (F1)(excent MI RA 1)	Very Shallow Dark Surface (TF12)
	Hydrogen Sulfide (A4	1)			leyed Matrix (F2)	except MERCA 1)	Other (explain in Remarks)
		•	144)				Other (explain in Nemarks)
	Depleted Below Dark	·	A11)		Matrix (F3)		
	Thick Dark Surface (,			ark Surface (F6)		³ Indicators of hydrophytic vegetation and wetland
	Sandy Mucky Minera				Dark Surface (F7)		hydrology must be present, unless disturbed or
	Sandy Gleyed Matrix	(S4)		Redox D	epressions (F8)		problematic.
Remarks:	d.					Hydric Soil Pres	ent? Yes No X
Remarks: Plowed field						Hydric Soil Pres	eent? Yes No <u>X</u>
Remarks: Plowed field		rs:				Hydric Soil Pres	eent? Yes NoX
Remarks: Plowed field HYDROLO Wetland Hy	GY		uired; check all th	nat apply)		Hydric Soil Pres	Secondary Indicators (2 or more required)
Remarks: Plowed field HYDROLO Wetland Hy	GY drology Indicator		uired; check all th	Water sta	ained Leaves (B9)		
Remarks: Plowed field HYDROLO Wetland Hy	OGY drology Indicator cators (minimum o	of one req	uired; check all th				Secondary Indicators (2 or more required)
Remarks: Plowed field HYDROLO Wetland Hy	drology Indicator cators (minimum o Surface Water (A1)	of one req	uired; check all th	Water sta	and 4B)		Secondary Indicators (2 or more required) Water stained Leaves (B9)
Remarks: Plowed field HYDROLO Wetland Hy	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2	of one req	uired; check all th	Water sta 1, 2, 4A, Salt Crus	and 4B)	Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B)
Remarks: Plowed field HYDROLO Wetland Hy	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3)	of one requ	uired; check all th	Water sta 1, 2, 4A, Salt Crus Aquatic I	and 4B) t (B11)	Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
Remarks: Plowed field HYDROLO Wetland Hy	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1)	of one requ	uired; check all th	Water sta 1, 2, 4A, Salt Crus Aquatic I Hydroger	and 4B) t (B11) nvertebrates (B13) n Sulfide Odor (C1)	Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
Remarks: Plowed field HYDROLO Wetland Hy	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B	of one requipers of the second	uired; check all th	Water sta 1, 2, 4A, Salt Crus Aquatic I Hydrogei Oxidized	and 4B) t (B11) nvertebrates (B13) n Sulfide Odor (C1)	Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (
Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3)	of one requipers of the second	uired; check all th	Water sta 1, 2, 4A, Salt Crus Aquatic I Hydrogei Oxidized Presence	and 4B) t (B11) nvertebrates (B13) n Sulfide Odor (C1) Rhizospheres alor	Except MLRA Ig Living Roots (C3) C4)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2)
Remarks: Plowed field HYDROLO Wetland Hy	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B Drift Deposits (B3)	of one requipment of one required one requi	uired; check all th	Water sta 1, 2, 4A, Salt Crus Aquatic I Hydrogei Oxidized Presence	and 4B) t (B11) nvertebrates (B13) n Sulfide Odor (C1) Rhizospheres alor e of Reduced Iron ((Except MLRA Ing Living Roots (C3) C4) Dowed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3)
Remarks: Plowed field HYDROLO Wetland Hy	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B Iron Deposits (B5)	of one required (2) (B2) (B4) (B6)		Water sta 1, 2, 4A, Salt Crus Aquatic I Hydroger Oxidized Presence Recent Ir	and 4B) t (B11) nvertebrates (B13) n Sulfide Odor (C1) Rhizospheres alor of Reduced Iron (on Reduction in Pl	(Except MLRA Ing Living Roots (C3) C4) Dowed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5)
Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B Iron Deposits (B5) Surface Soil Cracks (pf one required (2) (B2) (44) (B6) (Aerial Ima	gery (B7)	Water sta 1, 2, 4A, Salt Crus Aquatic I Hydroger Oxidized Presence Recent Ir	and 4B) It (B11) Invertebrates (B13) In Sulfide Odor (C1) Rhizospheres alor It of Reduced Iron (Iron Reduction in Plants It or Stressed Plants	(Except MLRA Ing Living Roots (C3) C4) Dowed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Invations:	pf one required (2) (B2) (44) (B6) (Aerial Ima	gery (B7) urface (B8)	Water sta 1, 2, 4A, Salt Crus Aquatic I Hydrogel Oxidized Presence Recent II Stunted of	and 4B) It (B11) Invertebrates (B13) In Sulfide Odor (C1) Rhizospheres alor It of Reduced Iron (Iron Reduction in Plants It or Stressed Plants	(Except MLRA Ing Living Roots (C3) C4) Dowed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundations: Present? Yes	pf one required (2) (B2) (44) (B6) (Aerial Ima	gery (B7) urface (B8) No <u>X</u>	Water sta 1, 2, 4A, Salt Crus Aquatic I Hydrogei Oxidized Presence Recent II Stunted of Other (Existence)	and 4B) It (B11) Invertebrates (B13) In Sulfide Odor (C1) Rhizospheres alor It of Reduced Iron (It on Reduction in Plants (It of Reduced Plants (It of Remarks)	g Living Roots (C3) C4) owed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Remarks: Plowed field HYDROLO Wetland Hy Primary India	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundations: Present? Yes	pf one required (2) (B2) (44) (B6) (Aerial Ima	gery (B7) urface (B8) No X	Water sta 1, 2, 4A, Salt Crus Aquatic I Hydrogel Oxidized Presence Recent II Stunted of	and 4B) It (B11) Invertebrates (B13) In Sulfide Odor (C1) Rhizospheres alor It of Reduced Iron (Iron Reduction in Plants (Iron Remarks) >14	g Living Roots (C3) C4) owed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Primary Indi	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B3) Algal Mat or Crust (B3) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Catology) vations: Present? Yes resent? Yes sent? Yes	of one required (2) (B2) (44) (B6) (Aerial Ima	gery (B7) urface (B8) No <u>X</u>	Water sta 1, 2, 4A, Salt Crus Aquatic I Hydrogei Oxidized Presence Recent II Stunted of Other (Existence)	and 4B) It (B11) Invertebrates (B13) In Sulfide Odor (C1) Rhizospheres alor It of Reduced Iron (It on Reduction in Plants (It of Reduced Plants (It of Remarks)	g Living Roots (C3) C4) owed Soils (C6) (D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Remarks: Plowed field HYDROLO Wetland Hy Primary India Field Obser Surface Water Water Table P Saturation Pre (includes capillar	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundations: Present? Yes resent? Yes sent? Yes y fringe)	ef one required (2) (B2) (B6) (A) (A) (A) (A) (Concave Si	gery (B7) urface (B8) No	Water sta 1, 2, 4A, Salt Crus Aquatic I Hydrogei Oxidized Presence Recent II Stunted of Other (E: Depth (inches): Depth (inches):	and 4B) It (B11) Invertebrates (B13) In Sulfide Odor (C1) Rhizospheres alor It of Reduced Iron (Iron Reduction in Plor Stressed Plants (Iron Reduction in Remarks) Note	Except MLRA Ing Living Roots (C3) C4) Dowed Soils (C6) (D1) (LRR A) Wetland Hydi	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Remarks: Plowed field HYDROLO Wetland Hy Primary India Field Obser Surface Water Water Table P Saturation Pre (includes capillar	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B3) Algal Mat or Crust (B3) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Catology) vations: Present? Yes resent? Yes sent? Yes	ef one required (2) (B2) (B6) (A) (A) (A) (A) (Concave Si	gery (B7) urface (B8) No	Water sta 1, 2, 4A, Salt Crus Aquatic I Hydrogei Oxidized Presence Recent II Stunted of Other (E: Depth (inches): Depth (inches):	and 4B) It (B11) Invertebrates (B13) In Sulfide Odor (C1) Rhizospheres alor It of Reduced Iron (Iron Reduction in Plor Stressed Plants (Iron Reduction in Remarks) Note	Except MLRA Ing Living Roots (C3) C4) Dowed Soils (C6) (D1) (LRR A) Wetland Hydi	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Remarks: Plowed field HYDROLO Wetland Hy Primary India Field Obser Surface Water Water Table P Saturation Pre (includes capillar	drology Indicator cators (minimum of Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B1) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundations: Present? Yes resent? Yes sent? Yes y fringe)	ef one required (2) (B2) (B6) (A) (A) (A) (A) (Concave Si	gery (B7) urface (B8) No	Water sta 1, 2, 4A, Salt Crus Aquatic I Hydrogei Oxidized Presence Recent II Stunted of Other (E: Depth (inches): Depth (inches):	and 4B) It (B11) Invertebrates (B13) In Sulfide Odor (C1) Rhizospheres alor It of Reduced Iron (Iron Reduction in Plor Stressed Plants (Iron Reduction in Remarks) Note	Except MLRA Ing Living Roots (C3) C4) Dowed Soils (C6) (D1) (LRR A) Wetland Hydi	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

Project/Site:	Lochr	er Road		City/County:		Albany/Linn	San	npling Date:	10/15	5/2020
Applicant/Owner:	Hayden Ho	omes				s	tate: OR		Sampling Point:	15
Investigator(s):	СМ	/JT/SE/M	IS	Section, To	wnship, Range:		2	20/11S/3W		
Landform (hillslope,	terrace, etc.:)		Teri	race	Local relief (co	ncave, convex, none):		None	Slope (%):	~5%
Subregion (LRR):		LRR A	4	Lat:	44.599	732° L	ong: -12 ;	3.092472°	Datum:	WGS85
Soil Map Unit Name	»:		Wh	iteson silt loam		NV	/I Classification	n:	None	
Are climatic/hydrolo	gic conditions o	n the site t	ypical for th	is time of year?	Yes	X	No	(if no, expla	in in Remarks)	
Are vegetation	Soil	or Hy	drology	significantly dist	urbed?	Are "Normal Circum	nstances" pres			
Are vegetation	Soil		drology			d, explain any answers	in Remarks.)			
		_ ′	0,				,			
SUMMARY OF	FINDINGS	- Attac	h site m	ap showing san	npling point	locations, trans	ects, impo	rtant featu	res, etc.	
Hydrophytic Vegeta	tion Present?	Yes	Х	No	Is Sampled A	rea within				
Hydric Soil Present?	?	Yes		No X	a Wetla		Yes	N	lo X	
Wetland Hydrology	Present?	Yes		No X						
Remarks:					1					
VEGETATION	- Use scien	tific nar	nes of p	lants.						
			absolut		Indicator	Dominance Test	worksheet:	1		
			% cove	er Species?	Status					
Tree Stratum (plo		30)				Number of Dominan	-			
1 Prunus aviui			5	X	FACU	That are OBL, FACV	V, or FAC:		4	(A)
2 Fraxinus lati	folia		5	X	FACW	L				
3						Total Number of Doi			•	(D)
4						Species Across All S	Strata:		6	(B)
			10	= Total Cover						
Sapling/Shrub Strati		e: 15	_)			Percent of Dominan	t Species			
1 Rubus ursing			20	X	FACU	That are OBL, FACV	V, or FAC:		67%	(A/B)
2 Rubus armei	niacus		10	X	FAC					
3						Prevalence Inde	x Workshee			
4						Total % Cover of		Multiply by:		
5						OBL Species		_ x 1 =	0	
			30	= Total Cover		FACW species FAC Species		_ x 2 = x 3 =	0	
Herb Stratum (plo	ot size:	5)				FACU Species		x4=	0	
1 Phalaris arui	ndinacea		80	x	FACW	UPL Species		x 5 =	0	
2 Schedonorus	s arundinace	eus	20	x	FAC	Column Totals	0	(A)	0	(B)
3		,								
4						Prevalence Inc	dex =B/A =	#0	DIV/0!	
5										
6						Hydrophytic Veg	getation Indi	cators:		
7							1- Rapid	Test for Hydro	phytic Vegetatio	า
8						X		ance Test is >		
			100	= Total Cover				ence Index is ≤		
Mandy Maria Ct.	- (plot size:		`						itions ¹ (provide s	
Woody Vine Stratun	n (plot size:		_'					emarks or on a nd Non-Vascula	a separate sheet ar Plants ¹)
1									ar Plants* c Vegetation ¹ (E)	volain)
2				- Total Cava-		¹ Indicators of hydric			- '	
			0	= Total Cover		disturbed or problem		та пуштоюду П	iusi ne hieselit,	ui IICSS
						Hydrophytic				
% Bare Ground in H	lerb Stratum		0			Vegetation Present?	Ye	s <u>X</u>	No	

Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A12) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Redox Depressions (F8) Restrictive Layer (if present): Type: Depth (inches): Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Mater stained Leaves (B9) (Except MLRA High Water Table (A2) Salturation (A3) Salt Crust (B11) Depleted Matrix (F2) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8) Primary Indicators of hydrophytic vegetation and wetlane hydrology must be present, unless disturbed or problematic. Phype: Hydric Soil Present? Yes No X Remarks: Secondary Indicators (2 or more required water stained Leaves (B9) (Except MLRA) (MLRA1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Mater Marks (B1) Aquatic Invertebrates (B13) Dry-Season Water Table (C2)									Sampling Point: Attachm ent £.47
Color (Prices) No.	Profile Descri	-	the depth	needed to doc			nfirm the absen	ce of indicators.)	
16-20	•		0/	0.1				T (B
Sitty Clay Loam				Color (mois	:) %	Туре			Remarks
Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Couted Sand Grains. Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Couted Sand Grains. The Couted Sand Matrix (S6) Black Histic (A3) Learny Murchy Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Depleted Matrix (F3) Thick Dark Surface (A12) Beginned Matrix (F3) Thick Dark Surface (A12) Sandy Muchy Mineral (B1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) The Couted Sand Grains. The Couted Sand Grains (S4) Redox Depressions (F8) The Couted Sand Fresh (S5) Redox Depressions (F8) The Couted Sand Fresh (F4) The Couted Sand									
Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Sandy Redox (S5) 2 cm Muck (A10) Red Parent Material (TF2) Red Parent Red Parent Material (TF2) Parent Material Red Parent Red Par	16-20	10YR 3/1	100					Silty Clay Loam	
Histosol (A1) Sandy Mucky (A1) Sandy Redox (SS) 2 cm Muck (A10) Red Prenet Material (TF2) Histosol (A1) Sandy Redox (SS) 2 cm Muck (A10) Red Prenet Material (TF2) Black Histo (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Depleted Bellow Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) Redox Dark Surface (F7) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Problematic setrictive Layer (if present): ype: epth (inches): Image: Present P									
Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Sandy Redox (S5) 2 cm Muck (A10) Red Parent Material (TF2) Slave Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Red Parent Material (TF2) Slave Histosol (A2) Stripped Matrix (S6) Red Parent Material (TF2) Slave Histosol (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Other (explain in Remarks) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Other (explain in Remarks) Depleted Dark Surface (A12) Redox Dark Surface (F5) Sandy Mucky Mineral (S1) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Redox Depressions (F8) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Redox Depressions (F8) Sandy Mucky Mineral (S1) Present): //Pice peth (inches): Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Redox Depressions (F8) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Redox Depressions (F8) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Redox Depressions (F8) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Redox Depressions (F8) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S2) Sandy Mucky Mineral (S2) Sandy Mucky Mineral (S2) Sandy Mucky Mineral (S2) Sandy Mineral (S3) Sandy									
Histosol (A1) Sandy (Redox (S5) 2 cm Muck (A10) Sandy Redox (S5) 2 cm Muck (A10) Red Prenett Material (TF2) Slade Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Red Prenett Material (TF2) Slade Histosol (A1) Setuped Matrix (S6) Red Parent Material (TF2) Slade Histosol (A3) Loarny Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Other (explain in Remarks) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Other (explain in Remarks) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Hydrology must be present, unless disturbed or problematic. Sandy Mucky Mineral (S1) Redox Depressions (F8) Present? Yes No X Material (S4) Redox Depressions (F8) Present? Yes No X Material (S4) Redox Depressions (F8) Present? Yes No X Material (S4) Redox Depressions (F8) Present? Yes No X Material (S4) Redox Depressions (F8) Present? Yes No X Material (S4) Redox Depressions (F8) Redox Depression (F8)								_	
Histosol (A1) Histosol (A1) Histosol (A1) Histosol (A1) Histosol (A2) Histosol (A1) Histosol (A2) Histosol (A2) Black Histo (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Depleted Below Dark Surface (A11) Depleted Dark Surface (A12) Sandy Mucky Mineral (F2) Mark Surface (A12) Redox Dark Surface (F2) Sandy Mucky Mineral (F3) Redox Dark Surface (F7) Sandy Mucky Mineral (F3) Redox Depleted Dark Surface (F7) Sandy Mucky Mineral (F3) Redox Depressions (F8) Hydric Soil Present? Yes No X Water stained Leaves (B9) (Except MLRA Hydric Soil Present? Yes No X Saturation (A3) Salt Crust (B1) Dry-Season Water (A1) Saturation (A3) Salt Crust (B1) Dry-Season Water (A13) Aquatic Invertebrates (B13) Dry-Season Water (B2) Apple Mater Crust (B4) Presence of Reduced Inco (A4) Recent from Reduction in Plowed Soils (C8) Surface Soil Crucks (B6) Surface Reserved Are Are Munical Crucks (B7) Sparsely Vegetated Concave Surface (B8) Interface Water Present? Yes No X Depth (inches): Leaf Concept Surface (P7) Present Present? Yes No X Depth (inches): Leaf Crucks (P6) Surface Mater Are Present? Yes No X Depth (inches): Leaf Concept Surface (P7) Present Present? Yes No X Depth (inches): Leaf Concept Surface (P7) Present Present? Yes No X Depth (inches): Leaf Concept Surface (P7) Present Present? Yes No X Depth (inches): Leaf Concept Surface (P7) Present Present? Yes No X Depth (inches): Leaf Concept Surface (P7) Present Present? Yes No X Depth (inches): Leaf Conce	-vne: C=Con	centration D=Denleti	on RM=R6	educed Matrix	CS=Covered	or Coated Sar	nd Grains		² Location: PL=Pore Lining M=Matrix
Histic Epipedon (A2) Black Histo (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A12) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Pedexox Depressions (F8) Pedexox Depressions (F8) Hydric Soil Present? Yes No X Water stained Leaves (B9) (Except MLRA Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Water Jack (B1) Saturation (A3) Saturation (A4) Water Marks (B1) Drift Deposits (B2) Presence of Reduced Iron (C4) Shallow Aquitart (D3) Aquitar (D3) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A4) Presence of Reduced Iron (C4) Shallow Aquitart (D3) Shallow Aquitart (D3) Sparsely Vegetated Concave Surface (B8) Idl Observations: Lurface Water Present? Yes No X Depth (Inches): 220 Wetland Hydrology Present? Yes No X Depth (Inches): 220 Wetland Hydrology Present? Yes No X Depth (Inches): 220 Wetland Hydrology Present? Yes No X Depth (Inches): 220 Wetland Hydrology Present?								Indica	
Black Histic (A3) Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Problematic. Petpth (inches): Hydric Soil Present? Yes No X Water stained Leaves (B9) (Except MLRA High Water Table (A2) Saturation (A3) Salt Crust (B11) Water Marks (B1) Sediment Deposits (B3) Oxidized Rinzisospheres along Living Roots (C3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Crack (B6) Surface (B6) Surface (B1) Agail Mat or Crust (B4) Presence of Reduced Iron (C4) Surface (B1) Redox Depth (Inches): Hydrogen Sulfide (A11) Agail Crust (B11) Presence of Reduced Iron (C4) Surface (B1) Salturation (N3) Salturation (N3) Sulface (F7) Agail Mat or Crust (B4) Presence of Reduced Iron (C4) Surface (F7) Agail Mat or Crust (B4) Presence of Reduced Iron (C4) Sparsely Vegetated Concave Surface (B8) Includation Visible on Aerial Imager (B7) Sparsely Vegetated Concave Surface (B8) Includation Visible on Aerial Imager (B7) Sparsely Vegetated Concave Surface (B8) Indicators of hydrophylic vegetation and wetlan hydrology Present? Against Reduced Present? Yes No X Depth (Inches): 20 Wetland Hydrology must be present, Present? Yes No X Depth (Inches): 220 Wetland Hydrology Present? Yes No X Depth (Inches): 220 Wetland Hydrology Present? Pres Pres Pres Wetland Hydrology Present? Pres Pres Pres Pres No X Depth (Inches): 220 Wetland Hydrology Present? Pres Pr		Histosol (A1)				Sandy Redo	ox (S5)		2 cm Muck (A10)
Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Marix (F2) Depleted Below Dark Surface (A12) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Setrictive Layer (if present): Weet Inches): Hydric Soil Present? Yes No X Surface (A12) Water stained Leaves (B9) Surface (A12) Surface (A13) S		Histic Epipedon (A2)				Stripped Ma	ıtrix (S6)		Red Parent Material (TF2)
Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Redox Depressions (F8) Redox Depressions (F8) Pype: Hydric Soil Present? Yes		Black Histic (A3)				Loamy Muck	ky Mineral (F1)(e	xcept MLRA 1)	Very Shallow Dark Surface (TF12)
Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Sestrictive Layer (if present): ype:		Hydrogen Sulfide (A4	1)			Loamy Gley	ed Matrix (F2)		Other (explain in Remarks)
Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Sestrictive Layer (if present): ype:		Depleted Below Dark	Surface (/	\ 11)		Depleted Ma	atrix (F3)		
Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Redox Depressions (F8) Recondary Indicators (2 or more required (B8) Recondary Indicators (C2 or more required (B8) Recondary Indicators (C2 or more required (B8) Recondary Indicators (C2 or more required (B8) Recondary Indicators (C3 or more required (B8) Recondary Indicators (B6) Recondary Indicat		-	•	,		-			
Sandy Gleyed Matrix (S4) Redox Depressions (F8) Redo		•	•			_	,		³ Indicators of hydrophytic vegetation and wetland
rimary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required Surface Water Atland 4B) Surface Water (A1) Water stained Leaves (B9) (Except MLRA High Water Table (A2) Saturation (A3) Salt Crust (B11) Water Marks (B1) Aquatic Invertebrates (B13) Drainage Patterns (B10) Water Marks (B1) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Algal Mat or Crust (B4) Frost-Heave Hummocks (D7) Surface Soil Cracks (B6) Surface Water Present? Yes No X Depth (inches): Ves No X Depth (inches): Ze0 Wetland Hydrology Present? Yes No X Depth (inches): Ze0 Wetland Hydrology Present? Yes No X Depth (inches): Ze0 Wetland Hydrology Present? Yes No X Depth (inches): Ze0 Wetland Hydrology Present?		-			-	-			, ,
Surface Water (A1) High Water Table (A2) Saturation (A3) Salt Crust (B1) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Ivaliance Water Present? Ivaliance Water Present? Ves No X Water stained Leaves (B9) (Except MLRA (MLRA1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Drainage Patterns (B10) Drainage Patterns (B10) Drainage Patterns (B10) Drainage Patterns (B10) Drainage Patterns (B10) Drainage Patterns (B10) Drainage Patterns (B10) Drainage Patterns (B10) Drainage Patterns (B10) Saturation Visible on Aerial Imager (C2) Saturation Present(R1) Saturation Present(R1) No X Depth (inches): Sparsely Vege table (Laves) Salt Crust (B1) Drainage Patterns (B10) Saturation Visible on Aerial Imager (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Wetland Hydrology Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inche	ype: epth (inches emarks:					- -		Hydric Soil Pres	ent? Yes NoX
High Water Table (A2) Saturation (A3) Salt Crust (B11) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Field Observations: Vater Table Present? Yes No X Depth (inches): Vater Table Present? Yes No Vater Table Present? Yes Vater Table Present? Yes Vater Table Pres	Type: Depth (inchestemarks: Plowed field	d. OGY	'S:					Hydric Soil Pres	eent? Yes NoX
Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Dry-Season Water Table (C2) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imager Drift Deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) ield Observations: urface Water Present? Yes No X Depth (inches): Salt Crust (B11) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (B10) Saturation Present? Yes No X Depth (inches): Salt Crust (B11) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Present? Saturation Present? Yes No X Depth (inches): Salt Crust (B11) Dry-Season Water Table (C2) Saturation Present? Saturation Present? Saturation Present? Saturation Present? Salt Crust (B11) Dry-Season Water Table (C2) Saturation Present? Saturation Present? Saturation Present? Salt Crust (B11) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Present (B10) Saturation Present? Saturation Present? Saturation Present? Saturation Present? Salt Crust (B11) Saturation Present? Saturation Present Present Present Present Present Present Present	emarks: IVDROLO Vetland Hy	d. DGY drology Indicator		uired; check a	all that apply	·)		Hydric Soil Pres	Secondary Indicators (2 or more required)
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) ield Observations: urface Water Present? Yes No X Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Acquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Acquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Acquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Acquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Acquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Acquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Acquation Present? Yes No Acquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Acquation Present? Yes No Acquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager Acquation Present (C1) Saturation Present (C1) Saturation Present (C2) Saturation Present (C1) Saturation Ploved Soils (C6) Fac-Neutral Depth (D2) Fac-Neutral (D3) Fac-Neutral (D4) Fac-Neutral (D5) Fac-Neutral (D5) Fac-Neutral (D5) Fac-Neutral (D5) Fac-Neutral (D5) Fac-Neutr	ype: lepth (inchese emarks: lowed field IYDROLO Vetland Hy rimary India	d. DGY drology Indicator cators (minimum o		uired; check a	ıll that apply	Water staine	ed Leaves (B9) (I		Secondary Indicators (2 or more required) Water stained Leaves (B9)
Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Self Observations: Urface Water Present? Yes No X Depth (inches): Sediment Deposits (B2) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Recent Iron Reduction in Plowed Soils (C6) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Self Observations: Urface Water Present? Yes No X Depth (inches): Presence of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Self Observations: Urface Water Present? Yes No X Depth (inches): Popth (ype: epth (inchese emarks: lowed field YDROLO /etland Hy rimary India	d. OGY drology Indicator cators (minimum o Surface Water (A1)	of one requ	uired; check a	all that apply	Water staine	ed Leaves (B9) (I		Secondary Indicators (2 or more required) Water stained Leaves (B9)
Drift Deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Pron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Stunted Observations: Urface Water Present? Yes No X Depth (inches): Seaturation Present? Yes No X Depth (inches): Depth (inches): Sourdized Rhizospheres along Living Roots (C3) X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Fac-Neutral T	ype: epth (inchesemarks: lowed field YDROLO /etland Hy rimary India	d. OGY drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3)	of one requ	uired; check a	all that apply	Water staine 1, 2, 4A, and Salt Crust (E	ed Leaves (B9) (I d 4B) B11)		Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10)
Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Ield Observations: Irrace Water Present? Yes No X Depth (inches): Inater Table Present? Yes No X Depth (inches):	ype: epth (inchesemarks: lowed field YDROLO /etland Hy rimary India	d. OGY drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3)	of one requ	uired; check a	all that apply	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve	ed Leaves (B9) (i d 4B) B11) ertebrates (B13)		Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10)
Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Ideld Observations: Uniface Water Present? Yes No X Depth (inches): Atter Table Present? Yes No X Depth (inches): >20 Wetland Hydrology Present? Yes No X Depth (inches): >20 Yes No X	ype: epth (inchese emarks: lowed field YDROLO /etland Hy rimary India	d. OGY drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (E	of one requ	uired; check a	all that apply	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve	ed Leaves (B9) (i d 4B) B11) ertebrates (B13) ulfide Odor (C1)	Except MLRA	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery
Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Steld Observations: Intrace Water Present? Yes No X Depth (inches): Interact Table Present? Yes No X Depth (inches): Intrace Water Present? Yes No X Depth (inches): Interact Table Present? Yes No X Depth (inches): Interact Table Present? Yes No X Depth (inches): Interact Table Present? Yes No X Depth (inches): >20 Wetland Hydrology Present? Interact Yes No X Depth (inches): >20 Yes No X	ype: epth (inches emarks: lowed field YDROLO /etland Hy rimary India	d. OGY drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B Drift Deposits (B3)	of one requestions of the second seco	uired; check a	all that apply	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen St Oxidized Rh	ed Leaves (B9) (I d 4B) B11) ertebrates (B13) fulfide Odor (C1) nizospheres along	Except MLRA g Living Roots (C3)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery X Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Ield Observations: Urface Water Present? Yes No X Depth (inches): atter Table Present? Yes No X Depth (inches): Staturation Present? Yes No X Depth (inches): >20 Wetland Hydrology Present? Yes No X Depth (inches): >20 Yes No X	ype: epth (inches emarks: lowed field YDROLO /etland Hy rimary India	d. OGY drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B Drift Deposits (B3)	of one requestions of the second seco	uired; check a	all that apply	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen St Oxidized Rh Presence of	ed Leaves (B9) (i d 4B) B11) ertebrates (B13) iulfide Odor (C1) nizospheres along f Reduced Iron (C	Except MLRA g Living Roots (C3)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery X Geomorphic Position (D2)
Sparsely Vegetated Concave Surface (B8) ield Observations: urface Water Present? Yes No X Depth (inches): atter Table Present? Yes No X Depth (inches): >20 Wetland Hydrology Present? attraction Present? Yes No X Depth (inches): >20 Yes No X	ype: epth (inchesemarks: lowed field YDROLO /etland Hy	d. OGY drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B Drift Deposits (B3) Algal Mat or Crust (B-	of one requestions of the second seco	uired; check a	all that apply	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen St Oxidized Rh Presence of Recent Iron	ed Leaves (B9) (I d 4B) B11) ertebrates (B13) ulfide Odor (C1) nizospheres along f Reduced Iron (C	Except MLRA g Living Roots (C3) C4) wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5)
urface Water Present? Yes No X Depth (inches): atter Table Present? Yes No X Depth (inches): >20 Wetland Hydrology Present? attraction Present? Yes No X Depth (inches): >20 Yes No X	ype: epth (inches emarks: lowed field YDROLO /etland Hy rimary India	d. OGY drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B- Iron Deposits (B5) Surface Soil Cracks (of one requests (2) (32) (4) (86)		all that apply	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen St Oxidized Rh Presence of Recent Iron Stunted or S	ed Leaves (B9) (I d 4B) B11) ertebrates (B13) rulfide Odor (C1) nizospheres along f Reduced Iron (C Reduction in Plo Stressed Plants (I	Except MLRA g Living Roots (C3) C4) wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
ater Table Present? Yes No X Depth (inches): >20 Wetland Hydrology Present? Inturation Present? Yes No X Depth (inches): >20 Yes No X	/pe: epth (inches emarks: owed field YDROLO etland Hy imary India	d. DGY drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on	of one requests 32) 4) (B6) Aerial Image	gery (B7)	all that apply	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen St Oxidized Rh Presence of Recent Iron Stunted or S	ed Leaves (B9) (I d 4B) B11) ertebrates (B13) rulfide Odor (C1) nizospheres along f Reduced Iron (C Reduction in Plo Stressed Plants (I	Except MLRA g Living Roots (C3) C4) wed Soils (C6)	Secondary Indicators (2 or more required Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imager X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
aturation Present? Yes No X Depth (inches): >20 Yes No X	ype: epth (inches emarks: lowed field YDROLO /etland Hy rimary India	d. dology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B- Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundator)	of one requests 32) 4) (B6) Aerial Image	gery (B7)	all that apply	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen St Oxidized Rh Presence of Recent Iron Stunted or S	ed Leaves (B9) (I d 4B) B11) ertebrates (B13) rulfide Odor (C1) nizospheres along f Reduced Iron (C Reduction in Plo Stressed Plants (I	Except MLRA g Living Roots (C3) C4) wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
	ype: lepth (inches lowed field lyprolo	d. OGY drology Indicator cators (minimum of Surface Water (A1)) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B3) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated Catorials	of one requests 32) 4) (B6) Aerial Image	gery (B7) urface (B8)		Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen St Oxidized Rh Presence of Recent Iron Stunted or S Other (Expla	ed Leaves (B9) (I d 4B) B11) ertebrates (B13) rulfide Odor (C1) nizospheres along f Reduced Iron (C Reduction in Plo Stressed Plants (I	Except MLRA g Living Roots (C3) C4) wed Soils (C6)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
	ype: lepth (inches emarks: lowed field lyprolo fetland Hy rimary India liprolo	d. OGY drology Indicator cators (minimum of Surface Water (A1)) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B3) Algal Mat or Crust (B3) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Catorial Control Contro	of one requests 32) 4) (B6) Aerial Image	gery (B7) urface (B8)	Depth	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen Si Oxidized Rh Presence of Recent Iron Stunted or S Other (Explain	ed Leaves (B9) (I d 4B) B11) ertebrates (B13) ulfide Odor (C1) nizospheres along f Reduced Iron (C Reduction in Plo Stressed Plants (I ain in Remarks)	g Living Roots (C3) (24) wed Soils (C6) D1) (LRR A)	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
	ield Obser urface Water Table P aturation Pre actuals a spirit and the spirit and	d. OGY drology Indicator cators (minimum o Surface Water (A1) High Water Table (A2 Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B- Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Inundation Visible on Vations: Present? Yes Iresent? Yes Iresent? Yes Iresent? Yes	of one requests 32) 4) (B6) Aerial Image Concave Su	gery (B7) urface (B8) No X No X No X	Depth Depth	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen St Oxidized Rh Presence of Recent Iron Stunted or S Other (Explain In (inches): In (ed Leaves (B9) (I d 4B) B11) ertebrates (B13) ulfide Odor (C1) nizospheres along f Reduced Iron (C Reduction in Plo Stressed Plants (I ain in Remarks)	g Living Roots (C3) (C4) (Wed Soils (C6) (C1) (LRR A) Wetland Hydi	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
	Plowed field HYDROLO Vetland Hy Primary India Field Obser Surface Water Vater Table P Saturation Presentled in Surface applications of the surface and	d. OGY drology Indicator cators (minimum of Surface Water (A1)) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B3) Algal Mat or Crust (B3) Iron Deposits (B5) Surface Soil Cracks (Inundation Visible on Sparsely Vegetated (Catorial Control of Present? Yes Iresent?	of one requests 32) 4) (B6) Aerial Image Concave Su	gery (B7) urface (B8) No X No X No X	Depth Depth	Water staine 1, 2, 4A, and Salt Crust (E Aquatic Inve Hydrogen St Oxidized Rh Presence of Recent Iron Stunted or S Other (Explain In (inches): In (ed Leaves (B9) (I d 4B) B11) ertebrates (B13) ulfide Odor (C1) nizospheres along f Reduced Iron (C Reduction in Plo Stressed Plants (I ain in Remarks)	g Living Roots (C3) (C4) (Wed Soils (C6) (C1) (LRR A) Wetland Hydi	Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

РНS# 6869 WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region himent E.48

Project/Site:	Lochr	er Road	<u> </u>	_	City/County:	A	lbany/Linn		Samp	ling Date:	10	/15/2020
Applicant/Owner:	Hayden He	omes						State:	OR		Sampling Poir	nt: 16
Investigator(s):		MS			Section, To	wnship, Range:			20	/11S/3W		
Landform (hillslope,	terrace, etc.:)		Tei	race		Local relief (cor	ncave, convex,	none):	N	one	Slope (%	o): 1%
Subregion (LRR):		LRR	A		Lat:	44.6022	270°	Long:	-123.	091842°	Datur	n: WGS85
Soil Map Unit Name	:		-	Amity	silt loam			NWI Cla	assification:		None	
Are climatic/hydrolog	gic conditions o	n the site	typical for t	his tim	e of year?	Yes	Х	No		(if no, expl	ain in Remarks	<u> </u>
Are vegetation	Soil	or H	ydrology		significantly dist	urbed?	Are "Normal	Circumstan	ces" preser	t? (Y/N)	Υ	_
Are vegetation	Soil	or H	ydrology		naturally proble	matic? If needed	, explain any a	nswers in R	emarks.)			
	FINIDINGS	A 44 -	-l!4			!!				44-		
SUMMARY OF					mowing san	ipling point	iocations, 1	ransects	s, import	ant teati	ures, etc.	
Hydrophytic Vegetat		Yes Yes	X	- No		Is Sampled Ar		V-	v		No	
Hydric Soil Present?		-	X	-		a Wetlar	nd?	Yes	X	•	No	_
Wetland Hydrology F	riesent?	Yes	Х	No_								
Remarks:												
VEGETATION -	- Use scien	tific na	mes of r	olants	S.							
			absolu		Dominant	Indicator	Dominance	e Test wo	rksheet:			
Too a Charat	. .:	,	% cov	er	Species?	Status						
Tree Stratum (plo	ι size:)				Number of Do	-			4	(A)
1							That are OBL	., FACW, or	FAC:		1	(A)
3							Total Number	of Domina	nt			
4							Species Acro				1	(B)
-			0		= Total Cover		1					<u> </u>
Sapling/Shrub Stratu	ım (nlot size) :)				Percent of Do	ominant Spe	ecies			
1	(PIOL 3126		- ′				That are OBL	•			100%	(A/B)
2									-		-	_` ′
3							Prevalence	Index W	orksheet:			
4							Total % Cove	er of		Multiply by	<u>r:</u>	
5							OBL Sp			x 1 =	0	_
			0		= Total Cover		FACW s	-		x 2 =	0	_
Herb Stratum (plo	t size:	5)				FAC Sp FACU S			x 3 = x 4 =	0	_
1 Schedonorus	-		, 100		X	FAC	UPL Sp	•		x 5 =	0	_
	, ar arramaec						Column		0	(A)	0	(B)
3										•		
4				_			Prevale	nce Index =	:B/A =	#	DIV/0!	_
5							<u> </u>					
6							Hydrophyt	-				
7							-			•	ophytic Vegeta	ition
8			400		- Total Carra		-		2- Dominar3-Prevalen			
			100		= Total Cover		<u> </u>		in .		≤ 3.⊍ tations¹ (provid	e supporting
Woody Vine Stratum	(plot size:	_)				I —		1		a separate she	
1									5- Wetland	Non-Vascu	ılar Plants ¹	
2				_					Problemati	C Hydrophy	tic Vegetation ¹	(Explain)
			0		= Total Cover					hydrology	must be prese	nt, unless
							disturbed or p					
% Bare Ground in H	erb Stratum			_			Vegetation		Yes	Х	N	o
				•			Present?				-	
Remarks:												

Profite Description: Clescribe to the depth seveds to document the Indicator or confirm the absence of Indicators; Druph Matrix Rector Features: Color (moist) % Color (moist) % Color (moist) % Type Loc Touture Remarks	SOIL			PHS #	6869			Sampling Point: Attachm ent £. 49
Color (missi) Sc. Color (missi) Sc. Color (missi) Sc. Type Lore Texture Remarks	Profile Descri	otion: (Describe to	the depth	needed to docume	nt the indicato	r or confirm the a	bsence of indicators.)	
1978 4/2 95 7.5 yrk 4/6 5 C M,PL Silt Loam Fine	=	•				,		
Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coated Sand Grains. Ptydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histoc Epipedon (AC) Shipped Matrix (SS) Black Histoc (A3) Loamy Mutry Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Hydrogen Sulfice (A4) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Redox Dark Surface (F2) Sandy Mutry Mineral (R1) Sandy Mutry Mineral (R1) Sandy Mutry Mineral (R1) Sandy Mutry Mineral (R1) Redox Dark Surface (F7) Probe Sandy Mutry Mineral (R1) Sandy Gieyed Matrix (S4) Restrictive Layer (if present): Pype: Depth (norhes): Primary Indicators (minimum or one required); check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA Hydric Soil Present? Yes X No Premarks: Primary Indicators (minimum or one required); check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA Hydric Soil Present? Yes X No Secondary Indicators (2 or more required); check all that apply) Secondary Indicators (2 or more required); check all that apply) Secondary Indicators (2 or more required); check all that apply) Secondary Indicators (2 or more required); check all that apply) Secondary Indicators (2 or more required); check all that apply) Secondary Indicators (2 or more required); check all that apply) Secondary Indicators (2 or more required); check all that apply (MLRA 1, 2, 4A, and 4B) Surface Water (A1) Surface Water (A1) Redox Depleting (B0) Redox Depl						<i></i> _		<u> </u>
Historal (A1) Sandy Redox (S5) 2 cm Muck (A10) Historal (A2) Stripped Matrix (S6) 2 cm Muck (A10) Historal (A2) Stripped Matrix (S6) Red Parent Material (TF2) Black Histor (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Hydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Other (exptain in Remarks) Depleted Below Dark Surface (A11) X Depleted Matrix (F3) Thick Dark Surface (A12) Redox Dark Surface (F7) Thick Dark Surface (A12) Redox Dark Surface (F7) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Redox Depressions (F8) Redox Depressions (F8) Redox Dark Surface (F7) Problematic Restrictive Layer (if present): Pupe: Pepth (inches): Hydric Soil Present? Yes X No Water stained Leaves (B9) (Except MLRA High Water Table (A2) 1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) High Water Table (A2) Saluration (Psessor) Saluration (A3) Salt Coust (B11) Drainage Patterns (B10) Mater Marks (B1) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Apple Mater Crust (B4) Presence of Reduced Iron (C4) Saluration (Visible on Aerial Imagery (B7) Surface Soil Cracks (B6) Surface (B1) Surface (B1) Recent (B1) Reconstruction (B3) Recent Iron Reduction in Plowed Soils (C6) Fac-Neutral Test (O5) Surface Soil Cracks (B6) Surface (B1) Other (Explain in Remarks) Field Observations: Field Observations: Surface Water Present? Yes No X Depth (inches):	4-16	10YR 4/2	85	7.5YR 4/6		<u>C M,PL</u>	Silt Loam	Fine
ydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histoscol (A1) Histoscol (A1) Histoscol (A1) Histoscol (A1) Histoscol (A1) Histoscol (A1) Black Histo; (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Depleted Bellow Dark Surface (A11) Thick Dark Surface (A11) Thick Dark Surface (A11) Sandy Mucky Mineral (F1) (except MLRA 1) Depleted Bellow Dark Surface (A11) Thick Dark Surface (A12) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Problematic Startive Layer (if present): ype: weight (inches): With Gold Present? Yes X No Water stained Leaves (B9) (Except MLRA Hydric Soil Present? Yes X No Water stained Leaves (B9) (Except MLRA Muter stained Leaves (B9) (Except MLRA Muter stained Leaves (B9) Muter Marks (B1) Sediment Deposits (B2) Hydrogen Sulfide (A4) Portion of hydrophylic vegetation and wetland hydrology must be present. unless disturbed or problematic. Problematic Water stained Leaves (B9) (Except MLRA Muter stained Leaves (B9) (Except MLRA Muter stained Leaves (B9) Muter stained Leaves (B9) Muter stained Leaves (B9) Muter Marks (B1) Saturation (A3) Saturation (A4) Presence of Reducted Iron (C4) Saturation (Valle on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Water All Hydrosogy Present? Ves No X Depth (inches): Saturation Present? Ves No X Depth (inches): Saturation Present? Ves No X Depth (inches): Saturation Present? Ves No X Depth (inches): Saturation Present? Ves No X Depth (inches): Saturation Present? Ves N								
Histosot (A1)								
Histic Epipedon (A2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Loamy Mucky Mineral (F1) (except MLRA 1) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Present (S1)	Hydric Soil I	ndicators: (Appl	icable to	all LRRs, unless	s otherwise n	oted.)	Indi	cators for Problematic Hydric Soils ³ :
Black Histic (A3) Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Popelhed Dark Surface (F7) Primary Indicators of hydrophylic vegetation and wetland hydrology must be present, unless disturbed or problematic. Popelh (inches): Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Saturation (A3) Saturation (A4) Saturation (A	H	Histosol (A1)			Sand	y Redox (S5)		2 cm Muck (A10)
Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Settrictive Layer (if present): Type: Perpth (inches): Primary Indicators Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Seturation (A4) Seturat	H	Histic Epipedon (A2)			Stripp	oed Matrix (S6)		Red Parent Material (TF2)
Depleted Below Dark Surface (A12) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Pepted Dark Surface (F7) Redox Depressions (F8) Pepted Dark Surface (F7) Redox Depressions (F8) Problematic. Restrictive Layer (if present): Pype: Peptih (inches): Peptih	F	Black Histic (A3)			Loam	ny Mucky Mineral (I	F1)(except MLRA 1)	Very Shallow Dark Surface (TF12)
Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Pepth (inches): Popth (inches): Primary Indicators Surface Water (A1) Saturation (A3) Saturation (B10) Water Marks (B1) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (B10) Water Marks (B1) Saturation (A3) Saturation (B10) Water Marks (B1) Saturation (A3) Saturation (B10) Water Marks (B1) Saturation (B10) Saturation (B10)	ŀ	Hydrogen Sulfide (A4	1)		Loam	ny Gleyed Matrix (F	⁵ 2)	Other (explain in Remarks)
Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Redox Depressions (Particular Sulface (R8)) Recondary Indicators (2 or more required; Depressions (R9) (MLRA1, 2, 4A, and 4B) Redox Depressions (R9) Recondary Indicators (2 or more required; Depressions (R9) Recondary Indicators (R9)		Depleted Below Dark	Surface (A11)	X Deple	eted Matrix (F3)		
Sandy Mucry Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Redox Depression (F8) Redox Depr		Γhick Dark Surface (<i>i</i>	A12)		Redo	x Dark Surface (F6	5)	
Redox Depressions (F8) Redox Depression		Sandy Mucky Minera	I (S1)		Deple	eted Dark Surface	(F7)	, , , ,
Restrictive Layer (if present): Pype: Pyp		•						, ,
Surface Water (A1) High Water Table (A2) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Surface Water Present? Ves No X Depth (inches): Saturation Leaves (B9) (Except MLRA Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (B10) Saturation Visible on Aerial Imagery (B10) Sparsely Vegetated Concave Surface (B8) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (B10) Sparsely Vegetated Concave (B10) Sparsely Vegetated Concave Surface (B8) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (B10) Sparsely Vegetated Concave (B10) No X Depth (inches): Sparsely Vegetated Concave Surface (B10) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Dry-Season Water Table (C2) Saturation Present (A10) Sparsely Vegetater Sparsely Vegetated (C1) Saturation Present? Ves No X Depth (inches): Sparsely Vegetated Concave Surface (B10) Water Table Present? Ves No No No No No Depth (inches): Sparsely Vegetated Concave Surface (B10) Water Table Present? Ves No			s:					
High Water Table (A2) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Dry-Season Water Table (C2) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Saturation (B11) Aquatic Invertebrates (B13) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Present (C1) Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No X No Saturation Visible on Aerial Imagery Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Brost-Heave Hummocks (D7) Saturation Present? Yes No X Depth (inches): Saturation Present? Yes No No No No No No No No No N	Primary Indic	ators (minimum o	f one rec	quired; check all th	at apply)			Secondary Indicators (2 or more required)
Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Dry-Season Water Table (C2) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: urface Water Present? Yes No X Salt Crust (B11) Aquatic Invertebrates (B13) Aq		Surface Water (A1)					B9) (Except MLRA	
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery X Oxidized Rhizospheres along Living Roots (C3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) ield Observations: urface Water Present? Yes No X Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery X Oxidized Rhizospheres along Living Roots (C3) X Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Frost-Heave Hummocks (D7) Depth (inches): Vater Table Present? Yes No X Depth (inches): >16 Wetland Hydrology Present? Yes X No	H	High Water Table (A2	2)		1, 2,	4A, and 4B)		(MLRA1, 2, 4A, and 4B)
Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Ield Observations: Urface Water Present? Yes No X Oxidized Rhizospheres along Living Roots (C3) X Geomorphic Position (D2) X Shallow Aquitard (D3) Fac-Neutral Test (D5) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Ield Observations: Urface Water Present? Yes No X Depth (inches): Seturation Present? Yes No No No No No No No No No N		Saturation (A3)			Salt (Crust (B11)		Drainage Patterns (B10)
Drift Deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Proposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Stunted Observations: Urface Water Present? Yes No X Depth (inches): Surface Vater Table Present? Yes No X Depth (inches): Depth (inches): Surface Water Present? Yes No X Depth (inches): Surface Water Present? Surface Water Present? Yes No X No	\	Water Marks (B1)					•	Dry-Season Water Table (C2)
Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Ield Observations: Urface Water Present? Yes No X Depth (inches): Vater Table Present? Yes No X No			32)			_		
Iron Deposits (B5) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Ield Observations: Urface Water Present? Yes No X Depth (inches): Vater Table Present? Yes No X No X Depth (inches): Vater Table Pr						•		· · · · · · · ·
Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Ield Observations: Urface Water Present? Yes No X Depth (inches): Vater Table Present? Yes No X Depth (inches): >16 Wetland Hydrology Present? Yes No X Depth (inches): >16 Wetland Hydrology Present? Yes X No		-	4)				` ,	
Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) ield Observations: urface Water Present? Yes							` ,	
Sparsely Vegetated Concave Surface (B8) ield Observations: urface Water Present? Yes				(D7)			. , .	
urface Water Present? Yes No X Depth (inches): /ater Table Present? Yes No X Depth (inches): >16 Wetland Hydrology Present? aturation Present? Yes No X Depth (inches): >16 Yes X No					Otne	r (Expiain in Remai	rks)	Frost-Heave Hummocks (D7)
/ater Table Present? Yes No X Depth (inches): >16 Wetland Hydrology Present? aturation Present? Yes No X Depth (inches): >16 Yes X No	ield Obser	vations:						
aturation Present? Yes No X Depth (inches): >16 Yes X No	urface Water	Present? Yes		No X	Depth (inch	es):		
	Vater Table Pr	esent? Yes		No X	Depth (inch	es): >16	Wetland Hy	drology Present?
ncludes capillary fringe)				No X	Depth (inch	es): >16	_	Yes X No

рнs # 6869 WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region himent E.50

Project/Site:	Lochner Road	d	City/County:	A	lbany/Linn		Sampling Da	ite:	10/15	5/2020
Applicant/Owner:	Hayden Homes		-			State: (OR .	Sam	npling Point:	17
Investigator(s):	SE/MS		Section, To	wnship, Range:		-	20/11S/		· -	
Landform (hillslope, to	errace, etc.:)	Terrace	•	Local relief (con	icave, convex, none	e):	None		Slope (%):	1%
Subregion (LRR):	LRR	A	Lat:	44.6022	46°	Long:	-123.09200	8°	Datum:	WGS85
Soil Map Unit Name:		Amity	silt loam			NWI Classifi	cation:		None	
Are climatic/hydrolog	ic conditions on the site			Yes	X	No	(if no,	explain ir	n Remarks)	
Are vegetation	Soil or F	lydrology	significantly dist	urbed?	Are "Normal Circ	umstances"	present? (Y/I	N)	Υ	
Are vegetation	Soil or F		_		, explain any answe	ers in Remar	ks.)	_		
	<u> </u>		•							
SUMMARY OF	FINDINGS – Atta	ch site map s	showing san	npling point l	ocations, tran	sects, in	portant fe	eatures	s, etc.	
Hydrophytic Vegetation	on Present? Yes	X No		Is Sampled Are	ea within					
Hydric Soil Present?	Yes	No	X	a Wetlan		Yes		No_	X	
Wetland Hydrology P	Present? Yes	No.	X							
Remarks:										
VEGETATION -	Use scientific na	mes of plant								
		absolute % cover	Dominant Species?	Indicator Status	Dominance Te	st worksh	eet:			
<u>Tree Stratum</u> (plot	: size:)	орооюз:	Otatus	Number of Domin	ant Species				
1		·'			That are OBL, FA	•		1		(A)
2					Í					· ,
3					Total Number of D	Dominant				
4					Species Across A	II Strata:		1		(B)
		0	= Total Cover							
Sapling/Shrub Stratu	m (plot size:)			Percent of Domina	ant Species				
1		— ′			That are OBL, FA	·	D:	1009	%	(A/B)
2										,
3					Prevalence Inc	dex Works	heet:			
4					Total % Cover of		Multip	ly by:		
5					OBL Specie	es	x	1 = _	0	
		0	= Total Cover		FACW specie			2 = _	0	
Herb Stratum (plot	: size: 5	\			FAC Specie			3 = _	0	
1 Schedonorus		, 100	X	FAC	FACU Specie UPL Specie	-		4 = 5 =	0	
_				- FAC	Column Tota		0 (A)	<u> </u>		(B)
3					Coldillii Tota		(A)	_		(0)
4					Prevalence	Index =B/A	=	#DIV	/0!	
5										
6					Hydrophytic V	egetation	Indicators:			
7						1- R	apid Test for l	Hydrophy	rtic Vegetatio	า
8					Х	2- D	ominance Tes	st is >50%	6	
		100	= Total Cover				evalence Inde			
	(-1-4 -'	`					orphological A			
Woody Vine Stratum	(plot size:)					in Remarks o)
1							/etland Non-V			(plain)
2			- Total C		1 Indicators of hards		elematic Hydro			
		0	= Total Cover		¹ Indicators of hydrodisturbed or problem		veuanu nyuro	ogy must	ue present,	uilless
					Hydrophytic					
					•			.,		
% Bare Ground in He	erb Stratum				Vegetation Present?		Yes	<u>x</u>	No	

Doppin Matrix Floor Features Floor Features Floor Floor Testure Floor Fl	Color Colo	Depth (Inches) Color (moist) 0-9 10YR 3/2 9-17 10YR 3/2 Type: C=Concentration, D=Deplet Hydric Soil Indicators: (App Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A Depleted Below Dari Thick Dark Surface (A)	% Color (moist 97 5YR 3/4 100 ion, RM=Reduced Matrix, 0 icable to all LRRs, un	Redox Features Year	Loc ² Texture M Sandy Loam Sandy Loam	Remarks Fine to Medium Location: PL=Pore Lining, M=Matrix.
Color (most) Section		(Inches) Color (moist) 0-9 10YR 3/2 9-17 10YR 3/2 Type: C=Concentration, D=Deplet Hydric Soil Indicators: (App Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A Depleted Below Dari Thick Dark Surface (A)	97 5YR 3/4 100 ion, RM=Reduced Matrix, 0 icable to all LRRs, un	3 C CS=Covered or Coated Saless otherwise noted. Sandy Redo	M Sandy Loam Sandy Loam	Fine to Medium 2 Location: PL=Pore Lining, M=Matrix.
0-9	10	0-9 10YR 3/2 9-17 10YR 3/2 Type: C=Concentration, D=Deplet Hydric Soil Indicators: (App Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A Depleted Below Dari Thick Dark Surface (97 5YR 3/4 100 ion, RM=Reduced Matrix, 0 icable to all LRRs, un	3 C CS=Covered or Coated Sa less otherwise noted. Sandy Rede	M Sandy Loam Sandy Loam	Fine to Medium 2 Location: PL=Pore Lining, M=Matrix.
Sandy Loam Sandy Loam	### Sandy Loam Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Downed or Coated Sand Grains. *Location: PL=Persy Lining, M=Matrix, Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils*; 2 cm Muck (A10) Red Parent Material (TF2) Simple Matrix (SS) 2 cm Muck (A10) Red Parent Material (TF2) Publishes (A3) Loarry Mixely Mineral (F1) (except MLRA) Very Shand Dark Surface (F1) Usery Shand Matrix (F2) Other (explain in Remarks) Depleted Below Dark Surface (A11) Depleted Dark Surface (F2) Indicators of hydrochytic vegetation and wells hydrology mad be present, unless disturbed problematic (F2) Present); Redox Dark Surface (F2) Indicators of hydrochytic vegetation and wells hydrology mad be present, unless disturbed problematic. Present; Pres	9-17 10YR 3/2 Type: C=Concentration, D=Deplet Hydric Soil Indicators: (App Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A Depleted Below Dari Thick Dark Surface (ion, RM=Reduced Matrix, 0	CS=Covered or Coated Sa less otherwise noted. Sandy Redo	Sandy Loam	² Location: PL=Pore Lining, M=Matrix.
Type: C~Concentration, D~Depleton, RM=Reduced Matrix, CS+Covered or Coated Sand Grains. ***Pydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histic Epipedon (A2) Sintped Metrix (88) Red Parent Meterial (TF2)	"Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coaled Sand Grains. Type: C=Concentration, D=Depletion, RM=Reduced Matrix, CS=Covered or Coaled Sand Grains. Thydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Pcoblematic Hydric Soile ³ ; Historic Epipedon (A2) Black Histic (A3) Loarry Mulcky Mineral (F1) (except MLRA 1) Perpletion Sulfide (A4) Depletion Sulfide (A4) Sandy Mucky Mineral (S1) Sandy Muky Mineral (S1) Sandy Muky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Problematic. Redox Depressions (F8) Problematic. Redox Depressions (F8) Wetland Hydrology Indicators: Primary Indicators (Innimum of one required; check all that apply) Secondary Indicators (2 or more required poly in the secondary indicators (2 or more required solution) (MLRA1, 2, 4A, and 4B) High Water Table (A2) Saturation (A3) Saturation (A4) Pressure of Reduced Inni (C4) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A4) Pressure of Reduced Inni (C4) Saturation (A3) Saturation (A4) Pressure of Reduced Inni (C4) Saturation (A4) Pressure of Reduced Inni (C4) Saturation (A4) Finost-Heave Hummooks (D7) Sparsely Vegotated Concave Surface (B8) Finost-Heave Hummooks (Hydric Soil Indicators: (App Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A Depleted Below Dari	ion, RM=Reduced Matrix, 0	less otherwise noted. Sandy Red	nd Grains.	² Location: PL=Pore Lining, M=Matrix.
Historal (A1) Sandy Redox (S5) 2 cm Muck (A10) Historal (A2) Stripped Matrix (S6) 2 cm Muck (A10) Historal (A2) Stripped Matrix (S6) Red Parent Material (TF2) Black Historal (A2) Loarny Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Hydrogen Sulfide (A4) Loarny Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Depicted Below Dark Surface (A11) Depicted Matrix (F3) Thick Dark Surface (A12) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depicted Dark Surface (F7) Sandy Mucky Mineral (S1) Depicted Dark Surface (F7) Sandy Mucky Mineral (S1) Depicted Dark Surface (F7) Sandy Mucky Mineral (S1) Redox Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Popple (inches): Hydric Soil Present? Yes No X Water stained Leaves (B9) (Except MLRA Hydric Soil Present? Yes No X Water stained Leaves (B9) (Except MLRA Muter stained Leaves (B9) (Except MLRA High Water Table (A2) 1, 2, 4A, and 4B) High Water Table (A2) 1, 2, 4A, and 4B) Saturation (A3) Sait Crust (B1) Dry-Season Water Table (C2) Sadiment Deposits (B3) Oxidized Rhizospheros along Living Roots (C3) Geomorphic Position (D2) Sadiment Deposits (B3) Oxidized Rhizospheros along Living Roots (C3) Geomorphic Position (D2) Agal Mat or Crust (B4) Presence of Reduced Iron (C4) Saturation Visible on Aerial Imagery Dry-Season Water Table (C2) Spansely Vegetated Concave Surface (B8) Field Observations: Surface Water Present? Yes No X Depth (inches): Surface Nater Present? Yes No X Depth (inches): Surface Water Present? Yes No X Dept	Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) Histocol (A1) Sandy Redox (S5) Pissed (A1) Sandy Redox (S5) Sandy Redox (S5) Red Parent Material (TF2) Black Histocol (A2) Black Histocol (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF1; Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A12) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Redox Depressions (F8) Primary Indicators of hydrophytic vegetation and wetla hydrology must be present, unless disturbed of problematic. **Restrictive Layer (if present):** Type: Depth (inches): Primary Indicators (minimum of one required; check all that apply) Surface Water (A11) Water stained Leaves (B9) (Except MLRA High Water Table (A2) Saturation (A3) Salt Crust (B11) Water Marks (B1) Water Marks (B1) Aguatio Invertebrates (B13) Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) Sadimen Deposits (B2) Presence of Reduced fron (C4) Sandy Algal Mat or Crust (B4) Presence of Reduced fron (C4) Spansol Vagetated Concave Surface (B8) Indicators (F7) Spansol Valer (Table (A2) Surface Soil Crust (B4) Surface Soil Crust (B6) Surface Soil Crust (B6) Sedimen Deposits (B5) Surface Soil Crust (B6) Surface Soil Crust (B6) Surface Soil Crust (B6) Surface Soil Crust (B6) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface Water Faster (Explain in Remarks) Frost-Heave Hummocks (D7) Spansol Vegetated Concave Surface (B8) Frost-Heave Humm	Hydric Soil Indicators: (App Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A Depleted Below Dari Thick Dark Surface (icable to all LRRs, un	less otherwise noted. Sandy Red		
Histosol (A1) Sandy Madox (S5) 2 cm Muck (A10) Histosol (A2) Stityped Matrix (S6) 2 cm Muck (A10) Histosol (A2) Stityped Matrix (S6) Red Parent Material (TF2) Black Histo (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Depleted Balso Dark Surface (A11) Depleted Dark Surface (F2) Other (explain in Remarks) Depleted Dark Surface (A12) Redox Dark Surface (F3) Sandy Mucky Mineral (S1) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Hydroghyrlic vegetation and wetland hydrology must be present; Sandy Gleyed Matrix (S4) Redox Depressions (F8) Problematic. **PORTION OF Thick Dark Surface (F7) Hydroghyrlic vegetation and wetland hydrology must be present; **Powed field.** **PORTION OF Thick Dark Surface (F7) Hydroghyrlic vegetation and wetland hydrology must be present; **Powed field.** **PORTION OF Thick Dark Surface (F7) Hydroghyrlic vegetation and wetland hydrology must be present; **Powed field.** **PORTION OF Thick Dark Surface (F7) Hydroghyrlic vegetation and wetland hydrology indicators (Type (Histora (A1) Histora (A1) Histora (A1) Histora (A1) Histora (A1) Histora (A1) Histora (A2) Histora (A2) Black Histora (A2) Black Histora (A2) Depleted Matrix (S6) Black Histora (A2) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Depleted Below Dark Surface (A12) Depleted Matrix (F3) Depleted Matrix (F3) Principal Matrix (F3) Depleted Matrix (F3) Depleted Matrix (F3) Depleted Matrix (F3) Depleted Matrix (F3) Principal Matrix (F3) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Depleted Matrix (F3) Depleted Dark Surface (F7) Sandy Gleyed Matrix (K4) Redox Depressions (F8) Principal Matrix (F3) Principal Matrix (F3) Depleted Matrix (F3) Depleted Dark Surface (F7) Principal Matrix (F3) Depleted Matrix (F3) Depleted Dark Surface (F7) No Sandy Gleyed Matrix (F3) Depleted Dark Surface (F7) No Sandy Gleyed Matrix (F4) No Surface Nater (F1) No Surface Nater (F1) No Surface Nater (F1) No Sandy Gleyed Matrix (F4) No S	Hydric Soil Indicators: (App Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A Depleted Below Dari Thick Dark Surface (icable to all LRRs, un	less otherwise noted. Sandy Red		
Histosol (A1) Sandy Mucky (S6) Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Histosol (A1) Sandy Mucky (S6) Red Parent Material (TF2) Black Histo (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Depleted Ballow Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) Redox Dark Surface (F5) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Redox Dark Surface (F7) Hydrogley must be present, unless disturbed or problematic. Restrictive Layer (If present): ype: pepth (inches): Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA High Water Table (A2) 1, 2, 4A, and 4B) High Water Table (A2) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) Geomorphic Position (C2) Appla Mater Crust (B4) Presence of Reduced Iron (C4) Saturation (C3) Surface Soil Crusts (B6) Surface Soil Crusts	Secondary Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils.	Hydric Soil Indicators: (App Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A Depleted Below Dari Thick Dark Surface (icable to all LRRs, un	less otherwise noted. Sandy Red		
Histosol (A1) Sandy Mucky (S6) Indicators: (Applicable to all LRRs, unless otherwise noted.) Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Histosol (A1) Sandy Redox (S5) 2 cm Muck (A10) Histosol (A1) Sandy Mucky (S6) Red Parent Material (TF2) Black Histo (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Depleted Ballow Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) Redox Dark Surface (F5) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Redox Dark Surface (F7) Hydrogley must be present, unless disturbed or problematic. Restrictive Layer (If present): ype: pepth (inches): Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Water stained Leaves (B9) (Except MLRA High Water Table (A2) 1, 2, 4A, and 4B) High Water Table (A2) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Saturation Visible on Aerial Imagery Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) Geomorphic Position (C2) Appla Mater Crust (B4) Presence of Reduced Iron (C4) Saturation (C3) Surface Soil Crusts (B6) Surface Soil Crusts	Secondary Indicators: (Applicable to all LRRs, unless otherwise noted.) Indicators for Problematic Hydric Soils.	Hydric Soil Indicators: (App Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A Depleted Below Dari Thick Dark Surface (icable to all LRRs, un	less otherwise noted. Sandy Red		
Histosol (A1) Histic Epipedon (A2) Sandy Redox (S5) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Hydrogen Sulfide (A4) Loamy Mucky Mineral (F1) (except MLRA 1) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) September (A12) Redox Dark Surface (F6) Redox Dark Surface (F7) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if present): PUPP: PUPP (F1) Redox Depressions (F8) Hydric Soil Present? Yes No X Aquata (MLRA1, 2, 4A, and 4B) Mater Table (A2) Surface Water (A1) Water Salide Odor (C1) Sediment Deposits (B3) Dirit Deposits (B3) Aquata (hydrology Sudicators (B13) Dirit Deposits (B3) Aquata (hydrology Sudicator (C4) Aquata (hydrology Sudicator (B4) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Sudicate (B8) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Sudicate (B8) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Sudicate (B8) Frost-Heave Hummocks (D7) Sparsely Persent? Yes No X Depth (inches): Durit Carbon (F2) Depth (inches): Durit Carbon (F6)	Histosol (A1) Histo Epipadon (A2) Black Histic (A3) Loamy Mukcyk Mineral (F1) (except MLRA 1) Phydrogen Sulfide (A4) Loamy Gleyed Matrix (F2) Depleted Below Dark Surface (A11) Depleted Matrix (F3) Thick Dark Surface (A12) Sandy Mucky Mineral (F1) Popeleted Matrix (F3) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Depleted Dark Surface (F5) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Popeleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Popeleted Dark Surface (F7) Popeleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Popeleted Dark Surface (F7) Popeleted Dark Surface (F8) Popeleted Dark Surface (F7) Popeleted Dark Surface (F8) Popeleted Dark Surface (F7) Popeleted Dark Surface (F8) Popel	Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A Depleted Below Dari Thick Dark Surface (Sandy Red	.) Ind	instant for Ducklementic Hudrin Caile ³ .
Histic Epipedon (A2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Very Shallow Dark Surface (TF12) Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A12) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Gleved Matrix (F3) Redox Dark Surface (F6) Redox Depressions (F8) Problematic Restrictive Layer (if present): Pype: Depth (inches): Primary Indicators (minimum of one required; check all that apply) Secondary Indicators (2 or more required): Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) High Water Table (A2) Saturation (A3) Saturation (A4) Saturation	Histic Epipedon (A2) Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (F2) Peptin (inches): Pipper Sulfide (A12) Redox Dark Surface (F7) Indicators of hydrophytic vegetation and welfar hydrology must be present, unless disturbed or problematic. Restrictive Layer (if present): Pype: Peptin (inches): Phydric Soil Present? Yes No X Water stained Leaves (B9) (Except MLRA (MLRA1, 2, 4A, and 4B) High Water Table (A2) Saturation (A3) Saturation (A4) Presence of Reduced ton (C4) Saturation (A3) Saturation (A4) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A4) Presence of Reduced ton (C4) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A3) Saturation (A4) Satura	Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A Depleted Below Dari Thick Dark Surface (icators for Problematic Hydric Solls :
Black Histic (A3) Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Depleted Matrix (F3) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Popular (Soil Present) Primary Indicators (minimum of one required; check all that apply) Surface Water (A1) Saturation (A3) Salt Crust (B11) Water stained Leaves (B9) Mater Marks (B1) Sediment Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) Sediment Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) Algal Mat or Crust (B4) Innufacion Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Indicators (B8) Redox Depth (Inches): Water Allowed Freent? Yes No X Depth (Inches): Depth (Inches): Algal Mat or Crust (B4) Innufacion Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Primary Indicators (Si) Water Stained Leaves (B9) Water Stained Leaves (B9) (MILRA1, 2, 4A, and 4B) Mater Table (A2) Salt Crust (B11) Drainage Patterns (B10) Dry-Season Water Table (C2) Salturation (Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Presence of Reduced Iron (C4) Sparsely Vegetated Concave Surface (B8) Frost-Heave Hummooks (D7) Sparsely Vegetated Concave Surface (B8) Surface Surface (R1) Ves No X Depth (Inches): 217 Wetland Hydrology Present? Ves No X Depth (Inches): 217 Wetland Hydrology Present? Ves No X Depth (Inches): 217 Wetland Hydrology Present?	Black Histic (A3) Loamy Mucky Mineral (F1) (except MLRA 1) Loamy Gleyed Matrix (F2) Other (explain in Remarks) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Depleted Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Restrictive Layer (If present): """ """ """ """ """ """ """	Black Histic (A3) Hydrogen Sulfide (A Depleted Below Dari Thick Dark Surface (Stripped Ma	ox (S5)	2 cm Muck (A10)
Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Below Dark Surface (A12) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Perpleted Dark Surface (F7) Primary Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Page	Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Depleted Below Dark Surface (A12) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Perpleted Dark Surface (F7) Redox Depressions (F8) Redox Depressions (F8) Redox Depr	Hydrogen Sulfide (A Depleted Below Dar Thick Dark Surface (Ottipped ivid	atrix (S6)	Red Parent Material (TF2)
Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Dark Surface (F7) Perbeted Dark Surface (F7) Problematic. Redox Depressions (F8) Redox Depressions (Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Depleted Matrix (F2) Thick Dark Surface (A12) Redox Dark Surface (F5) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Mucky Mineral (S1) Pepter (F6) Sandy Mucky Mineral (S1) Redox Depressions (F8) Redox	Hydrogen Sulfide (A Depleted Below Dar Thick Dark Surface (Loamy Muc	ky Mineral (F1)(except MLRA 1)	Very Shallow Dark Surface (TF12)
Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Redox Depression (F8) Redox Depression (F8) Redox Depression (F8) Redox	Depleted Below Dark Surface (A12) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4) Sandy Gleyed Matrix (S4) Secreticitive Layer (if present): Popleted Dark Surface (F6) Present Presen	Depleted Below Dari	4)	Loamy Glev	/ed Matrix (F2)	` , , , , , , , , , , , , , , , ,
Thick Dark Surface (A12) Sandy Muky Mineral (S1) Sandy Gleyed Matrix (S4) Setrictive Layer (if present): Peptit (inches): Peptit (inches): Primary Indicators (minimum of one required; check all that apply)	Thick Dark Surface (A12) Redox Dark Surface (F6) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S4) Redox Depressions (F8) Phydrology must be present, unless disturbed of problematic. Redox Depressions (F8) Phydrology must be present, unless disturbed of problematic.	Thick Dark Surface (,
Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Redox Depressions (F8) Problematic. Sandy Gleyed Matrix (S4) Redox Depressions (F8) Problematic. Restrictive Layer (if present): Vipe:	Sandy Mucky Mineral (S1)					
Redox Depressions (F8) problematic. Restrictive Layer (if present): ype: Papth (inches):	Sandy Gleyed Matrix (S4) Redox Depressions (FB) Redo	Carray Macky Million	•			, , , ,
Restrictive Layer (if present): Pype: Pyp	testrictive Layer (if present): Popth (inches):					
Surface Water (A1) Surface Water (A1) Water stained Leaves (B9) (Except MLRA High Water Table (A2) Saturation (A3) Salt Crust (B11) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Iron Deposits (B6) Surface Soil Cracks (B6) Surface Water (B1) Surface Water Natial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Secondary Indicators (2 or more required) Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Mater Stained Leaves (B9) (MLRA1, 2, 4A, and 4B) Drainage Patterns (B10) Drainage Patterns (B10) Drainage Patterns (B10) Saturation Visible on Aerial Imagery (C1) Saturation Visible on Aerial Imagery (C2) Saturation Visible on Aerial Imagery (C3) Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Sield Observations: Water Table Present? Yes No X Depth (inches): Surface Water Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches): Satur	Surface Water (A1) Surface Water (A1) Water stained Leaves (B9) (Except MLRA High Water Table (A2) Saturation (A3) Saturation (A3) Saturation (A3) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Iron Deposits (B5) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Sparsely Vegetated Concave Surface (B8) Field Observations: Field Obser		re.			
Surface Water (A1) High Water Table (A2) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Surface Water Present? Yes No X Depth (inches): Saturation Vessel (B9) (Except MLRA Water stained Leaves (B9) (Except MLRA Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) (Parine Paterns (B10) Saturation Veseon Water Table (C2) Saturation Present? Material Imagery (B10) Saturation Visible on Aerial Imagery (B10) Saturation Visib	Surface Water (A1) High Water Table (A2) Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Water Marks (B1) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Sediment Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Surface Water Present? Yes No X Depth (inches): Surface Soil Cracks (P8) Water stained Leaves (B9) (Except MLRA Water stained Leaves (B9) (MLRA1, 2, 4A, and 4B) (Driange Pattern (B10) (C2) Saturation Present MLRa (MLRA1, 2, 4A, and 4B) (MLRA1, 2, 4A, and 4B) (Driange Pattern (B10) (C2) Saturation Present? Yes No X Depth (inches): >17 Yes No X Depth (inches): >17 Yes No X			all that apply)		Secondary Indicators (2 or more required)
Salt Crust (B11) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Water Table Present? Yes No X Depth (inches): Drainage Patterns (B10) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Geomorphic Position (D2) Shallow Aquitard (D3) Fac-Neutral Test (D5) Fac-Neutral Test (D5) Fac-Neutral Test (D5) Frost-Heave Hummocks (D7) Wetland Hydrology Present? Yes No X Depth (inches): Jaturation Present? Yes No No X Depth (inches): Jaturation Present? Yes No No X Depth (inches): Jaturation Present? Yes No Depth (inches): Jaturation Present? Yes No Jaturation Present? Yes No Jaturation Present? Yes No Jaturation Present? Yes No Jaturation Present? Yes	Saturation (A3) Salt Crust (B11) Drainage Patterns (B10) Dry-Season Water Table (C2) Sediment Deposits (B2) Drift Deposits (B3) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imag Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Sield Observations: Forst-Heave Hummocks (D7) Wetland Hydrology Present? Yes No X Depth (inches): Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Image Presence (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Image Presence of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Field Observations: Wetland Hydrology Present? Yes No X Depth (inches): Presence of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Fac-Neutral Test (D5) Fac-Neutral Test (D5) Frost-Heave Hummocks (D7) Wetland Hydrology Present? Yes No X Depth (inches): Presence of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral (D3) Fac-Neutral Test (D5) Fac-Neutral	•			ed Leaves (B9) (Except MLRA	
Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Aquatic Invertebrates (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) Algal Mat or Crust (B4) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Field Observations: Field Observations: Field Present? Yes No X Depth (inches): Vater Table Present? Yes No X Depth (inches): Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery Spaturation Present? Yes No X Depth (inches): Saturation Present? Presence of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Fac-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Presenter (Explain in Remarks) Frost-Heave Hummocks (D7) Wetland Hydrology Present? Yes No X Depth (inches): Presenter (Pare No Presenter (Pare No X Presenter (Pare No X Presenter (Pare No X Depth (inches): Presenter (Pare No Pare No Presenter (Pare No Pare No Presenter (Pare No Pare No	Water Marks (B1) Sediment Deposits (B2) Hydrogen Sulfide Odor (C1) Sediment Deposits (B3) Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Field Observations: Frost-Heave Hummocks (D7) Vater Table Present? Yes No X Depth (inches): Vater Table Present? Yes No X Depth (inches): Sediment Deposits (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Image Present? Yes No X Depth (inches): Sediment Deposits (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Image Present? Yes No X Depth (inches): Sediment Deposits (B13) Dry-Season Water Table (C2) Saturation Visible on Aerial Image Present? Yes No X Depth (inches): Sediment Deposits (B1) Saturation Visible on Aerial Image Present? Yes No X Depth (inches): Sediment Deposits (B1) Saturation Visible on Aerial Image Present? Yes No X Depth (inches): Sediment Deposits (C6) Saturation Visible on Aerial Image Sediment Deposits (C3) Sediment Deposits (C3) Sediment Deposits (C3) Sediment Present (C1) Saturation Visible on Aerial Image Sediment Deposits (C3) Sediment Present (C1) Saturation Visible on Aerial Image Sediment Deposits (C3) Sediment Present (C1) Saturation Visible on Aerial Image Sediment Deposits (C3) Sediment Present (C1) Saturation Visible on Aerial Image Sediment Deposits (C3) Saturation Visible on Aerial Image Sediment Deposits (C6) Shallow Aquitant (D3) Shallow A	High Water Table (A	2)	1, 2, 4A, an	d 4B)	(MLRA1, 2, 4A, and 4B)
Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) ield Observations: urface Water Present? Yes No X Depth (inches): Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) ield Observations: urface Water Present? Yes No X Depth (inches): Attention Present? Yes No X Depth (inches): Depth (inches): No X Depth (inches): Depth (inches): No X Depth (inches): Depth (inches): Yes No X	Sediment Deposits (B2) Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Stunted or Stressed Plants (D1) (LRR A) Sparsely Vegetated Concave Surface (B8) Ield Observations: urface Water Present? Yes No X Depth (inches): Jater Table Present? Yes No X Depth (inches): Jater Table	Saturation (A3)		Salt Crust (B11)	Drainage Patterns (B10)
Drift Deposits (B3) Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Prosence of Reduced Iron (C4) Surface Soil Cracks (B6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Ield Observations: Urface Water Present? Yes No X Depth (inches): Vater Table Present? Yes No X Depth (inches): Dividized Rhizospheres along Living Roots (C3) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Fac-Neutral Test (D5) Fac-Neutral	Drift Deposits (B3) Oxidized Rhizospheres along Living Roots (C3) Geomorphic Position (D2) Presence of Reduced Iron (C4) Iron Deposits (B5) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Ield Observations: Urface Water Present? Yes No X Depth (inches): Vater Table Present? Yes No X Depth (inches): Depth (inches): Solid Concave Surface (B8) Vegetated Concave Surface (B8)	Water Marks (B1)		Aquatic Inve	ertebrates (B13)	Dry-Season Water Table (C2)
Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Ield Observations: urface Water Present? Yes No X Depth (inches): // Atter Table Present	Algal Mat or Crust (B4) Presence of Reduced Iron (C4) Shallow Aquitard (D3) Recent Iron Reduction in Plowed Soils (C6) Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Ield Observations: Variance Water Present? Yes No X Depth (inches): Vater Table Present? Yes No X Depth (inches): Versent? Yes No X Depth (inches): Versent? Yes No X Depth (inches): Versent/ Vers	Sediment Deposits (B2)	Hydrogen S	Sulfide Odor (C1)	Saturation Visible on Aerial Imagery
Iron Deposits (B5) Surface Soil Cracks (B6) Sundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Indicate Table Present? Yes No X Depth (inches): Surface Iron Reduction in Plowed Soils (C6) Stunted or Stressed Plants (D1) (LRR A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7) Frost-Heave Hummocks (D7) Depth (inches): Vegetated Concave Surface (B8) Wetland Hydrology Present? Yes No X Depth (inches): Surface Valer Table Present? Yes No X Depth (inches): Surface Valer Table Present? Yes No X Depth (inches): Surface Valer Table Present? Yes No X Depth (inches): Surface Valer Table Present? Yes No X Depth (inches): Surface Valer Table Present? Yes No X Depth (inches): Surface Valer Table Present? Yes No X	Iron Deposits (B5) Surface Soil Cracks (B6) Sundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Ield Observations: Uniface Water Present? Yes No X Depth (inches): Vater Table Presen	Drift Deposits (B3)		Oxidized Rh	nizospheres along Living Roots (C	3) Geomorphic Position (D2)
Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Ideld Observations: Unface Water Present? Yes No X Depth (inches): Vater Table Present? Yes No X Depth (inches): Vater Table Present? Yes No X Depth (i	Surface Soil Cracks (B6) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) ield Observations: urface Water Present? Yes No X Depth (inches): vater Table Present? Yes No X Depth (inches): sturration Present? Yes No	Algal Mat or Crust (E	44)	Presence o	f Reduced Iron (C4)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Frost-Heave Hummocks (D7) Sparsely Vegetated Concave Surface (B8) Ield Observations: Urface Water Present? Yes No X Depth (inches): Vater Table Present? Yes No X Depth (inches): >17 Wetland Hydrology Present? Autration Present? Yes No X Depth (inches): >17 Yes No X	Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) Selected Observations: Frost-Heave Hummocks (D7) The description of the feed of the following properties of the f	Iron Deposits (B5)		Recent Iron	Reduction in Plowed Soils (C6)	Fac-Neutral Test (D5)
Sparsely Vegetated Concave Surface (B8) ield Observations: urface Water Present? Yes	Sparsely Vegetated Concave Surface (B8) ield Observations: urface Water Present? Yes	Surface Soil Cracks	(B6)	Stunted or S	Stressed Plants (D1) (LRR A)	Raised Ant Mounds (D6) (LRR A)
ield Observations: urface Water Present? Yes	ield Observations: urface Water Present? Yes			Other (Expl	ain in Remarks)	Frost-Heave Hummocks (D7)
urface Water Present? Yes No X Depth (inches): /ater Table Present? Yes No X Depth (inches): >17 wetland Hydrology Present? Yes No X Depth (inches): >17 Yes No X	urface Water Present? Yes No X Depth (inches): //ater Table Present? Yes No X Depth (inches): >17 wetland Hydrology Present? Yes No X Depth (inches): >17 Yes No X Depth (inches): >17 Yes No X		- (- ,		F	
Vater Table Present? Yes No X Depth (inches): >17 Wetland Hydrology Present? aturation Present? Yes No X Depth (inches): >17 Yes No X	Vater Table Present? Yes No X Depth (inches): >17 Wetland Hydrology Present? aturation Present? Yes No X Depth (inches): >17 Yes No X cludes capillary fringe)		No X	Denth (inches):		
raturation Present? Yes No X Depth (inches): >17 Yes No X	saturation Present? Yes No X Depth (inches): >17 Yes No X ncludes capillary fringe)				>17 Wetland H	vdrology Present?
	Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:	saturation Present? Yes		_		
		, ,	,		•	

Appendix C

Site Photos

Attachment E.53

Photo A:

Looking southeast at Sample Points 1 and 2, Wetland A.

Photo date: October 15, 2020

Photo B:

Looking northeast at Sample Points 3 and 4, Wetland B

Photo date: October 15, 2020

Project #6869 12/17/2020

Pacific Habitat Services, Inc. 9450 SW Commerce Circle, Suite 180 Wilsonville, OR 97070

Attachment E.54

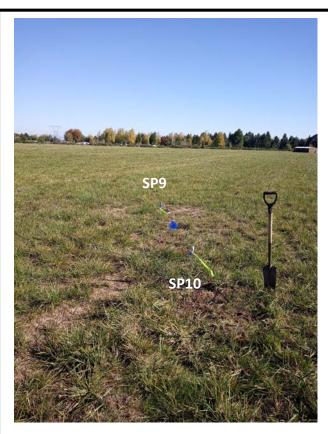
Photo C:

Looking northwest at Sample Points 5 and 6, Wetland B

Photo date: October 15, 2020

Photo D:

Looking east at Sample Points 7 and 8, Wetland B


Photo date: October 15, 2020

Project #6869 12/17/2020

Pacific Habitat Services, Inc. 9450 SW Commerce Circle, Suite 180 Wilsonville, OR 97070

Photo E:

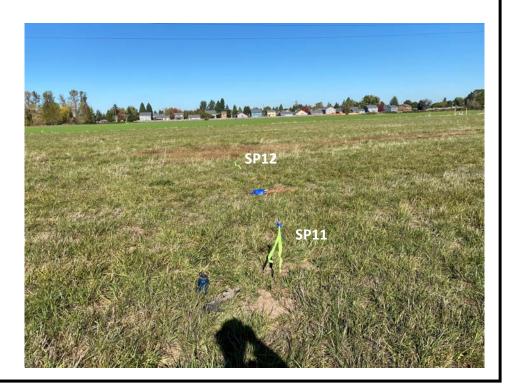

Looking east at Sample Points 9 and 10, Wetland D.

Photo date: October 15, 2020

Photo F:

Looking north at Sample Points 11 and 12, Wetland C.

Photo date: October 15, 2020

Project #6869 12/17/2020

Pacific Habitat Services, Inc. 9450 SW Commerce Circle, Suite 180 Wilsonville, OR 97070

Attachment E.56

Photo G:

Looking northwest at Sample Points 13 and 14, Wetland C.

Photo date: October 15, 2020

Photo H:

Looking east at Sample Points 16 and 17, Wetland C.

Photo date: October 15, 2020

Project #6869 12/17/2020

Pacific Habitat Services, Inc. 9450 SW Commerce Circle, Suite 180 Wilsonville, OR 97070

Attachment E.57

Photo I:

Looking southwest at Sample Point 15.

Photo date: October 15, 2020

Project #6869 12/17/2020

Pacific Habitat Services, Inc. 9450 SW Commerce Circle, Suite 180 Wilsonville, OR 97070

Appendix D

Wetland Definitions and Methodology

WATERS OF THE STATE AND WETLAND DEFINITION AND CRITERIA

Regulatory Jurisdiction

Wetlands and water resources in Oregon are regulated by the Oregon Department of State Lands (DSL) under the Removal-Fill Law (ORS 196.800-196.990) and by the U.S. Army Corps of Engineers (COE) through Section 404 of the Clean Water Act.

The primary source documents for wetland delineations within Oregon is the *Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1* (Environmental Laboratory 1987) and the *Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region*, which are recognized by both DSL and COE.

Waters of the State and Wetland Definition

Waters of the State are defined as "natural waterways including all tidal and nontidal bays, intermittent streams, constantly flowing streams, lakes, wetlands and other bodies of water in this state, navigable and nonnavigable...". "Natural waterways" is further defined as waterways created naturally by geological and hydrological processes, waterways that would be natural but for human-caused disturbances (e.g. channelized or culverted streams, impounded waters, partially drained wetlands or ponds created in wetlands)..."(DSL, 2001).

Wetlands are defined as "those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions" (DSL, 2001).

Wetland Criteria

Based on the above definition, three major factors characterize a wetland: hydrology, substrate, and biota.

Wetland Hydrology

Wetland hydrology is related to duration of saturation, frequency of saturation, and critical depth of saturation. The 1987 manual defines wetland hydrology as inundation or saturation within a major portion of the root zone (usually above 12 inches), typically for at least 12.5% of the growing season. The wetland hydrology criterion can be met, however, if saturation within the major portion of the root zone is present for only 5% of the growing season, depending on other evidence.

The growing season is defined as the portion of the year when soil temperatures at 12.0 inches below the soil surface are higher than biological zero (41 degrees Fahrenheit, 5 degrees Celsius), but also allows approximation from frost free days, based on air temperature. The growing season for any given site or location is determined from US Natural Resources Conservation Service, (formerly Soil Conservation Service) data and information.

Wetland hydrologic indicators include the following: visual observation of inundation or saturation, watermarks, drift lines, sediment deposits, and/or oxidized rhizospheres with living roots. Oxidized rhizospheres are defined as yellowish-red zones around the roots and rhizomes of some plants that grow in frequently saturated soils. Other indicators of hydrology, including algal mats or crust, iron deposits, surface soil cracks, sparsely vegetated concave surface, salt crust, aquatic invertebrates, hydrogen sulfide odor, reduced iron, iron reduction in tilled soils, and stunted or stressed plants can also be used to determine the presence of wetland hydrology.

Wetland Substrate (Soils)

Most wetlands are characterized by hydric soils. Hydric soils are those that are ponded, flooded, or saturated for long enough during the growing season to develop anaerobic conditions. Periodic saturation of soils causes alternation of reduced and oxidized conditions, which leads to the formation of redoximorphic features (gleying and mottling). Mineral hydric soils will be either gleyed or will have bright mottles and/or low matrix chroma. The redoximorphic feature known as gley is a result of greatly reduced soil conditions, which result in a characteristic grayish, bluish or greenish soil color. The term mottling is used to describe areas of contrasting color within a soil matrix. The soil matrix is the portion of the soil layer that has the predominant color. Soils that have brightly colored mottles and a low matrix chroma are indicative of a fluctuating water table.

Hydric soil indicators include organic content of greater than 50% by volume, and/or presence of redoximorphic features and dark soil matrix, as determined by the use of a Munsell Soil Color Chart. This chart establishes the chroma, value and hue of soils based on comparison with color chips. Mineral hydric soil must meet one of the 16 definitions for hydric soil indicators, or be classified as a "problem soil" in the Regional Supplement.

Wetland Biota (Vegetation)

Wetland biota is defined as hydrophytic vegetation. A hydrophyte is a plant species that is capable of growing in substrates that are periodically deficient in oxygen as a result of saturated soil conditions. The U.S. Fish and Wildlife Service, in the *National List of Plant Species that Occur in Wetlands*, has established five basic groups of vegetation based on their frequency of occurrence in wetlands. These categories, referred to as the "wetland indicator status", are as follows: obligate wetland plants (OBL), facultative wetland (FACW), facultative (FAC), facultative upland (FACU), and obligate upland (UPL). Table 1 gives a definition of the plant indicator codes.

 Table 1.
 Description of Wetland Plant Indicator Status Codes

Indicator	
Code	Status
OBL	Obligate wetland. Plants that always occur in standing water or in saturated soils.
FACW	Facultative wetland. Plants that nearly always occur in areas of prolonged flooding or require standing water or saturated soils but may, on rare occasions, occur in non-wetlands.
FAC	Facultative. Plants that occur in a variety of habitats, including wetland and mesic to xeric non-wetland habitats but commonly occur in standing water or saturated soils.
FACU	Facultative upland. Plants that typically occur in xeric or mesic non-wetland habitats but may frequently occur in standing water or saturated soils.
UPL	Obligate upland. Plants that rarely occur in water or saturated soils.

Observations of hydrology, soils, and vegetation were made using the "Routine On-site" delineation method as defined in the 1987 manual and the Regional Supplement for areas that were not currently in agricultural production. One-foot diameter soil pits were excavated to 20 inches and soil profiles were examined for hydric soil and wetland hydrology field indicators. In addition, a visual absolute-cover estimate of the dominant species of the plant community was performed using soil pit locations as a center of reference. Dominant plant species are based on estimates of absolute cover for herbaceous, and shrub species within a 5-foot radius of the sample point, and basal area cover for tree and woody vine species within a 30-foot radius of the sample point. Plant species in each vegetative layer, which are estimated at less than 20% of the total cover, are not considered to be dominant. The wetland indicator status is then used to determine if there is an overall dominance (greater than 50%) of wetland or upland plant species. If less than 50% of the dominant species are hydrophytic, then the prevalence index may be used to determine if the subdominant species are hydrophytic. If the prevalence index is less than or equal to 3, hydrophytic vegetation criterion is met.

During data collection, the soil profiles were examined for hydric soil and wetland hydrology field indicators. Plant species and cover were recorded. Data was recorded on standard data sheets which contain the information specified in the 1987 Corps Manual and the Regional Supplement.

June 3, 2021

Hayden Homes Attn: James Limerick, Land Development Manager 2464 SW Glacier Place Redmond, OR 97756

Re: WD # 2021-0033 Approved

Wetland Delineation Report for Lochner Road SE Linn County; T11S R3W S20 TL600 (Portion)

Albany, Oak Creek Local Wetlands Inventory, Wetland OAK-31Df,

OAK-31Af

Dear Mr. Limerick:

The Department of State Lands has reviewed the wetland delineation report prepared by Pacific Habitat Services, Inc., for the site referenced above. Please note that the study area includes only a portion of the tax lot described above (see the attached map). Based upon the information presented in the report, we concur with the wetland boundaries as mapped in Figure 6 of the report. Please replace all copies of the preliminary wetland map with this final Department-approved map.

Within the study area, 4 wetlands (Wetland A, B, C and D, totaling approximately 14.2 acres) were identified. The wetlands are subject to the permit requirements of the state Removal-Fill Law. Under current regulations, a state permit is required for cumulative fill or annual excavation of 50 cubic yards or more in wetlands or below the ordinary highwater line (OHWL) of the waterway (or the 2-year recurrence interval flood elevation if OHWL cannot be determined).

This concurrence is for purposes of the state Removal-Fill Law only. We recommend that you attach a copy of this concurrence letter to any subsequent state permit application to speed application review. Federal or local permit requirements may apply as well. The U.S. Army Corps of Engineers will determine jurisdiction under the Clean Water Act, which may require submittal of a complete Wetland Delineation Report.

Please be advised that state law establishes a preference for avoidance of wetland impacts. Because measures to avoid and minimize wetland impacts may include reconfiguring parcel layout and size or development design, we recommend that you work with Department staff on appropriate site design before completing the city or county land use approval process.

This concurrence is based on information provided to the agency. The jurisdictional determination is valid for five years from the date of this letter unless new information necessitates a revision. Circumstances under which the Department may change a determination are found in OAR 141-090-0045 (available on our web site or upon request). In addition, laws enacted by the legislature and/or rules adopted by the Department may result in a change in jurisdiction; individuals and applicants are subject to the regulations that are in effect at the time of the removal-fill activity or complete permit application. The applicant, landowner, or agent may submit a request for reconsideration of this determination in writing within six months of the date of this letter.

Thank you for having the site evaluated. If you have any questions, please contact the Jurisdiction Coordinator for Linn County, Matt Unitis, at (503) 986-5262.

Sincerely,

Peter Ryan, SPWS

Et Ryan

Aquatic Resource Specialist

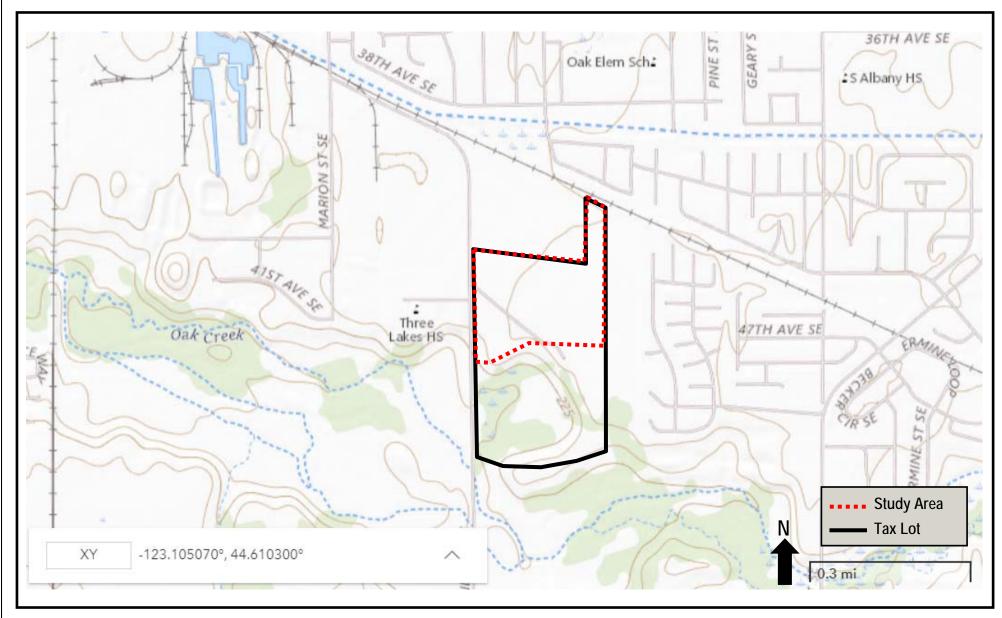
Enclosures

ec: John van Staveren, SPWS, Pacific Habitat Services, Inc.

City of Albany Planning Department (Maps enclosed for updating LWI)

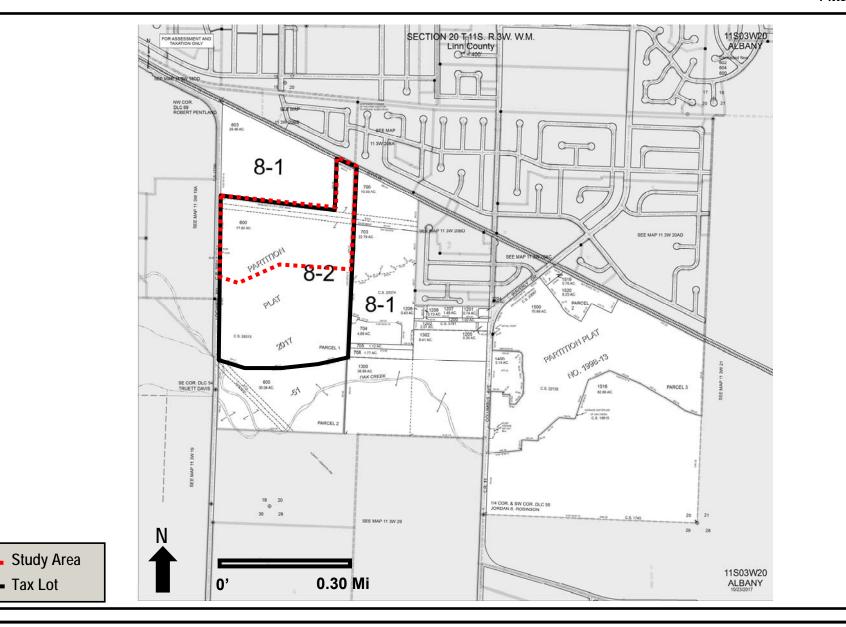
Katharine Mott, Corps of Engineers

Charles Redon, DSL

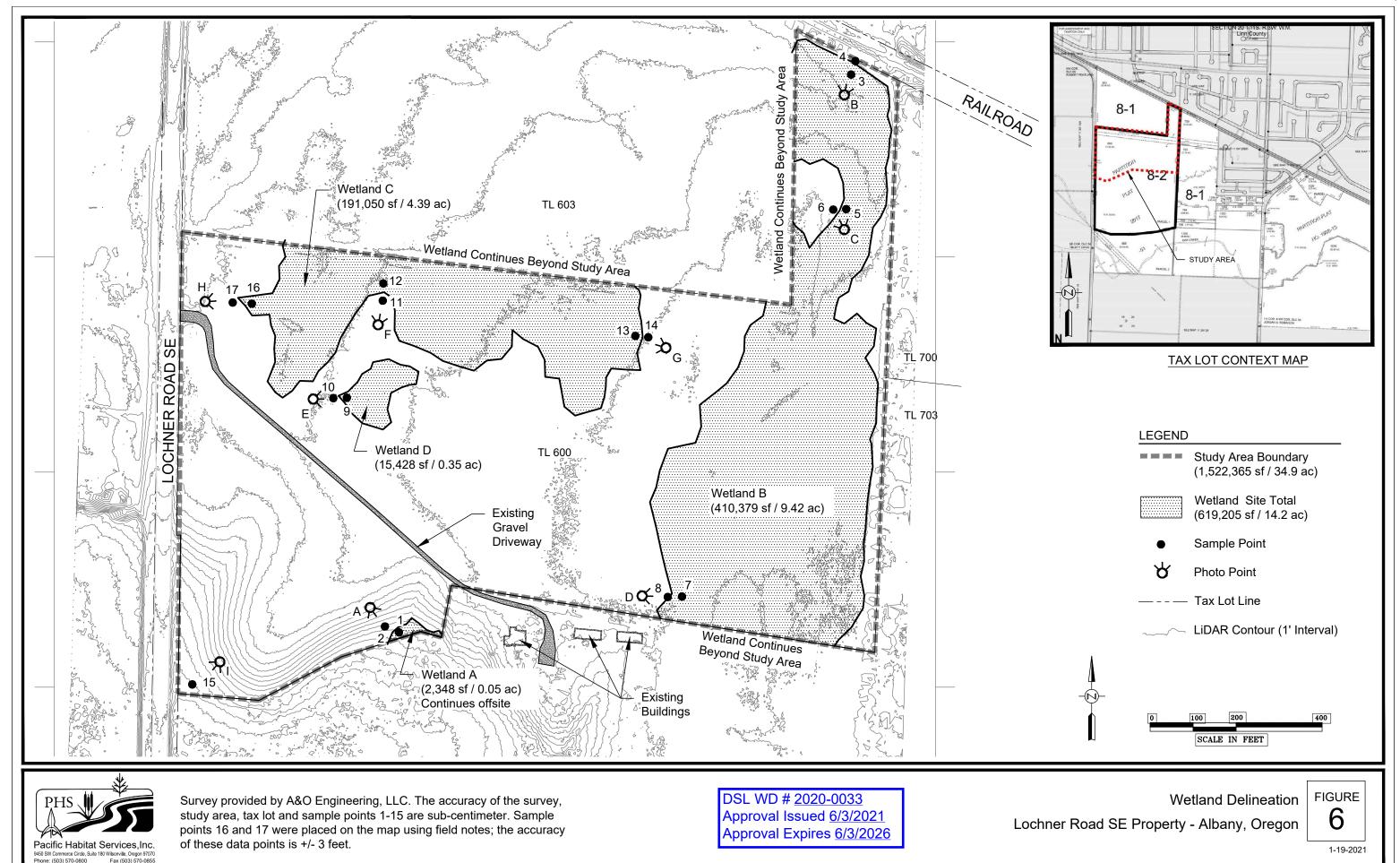

WETLAND DELINEATION / DETERMINATION REPORT COVER FORM

Fully completed and signed report cover forms and applicable fees are required before report review timelines are initiated by the Department of State Lands. Make the checks payable to the Oregon Department of State Lands. To pay fees by credit card, go online at: https://apps.oregon.gov/DSL/EPS/program?key=4.

Attach this completed and signed form to the front of an unbound report or include a hard copy with a digital version (single PDF file of the report cover from and report, minimum 300 dpi resolution) and submit to, **Oregon Department of State Lands**, **775 Summer Street NE**, **Suite 100**, **Salem**, **OR 97301-1279**. A single PDF of the completed cover form and report may be e-mailed to **Wetland_Delineation@dsl.state.or.us**. For submittal of PDF files larger than 10 MB, e-mail DSL instructions on how to access the file from your ftp or other file sharing website.


Contact and Authorization Information	
☐ Applicant ☑ Owner Name, Firm and Address:	Business phone # 541-508-6292
James Limerick, Land Development Manager	Mobile phone # (optional)
Hayden Homes	E-mail: jlimerick@hayden-homes.com
2464 SW Glacier Place	
Redmond, OR 97756	
☐ Authorized Legal Agent, Name and Address:	Business phone #
	Mobile phone #
	E-mail:
Leither own the property described below or I have legal authori	ty to allow access to the property. I authorize the Department to access the
property for the purpose of confirming the information in the repo	ort, after prior notification to the primary contact.
Typed/Printed Name: James Limerick	Signature: 1 10m Hydry Henris LLC
Date: Special instructions regarding site a	access:
Project and Site Information	
Project Name:	Latitude: 44.601166° Longitude: -123.089385°
Lochner Road SE	decimal degree - centroid of site or start & end points of linear project
	Tax Map # 11 3 20
	Tax Lot(s) 600
Proposed Use: Development	Tax Map #
Residential	Tax Lot(s)
Project Street Address (or other descriptive location):	Township 11S Range 3W Section QQ
Lochner Road SE, north of Ellingson Road SE	Use separate sheet for additional tax and location information
	Waterway: None River Mile: n/a
City: Albany County: Linn	NWI Quad(s): Albany
Wetland Delineation Information	
Wetland Consultant Name, Firm and Address:	Phone # 503-570-0800
Pacific Habitat Services	Mobile phone #
Attn: John van Staveren 9450 SW Commerce Circle, Suite 180	E-mail: JVS@pacifichabitat.com
Wilsonville, OR 97070	
The information and conclusions on this form and in the attache	d report are true and correct to the best of my knowledge.
1/01	Date: 1/8/21
Consultant Signature:	
Primary Contact for report review and site access is	Consultant
Wetland/Waters Present? ⊠ Yes ☐ No Study Area	a size: 34.9 acre Total Wetland Acreage: 14.2
Check Applicable Boxes Below	
R-F permit application submitted	⊠ Fee payment submitted \$475
☐ Mitigation bank site	Fee (\$100) for resubmittal of rejected report
☐ Industrial Land Certification Program Site	Request for Reissuance. See eligibility criteria (no fee)
☐ Wetland restoration/enhancement project (not mitigation	on) DSL# Expiration Date
☐ Previous delineation/application on parcel?	☐ LWI shows wetlands or waters on parcel?
If Known, previous DSL #	Wetland ID Code
	Office Use Only
	0004.0000
DSL Reviewer: MU Fee Paid Date: Date Delineation Received: 01 / 20 / 2021 Scan	

Attachment F.4


Pacific Habitat Services, Inc. 9450 SW Commerce Circle, Suite 180 Wilsonville, OR 97070 General Location and Topography Lochner Road SE Property - Albany, OR United States Geological Survey (USGS) Tangent, Oregon 7.5 quadrangle, 2020 (viewer.nationalmap.gov/basic) FIGURE 1

Pacific Habitat Services, Inc. 9450 SW Commerce Circle, Suite 180 Wilsonville, OR 97070 Tax Lot Map Lochner Road SE Property - Albany, OR The Oregon Map (ormap.net) FIGURE

1

TECH MEMO

DATE: August 25, 2023

TO: City of Albany

FROM: Kelly Sandow P.E. Sandow Engineering

RE: Update to Meadowlark Estates Subdivision Traffic Impact Analysis

RENEWAL 06/30/24

This Technical Memorandum provides an update to the Traffic Impact Analysis (TIA) for Meadowlark Subdivision (previous version May 21, 2021). The May 2021 TIA evaluated impacts for 114 single-family detached housing units. The site plan has been updated to include 176 constructed over two phases. Phase 1 is the construction of 90 units, and Phase 2 is the construction of 86 single-family units. Appendix A contains the site plan. The intersection evaluation has been updated to evaluate the impacts with 176 single-family units.

1.0 TRIP GENERATION AND DISTRIBUTION

The peak hour trips are estimated using the ITE Trip Generation Manual, 11th Ed. The most appropriate land use is 210- Single Family Detached. The independent variable for this land use is the number of units. Table 1 provides the peak hour trip generation.

TABLE 1: TRIP GENERATION PEAK HOUR

Time Period	Units	Rate	Trips	In	Out
Phase 1					
AM Peak Hour	90	Ln(T)=0.91ln(x)+0.12	68	(25%) 17	(75%) 51
PM Peak Hour	90	Ln(T)=0.94ln(x)+0.27	90	(63%) 57	(37%) 33
Phase 1 and 2 To	tal				
AM Peak Hour	176	Ln(T)=0.91ln(x)+0.12	125	(25%) 31	(75%) 94
PM Peak Hour	176	Ln(T)=0.94ln(x)+0.27	169	(63%) 107	(37%) 62

Date: August 25, 2023

Page 2

The trips are distributed on the street network following the same distribution pattern as the previous TIA. The trip distribution is as follows:

- 10% to/from south
- 15% to/from north on Marion St
- 45% to/from east on 34th Ave
- 30% to/from the west on 34th Ave

Figures 1 and 2 illustrate the AM peak hour trip distribution. Figures 3 and 4 illustrate the PM peak hour trip distribution.

2.0 TRAFFIC VOLUMES

The traffic counts taken for the May 2021 TIA are used for the base volumes for this analysis. The base 2021 volumes are grown to year 2023 volumes using a 2% growth rate to represent existing conditions. Phase 1 is anticipated to be completed in the year 2024, with Phase 2 completed in the year 2025. Additionally, an evaluation is to be completed for a 5-year planning horizon, year 2030. The 2% growth rate is applied to the year 2021 traffic volumes to estimate 2024, 2025, and 2030 traffic volumes.

Phase 1 development trips are added to the year 2024 background traffic volumes to represent conditions with Phase 1 complete. Phase 1 and 2 development trips are added to the year 2025 and 2030 background traffic volumes to represent conditions with the completion of the entire subdivision. The traffic volumes are illustrated in the following figures. Appendix B contains the traffic volumes.

- Figure 5: Year 2023 AM traffic volumes
- Figure 6: Year 2023 PM traffic volumes
- Figure 7: Year 2024 AM traffic volumes
- Figure 8: Year 2024 PM traffic volumes
- Figure 9: Year 2025 AM traffic volumes
- Figure 10: Year 2025 PM traffic volumes
- Figure 11: Year 2030 AM traffic volumes
- Figure 12: Year 2030 PM traffic volumes

Date: August 25, 2023

Page 3

3.0 INTERSECTION ANALYSIS

3.1 INTERSECTION OPERATION

The intersections and access connections are analyzed using the Standard Highway Capacity Manual (HCM) 6th ed. implemented in the Synchro 10 software. The results are compared to the City of Albany standards. The standards that apply are Level of Service (LOS) D for signalized intersections and a volume-to-capacity (v/c) standard of 0.85. Table 2 provides the intersection results for the AM peak hour and Table 3 for the PM peak hour. Appendix C contains the outputs.

TABLE 2: INTERSECTION ANALYSIS- PM PEAK HOUR

Intersection	Standard	2023 Background	2024 Background	2024 Build	2025 Background	2025 Build	2030 Background	2030 Build
34 th at Main	LOS D	В	В	В	В	В	В	С
Marion at Lochner	v/c 0.85	0.04	0.05	0.11	0.05	0.17	0.05	0.17
Lochner at N Driveway	v/c 0.85	0.01	0.01	0.05	0.01	0.10	0.01	0.10
Lochner at S Driveway	v/c 0.85	0.00	0.00	0.02	0.00	0.04	0.00	0.04

Results are reported for critical movement at stop-controlled intersections.

TABLE 3: INTERSECTION ANALYSIS PM PEAK HOUR

Intersection	Standard	2023 Background	2024 Background	2024 Build	2025 Background	2025 Build	2030 Background	2030 Build
34 th at Main	LOS D	А	В	В	В	В	В	В
Marion at Lochner	v/c 0.85	0.08	0.08	0.12	0.08	0.16	0.09	0.17
Lochner at N Driveway	v/c 0.85	0.02	0.02	0.03	0.02	0.09	0.02	0.09
Lochner at S Driveway	v/c 0.85	0.00	0.00	0.01	0.00	0.03	0.00	0.03

Results are reported for critical movement at stop-controlled intersections.

All study area intersections meet the operational standards during the AM and PM peak hours through the year 2030.

Date: August 25, 2023

Page 4

3.2 QUEUING ANALYSIS

A queuing analysis is prepared following the HCM6 Methodology implemented in SimTraffic 10. The results are represented as average and 95th percentile queue rounded to 25 feet to represent the space of an average vehicle queued (vehicle length and space between vehicles). Tables 4 and 5 provide the AM and PM peak hour queue lengths. Appendix D contains the queuing analysis outputs.

TABLE 4: QUEUING RESULTS: AM PEAK HOUR

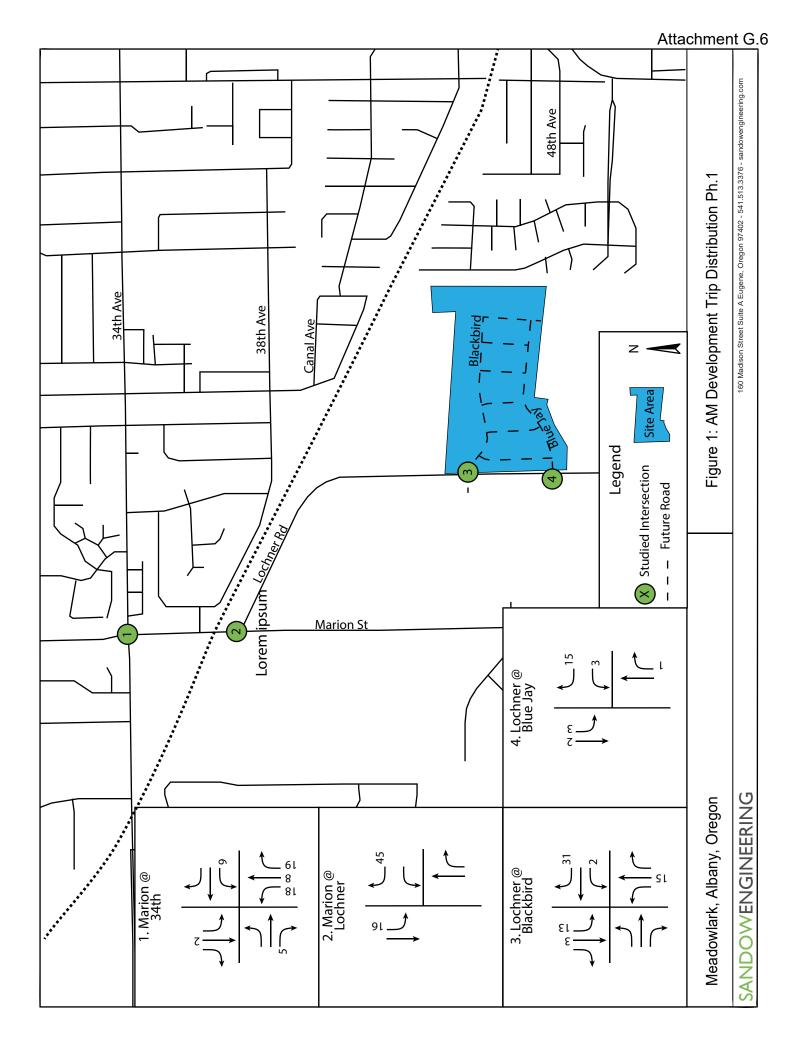
ITABLE 4.	QUI	_ 0 1	NO NESOI	_15. /-	\ \ \ \ \ \ \ \ \ \ \ \ \ \		OOK										
				20	023		2024	20	24	2	2025	20	25	20	030	20	030
			Available	Back	ground	Bac	kground	Bui	ild	Back	kground	Bu	ild	Back	ground	Ві	uild
			Storage	(Fe	eet)	(Feet)	(Fe	et)	(1	Feet)	(Fe	et)	(Fe	eet)	(F	eet)
Interse	ctior	1	(Feet)	95 th	Avg	95 th	Avg	95 th	Avg	95 th	Avg	95 th	Avg	95 th	Avg	95 th	Avg
	EB	L	165	25	25	25	25	25	25	25	25	25	25	25	25	25	25
	EB	Т	400	25	25	25	25	25	25	25	25	25	25	25	25	25	25
	EB	R	200	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Marion	WB	L	180	50	25	50	25	75	25	50	25	75	25	75	25	100	25
St @	WB	TR	660	175	100	175	100	225	100	200	100	200	100	200	100	250	125
34 th Ave	NB	LT	510	75	25	75	25	75	50	50	25	75	50	75	25	100	50
	NB	R	130	50	25	50	25	50	25	25	25	50	25	50	25	50	25
	SB	LT	740	50	25	75	25	75	25	75	25	75	25	75	25	75	25
	SB	R	75	50	50	75	50	75	50	75	50	75	50	75	50	75	50
D.A. a. vi a. v.	WB	LT R	1000+	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Marion @ Lochner	NB	LT R	1000+	25	0	0	0	0	0	0	0	0	0	25	25	25	25
Locnner	SB	LT R	350	25	25	25	25	25	25	25	25	25	25	25	25	25	25
Lochner	EB	LT R	200	25	25	25	25	25	25	25	25	25	25	N/A	N/A	50	25
@ N Site Access	WB	LT R	300	0	0	0	0	50	25	0	0	50	25	0	0	25	0
	SB	L	135	0	0	0	0	25	0	0	0	25	25	0	0	25	25
S Site Access @ Lochner	WB	LR	125	N/A	N/A	N/A	N/A	50	25	N/A	N/A	50	25	N/A	N/A	50	25

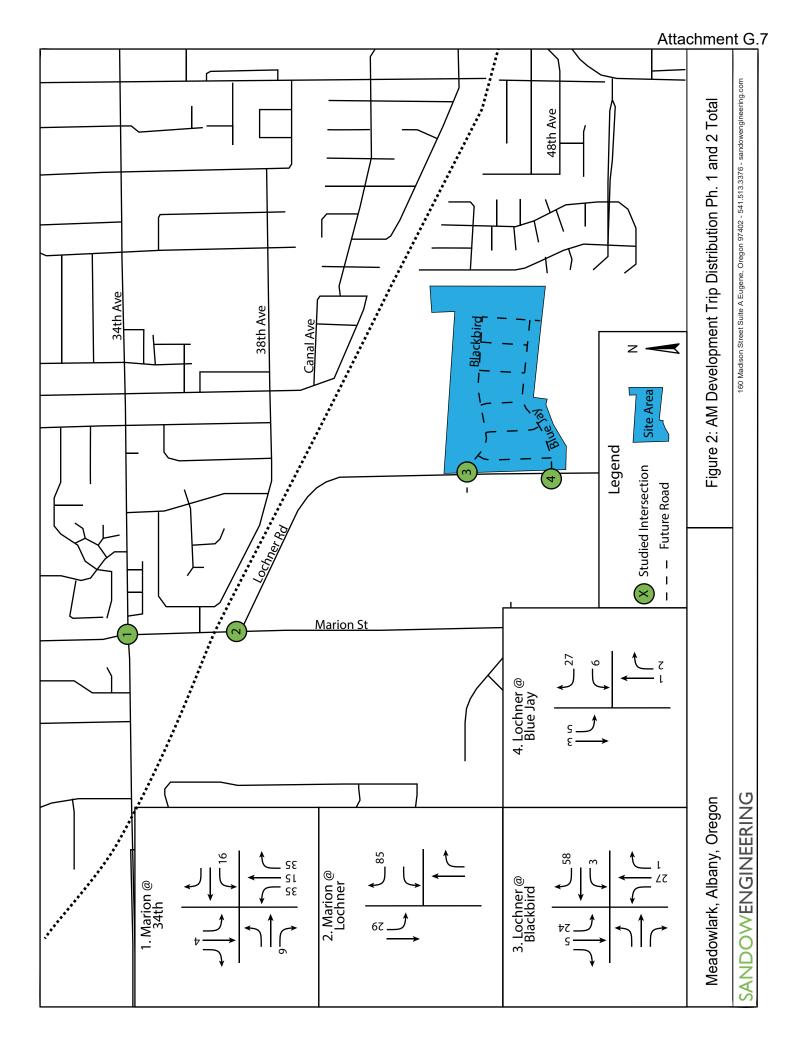
Date: August 25, 2023

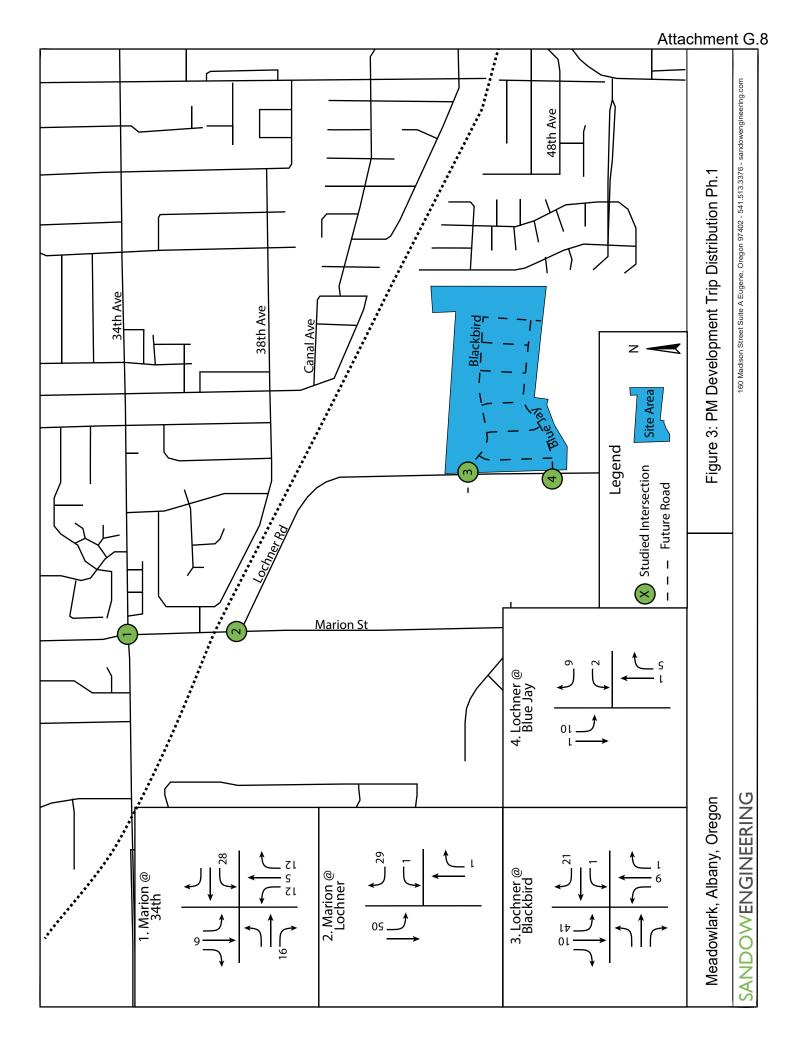
Page 5

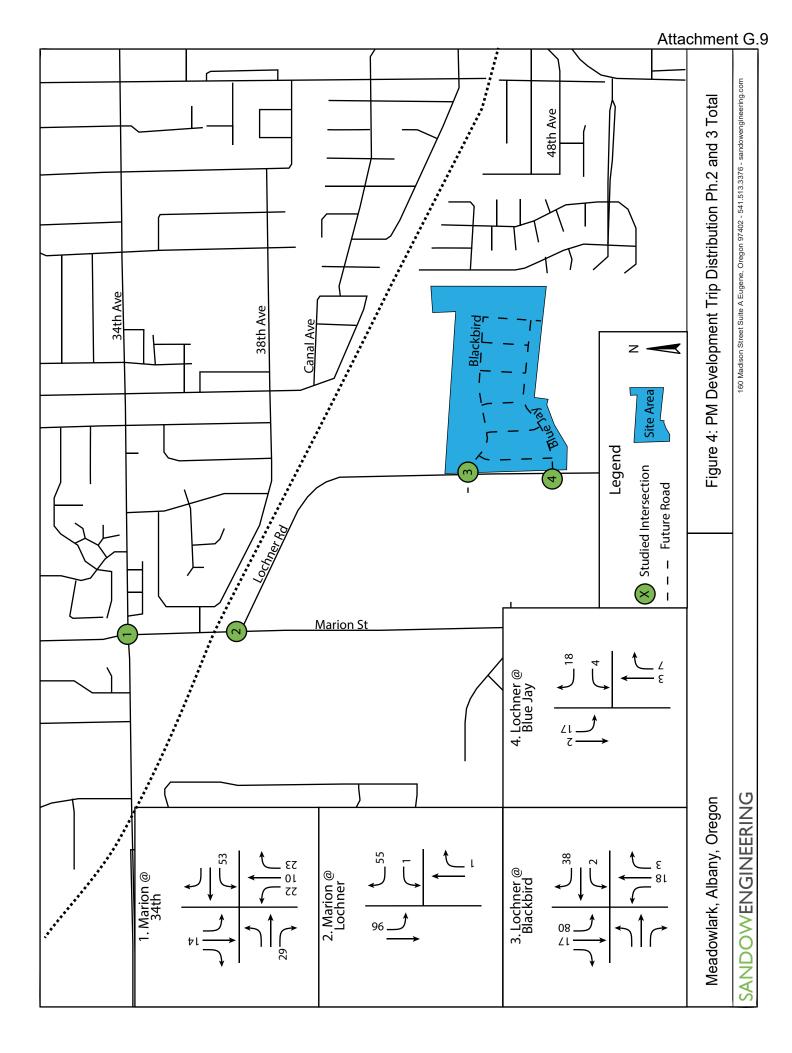
TABLE 5: QUEUING RESULTS: PM PEAK HOUR

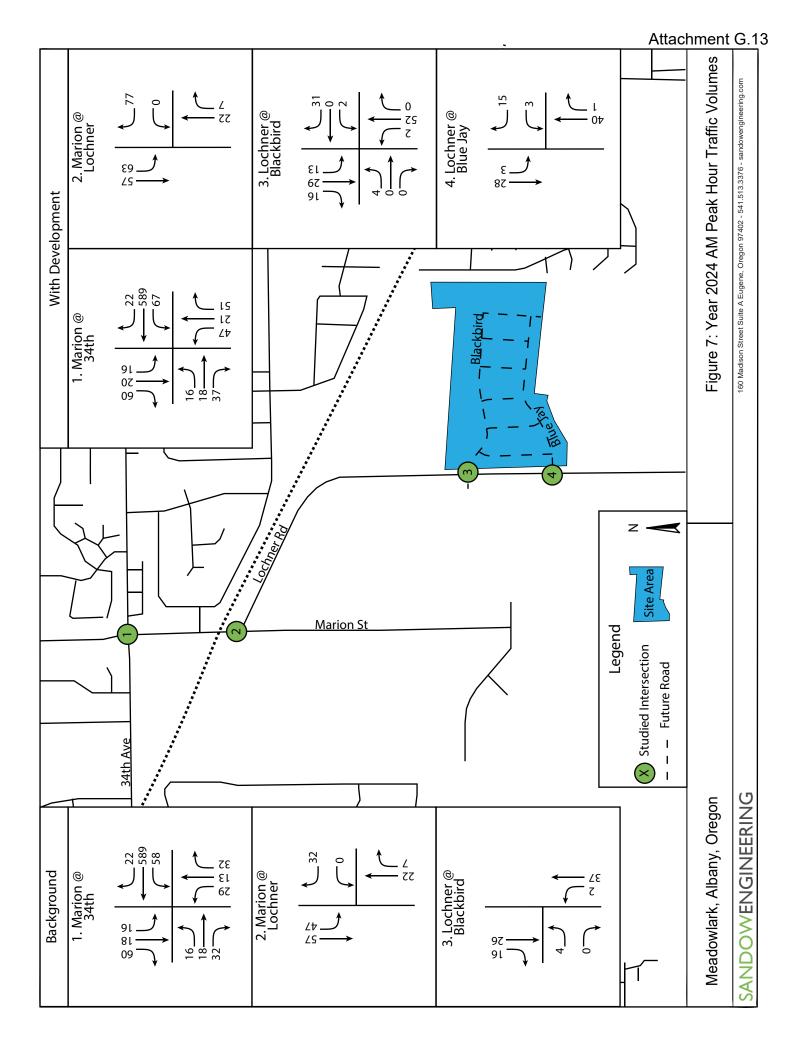
				20)23		2024	20	24	2	2025	20	25	20	030	20	030
			Available	Backg	round	Bac	kground	Bu	ild	Back	kground	Bu	ild	Backg	round	В	uild
			Storage	(Fe	eet)	(Feet)	(Fe	et)	(1	Feet)	(Fe	et)	(Fe	eet)	(F	eet)
Interse	ctior	1	(Feet)	95 th	Avg	95 th	Avg	95 th	Avg	95 th	Avg	95 th	Avg	95 th	Avg	95 th	Avg
	EB	L	165	50	25	50	25	50	25	50	25	75	25	75	25	75	25
	EB	Т	400	150	75	150	75	150	100	175	100	200	125	175	100	200	125
	EB	R	200	25	25	25	25	25	25	25	25	75	25	25	25	50	25
Marion	WB	L	180	50	5	25	25	50	25	25	25	50	25	50	25	75	25
St @	WB	TR	660	125	75	125	75	125	75	125	75	150	75	150	75	150	75
34 th Ave	NB	LT	510	75	50	75	25	75	50	75	50	100	50	75	50	100	50
	NB	R	130	50	25	50	25	50	25	50	25	75	25	50	25	75	50
	SB	LT	740	50	25	75	25	75	25	75	25	75	50	75	25	75	50
	SB	R	75	50	25	50	25	50	25	50	25	50	25	50	25	50	25
Marion	WB	LT R	1000+	25	25	25	25	25	25	25	25	25	25	25	25	25	25
@	NB	LT R	1000+	0	0	0	0	0	0	0	0	25	25	0	0	25	0
Lochner	SB	LT R	350	25	25	25	25	50	25	25	25	50	25	25	25	50	25
Lochner	EB	LT R	200	50	25	25	25	25	25	50	25	50	25	50	25	50	25
@ N Site Access	WB	LT R	300	0	0	0	0	50	25	0	0	50	25	0	0	50	25
	SB	L	135	0	0	0	0	25	25	0	0	50	25	0	0	50	25
S Site	WB	LR	125	N/A	N/A	N/A	N/A	50	25	N/A	N/A	50	25	N/A	N/A	50	25
Access @ Lochner	SB	LT	1000+	N/A	N/A	N/A	N/A	25	0	N/A	N/A	25	25	N/A	N/A	25	25
Lociner																	

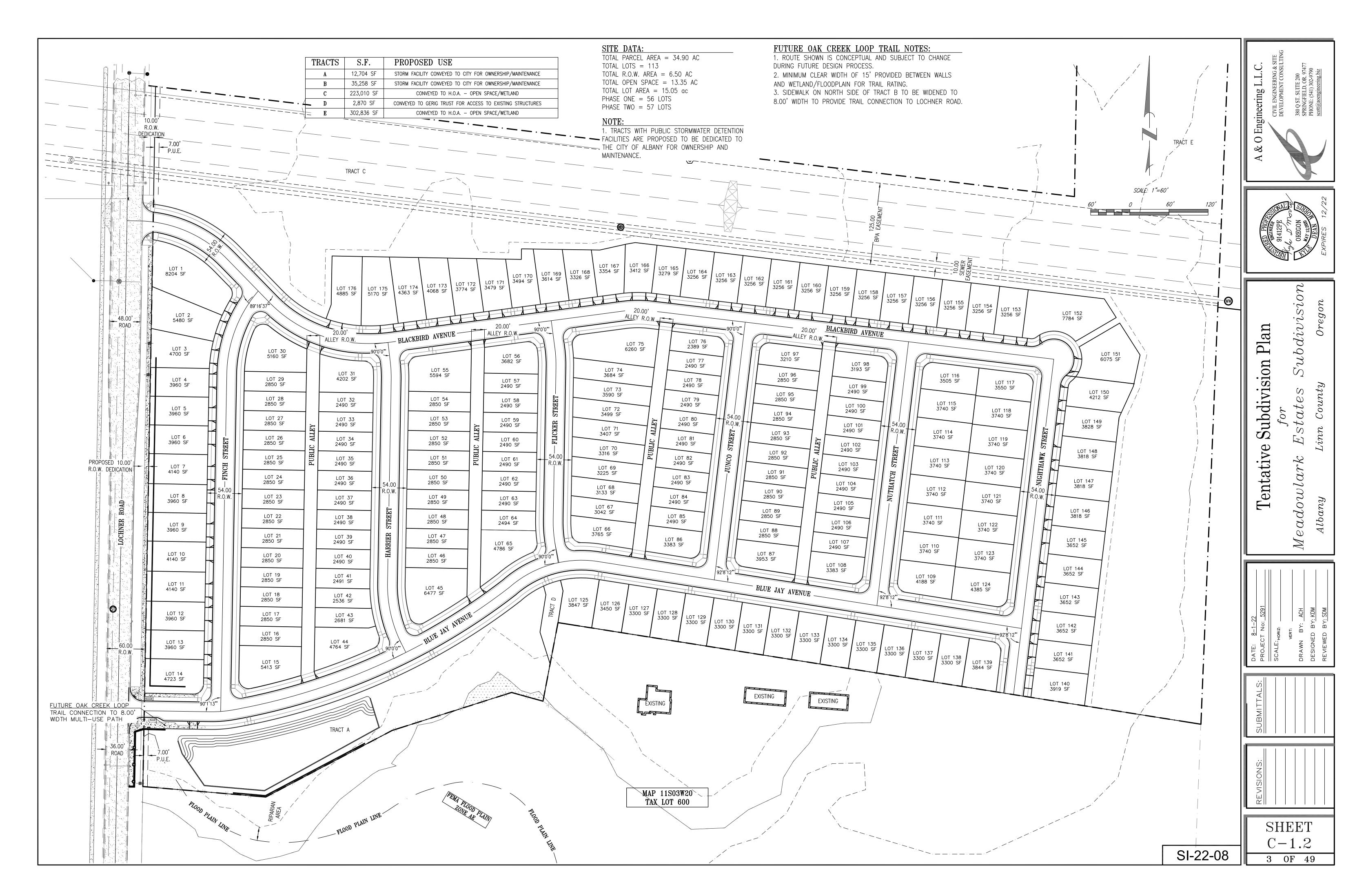

The development trips do not substantially increase queue lengths over existing conditions for the AM and PM peak hours through the year 2030.


4.0 CONCLUSIONS


The results of the evaluation are summarized as:


- All study area intersections meet the operational standards during the AM and PM peak hours through the year 2030.
- The development trips do not substantially increase queue lengths over existing conditions for the AM and PM peak hours through the year 2030.
- There is no offsite mitigation for this development proposal.





Meadowlark Estates Subdivision Traffic Impact Analysis

Meadowlark Estates Subdivision Traffic Impact Analysis

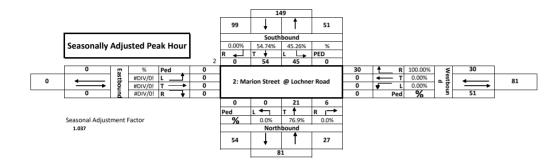
Intersection	n:	1: Mari	on Stree	et @ 34	Ith Ave		City:	Albany	<i>'</i>														
Counter: otal of All			Enginee	ring			Date:	Thursd	lay, May 13	3, 2021													
			South	bound			West	bound			Northb	ound			Eastb	ound		15	Hourly		Pedesti	rians	
Time Period	i	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Minute Volume	Volume	SB	WB	NB	EB
7:00	7:15	11	4	0	15	4	107	13	124	6	3	5	14	1	4	0	5	158		0	0	0	0
7:15	7:30	8	4	4	16	1	127	7	135	10	2	4	16	8	4	4	16	183		0	0	0	0
7:30	7:45	17	3	4	24	10	172	13	195	7	1	5	13	7	3	4	14	246		0	0	0	0
7:45	8:00	19	5	7	31	5	130	20	155	6	6	12	24	13	5	7	25	235	822	0	0	0	0
8:00	8:15	7	2	1	10	1	100	6	107	3	0	4	7	3	2	1	6	130	794	0	0	0	0
8:15	8:30	8	4	2	14	6	87	6	99	5	2	11	18	4	4	2	10	141	752	0	0	0	0
8:30	8:45	7	2	5	14	5	82	3	90	8	7	9	24	4	2	5	11	139	645	0	0	0	0
8:45	9:00	10	3	6	19	4	87	3	94	14	4	9	27	5	3	6	14	154	564	0	0	0	0
9:00	9:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
9:15	9:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
9:30	9:45	0	0	0	0	0		0	0	0	0	0	0	0		0	0	0		0	0	0	0
9:45	10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
Count Period To	otal	87	27	29		36	892	71		59	25	59		45	27	29		1386		0	0	0	0
											M Peak Hou	r Count Su											
			outhbound		Approach		/estbound		Approach		orthbound		Approach		Eastbound		Approach				Pedesti		
		Right	Thru	Left	Total	Right	Thru	Left	Total	Right	Thru	Left	Total	Right	Thru	Left	Total			SB	WB	NB	EB
Peak Volume	!S	55	16	15	86	20	536	53	609	29	12	26	67	29	16	15	60	822		0	0	0	0
PHF		0.72	0.80	0.54	0.69	0.50	0.78	0.66	0.78	0.73	0.50	0.54	0.70	0.56	0.80	0.54	0.60	0.84					
Trucks		0	0	0		0	0	0		0	0	0		0	0	0							
% Trucks		3%	3%	3%		0%	0%	0%	1	1%	1%	1%		2%	2%	2%							

1: Marion Street @ 34th Ave

Ped	estr	ians	and	Car

reuesti iaiis ai	iiu cais																		
Time Period		Southb	ound				West	bound			North	nbound			Eastbo	und		15 Minute	Hourly
Time Feriou	Peds	Right	Thru	Left		Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Volume	Volume
7:00 AM		11	4	. (4	107	13		6	3	5		1	4	0	158	
7:15 AM		8	4	. 4	1		1	127	7		10	2	4		8	4	4	183	
7:30 AM		17	3	. 4	1		10	172	13		7	1	5		7	3	4	246	
7:45 AM		19	5	7	7		5	130	20		6	6	12		13	5	7	235	822
8:00 AM		7	2	1			1	100	6		3	0	4		3	2	1	130	794
8:15 AM		8	4	. 2	2		6	87	6		5	2	11		4	4	2	141	752
8:30 AM		7	2		5		5	82	3		8	7	9		4	2	5	139	645
8:45 AM		10	3	. 6	6		4	87	3		14	4	9		5	3	6	154	564
9:00 AM																		0	434
9:15 AM																		0	293
9:30 AM																		0	154
9:45 AM																		0	0
Total	0	87	27	29		0	36	892	71	0	59	25	59	0	45	27	29		
Peak Hour	0	51	14	16		0	17	529	46	0	26	9	25	0	31	14	16	794	

	u		


		Southb	nound		Westb	nund		Northbo	und		Fast	bound	15 Minute	Hourly
Time Period	· · ·			 · · ·			· · ·			 m				
	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Volume	Volume
7:00 AM													0	
7:15 AM													0	
7:30 AM													0	
7:45 AM													0	0
8:00 AM													0	0
8:15 AM													0	0
8:30 AM													0	0
8:45 AM													0	0
9:00 AM													0	0
9:15 AM													0	0
9:30 AM													0	0
9:45 AM													0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0		
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	

Time Period		Southb	ound		Westbo	ound		Northbo	und		Eastboun	d	SB	WB	NB	EB
mile i enou	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	35	****	140	
7:00 AM													0	0	0	0
7:15 AM													0	0	0	0
7:30 AM													0	0	0	0
7:45 AM													0	0	0	0
8:00 AM													0	0	0	0
8:15 AM													0	0	0	0
8:30 AM													0	0	0	0
8:45 AM													0	0	0	0
9:00 AM													0	0	0	0
9:15 AM													0	0	0	0
9:30 AM													0	0	0	0
9:45 AM													0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ed	est	ria	ns

Time Period		N	E		NV	1		SW			SE		SB	WB	NB	EB
Time Feriou	Left	Right	Total	36	WD	ND	LB									
7:00 AM			0			0			0			0	0	0	0	0
7:15 AM			0			0			0			0	0	0	0	0
7:30 AM			0			0			0			0	0	0	0	0
7:45 AM			0			0			0			0	0	0	0	0
8:00 AM			0			0			0			0	0	0	0	0
8:15 AM			0			0			0			0	0	0	0	0
8:30 AM			0			0			0			0	0	0	0	0
8:45 AM			0			0			0			0	0	0	0	0
9:00 AM			0			0			0			0	0	0	0	0
9:15 AM			0			0			0			0	0	0	0	0
9:30 AM			0			0			0			0	0	0	0	0
9:45 AM			0			0			0			0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

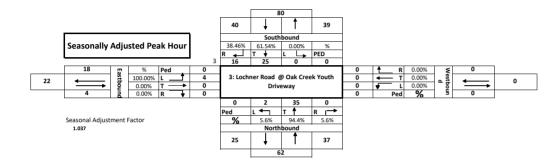
Intersection		2. IVIAII	on street	בנ ש בנ	ochner Roa	au .	City:	Albany	'														
Counter: tal of Al			Enginee	ring			Date:	Thursd	ay, May 1	3, 2021													
			South	bound			West	bound			Northb	ound			Eastb	ound		15	Hourly		Pedest	rians	
Time Perio	d	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Minute Volume	Volume	SB	WB	NB	E
7:00	7:15	0	9	5	14	6	0	0	6	5	3	0	8	0	0	0	0	28		0	0	0	- (
7:15	7:30	0	11	8	19	5	0	0	5	0	9	0	9	0	0	0	0	33		0	0	0	
7:30	7:45	0	13	11	24	6	0	0	6	1	3	0	4	0	0	0	0	34		0	0	0	
7:45	8:00	0	19	19	38	12	0	0	12	0	5	0	5	0	0	0	0	55	150	0	0	0	
8:00	8:15	0	7	3	10	2	0	0	2	0	1	0	1	0	0	0	0	13	135	0	0	0	
8:15	8:30	0	6	4	10	5	0	0	5	1	8	0	9	0	0	0	0	24	126	0	0	0	
8:30	8:45	0	5	4	9	5	0	0	5	0	15	0	15	0	0	0	0	29	121	0	0	0	
8:45	9:00	0	4	6	10	12	0	0	12	1	9	0	10	0	0	0	0	32	98	0	0	0	
9:00	9:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	
9:15	9:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	
9:30	9:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	
9:45	10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	
Count Period T	Total	0	74	60		53	0	0		8	53	0		0	0	0		248		0	0	0	- (
										P	M Peak Hou	r Count Su	mmary										
		S	outhbound	<u> </u>	Approach	W	estbound/		Approach	No	orthbound		Approach		Eastbound		Approach				Pedest	rians	
		Right	Thru	Left	Total	Right	Thru	Left	Total	Right	Thru	Left	Total	Right	Thru	Left	Total			SB	WB	NB	E
Peak Volume	es	0	52	43	95	29	0	0	29	6	20	0	26	0	0	0	0	150		0	0	0	
PHF		0.00	0.68	0.57	0.63	0.60	0.00	0.00	0.60	0.30	0.56	0.00	0.72	0.00	0.00	0.00	0.00	0.68					
Trucks		0	0	0		0	0	0		0	0	0		0	0	0							
% Trucks		9%	9%	9%		0%	0%	0%		4%	4%	4%		0%	0%	0%							

2: Marion Street @ Lochner Road

Ped	estr	ians	and	Car

reuesti iaiis ai	iiu cais																	
Time Period		Southb	ound			West	bound			North	bound			Eastbo	ound		15 Minute	Hourly
mile Periou	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Volume	Volume
7:00 AM			9	5		6				5	3						28	
7:15 AM			11	8		5				0	9						33	
7:30 AM			13	11		6				1	3						34	
7:45 AM			19	19		12				0	5						55	150
8:00 AM			7	3		2				0	1						13	135
8:15 AM			6	4		5				1	8						24	126
8:30 AM			5	4		5				0	15						29	121
8:45 AM			4	. 6		12				. 1	9		l .				32	98
9:00 AM																	0	85
9:15 AM																	0	61
9:30 AM																	0	32
9:45 AM																	0	0
Total	0	0	74	60	0	53	0	0	0	8	53	0	0	0	0	0		
Peak Hour	0	0	52	43	0	29	0	0	0	6	20	0	0	0	0	0	150	

Time Period		Southb	ound		Westbo	ound		Northbo	und		East	tbound	15 Minute	Hourly
Time renou	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Volume	Volume
7:00 AM													0	
7:15 AM													0	
7:30 AM													0	
7:45 AM													0	0
8:00 AM													0	0
8:15 AM													0	0
8:30 AM													0	0
8:45 AM													0	0
9:00 AM													0	0
9:15 AM													0	0
9:30 AM													0	0
9:45 AM													0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0		
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	


Bi	k	e	s

Time Period		Southb	ound		Westbo	ound		Northbo	und		Eastboun	d	SB	WB	NB	EB
Time Period	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	28	WB	NB	EB
7:00 AM							-						0	0	0	0
7:15 AM													0	0	0	0
7:30 AM													0	0	0	0
7:45 AM													0	0	0	0
8:00 AM													0	0	0	0
8:15 AM													0	0	0	0
8:30 AM													0	0	0	0
8:45 AM													0	0	0	0
9:00 AM													0	0	0	0
9:15 AM													0	0	0	0
9:30 AM													0	0	0	0
9:45 AM													0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ed	est	riaı	ns

Time Period		N	E		NV	V		SW			SE		SB	WB	NB	EB
illile Fellou	Left	Right	Total	36	WD	IND	LB									
7:00 AM			0			0			0			0	0	0	0	0
7:15 AM			0			0			0			0	0	0	0	0
7:30 AM			0			0			0			0	0	0	0	0
7:45 AM			0			0			0			0	0	0	0	0
8:00 AM			0			0			0			0	0	0	0	0
8:15 AM			0			0			0			0	0	0	0	0
8:30 AM			0			0			0			0	0	0	0	0
8:45 AM			0			0			0			0	0	0	0	0
9:00 AM			0			0			0			0	0	0	0	0
9:15 AM			0			0			0			0	0	0	0	0
9:30 AM			0			0			0			0	0	0	0	0
9:45 AM			0			0			0			0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Counter tal of Al			Enginee	ring			Date:	Thursd	ay, May 13	3, 2021													
			South	bound			West	bound			Northb	ound			Eastb	ound		15	Hourly		Pedest	rians	
Time Perio	d	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Minute Volume	Volume	SB	WB	NB	EE
7:00	7:15	1	3	0	4	0	0	0	0	0	6	0	6	0	0	1	1	11		0	0	0	0
7:15	7:30	4	4	0	8	0	0	0	0	0	7	1	8	0	0	2	2	18		0	0	0	0
7:30	7:45	3	8	0	11	0	0	0	0	0	9	0	9	0	0	1	1	21		0	0	0	0
7:45	8:00	7	9	0	16	0	0	0	0	0	12	1	13	0	0	0	0	29	79	0	0	0	0
8:00	8:15	1	3	0	4	0	0	0	0	0	8	0	8	1	0	0	1	13	81	0	0	0	0
8:15	8:30	0	5	0	5	0	0	0	0	0	' '	0	7	0	0	1	1	13	76	0	0	0	0
8:30	8:45	1	3	0	4	0	0	0	0	0	4	1	5	0	0	1	0	10	65	0	0	0	0
8:45 9:00	9:00 9:15	0	4	0	5	0	0	0	0	0	11 0	0	13 0	0	0	0	0	18 0	54	0	0	0	0
9:00	9:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
9:30	9:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
9:45	10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
Count Period T		18	39	0	0	0	0	0		0	64		0	1	0	6	0	133		0	0	0	0
Count Feriou i	Utai	10	35	- 0		U	- 0	- 0			M Peak Hou	r Count Su	mmanı		U			133					
		S	outhbound	1	Approach	v	/estbound		Approach		orthbound	· count ou	Approach		Eastbound		Approach				Pedest	rians	
		Right	Thru	Left	Total	Right	Thru	Left	Total	Right	Thru	Left	Total	Right	Thru	Left	Total			SB	WB	NB	EB
Peak Volume	es	15	24	0	39	0	0	0	0	0	34	2	36	0	0	4	4	79		0	0	0	0
PHF		0.54	0.67	0.00	0.61	0.00	0.00	0.00	0.00	0.00	0.71	0.50	0.69	0.00	0.00	0.50	0.50	0.68					
Trucks		0	0	0		0	0	0		0	0	0		0	0	0							
		23%	23%	23%		0%	0%	0%		3%	3%	3%	1										

3: Lochner Road @ Oak Creek Youth Driveway

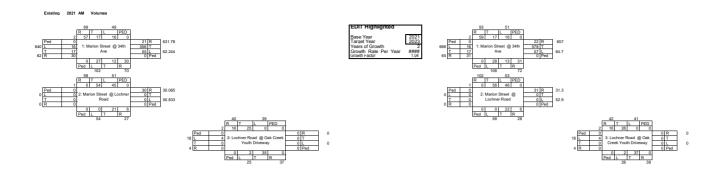
	and	

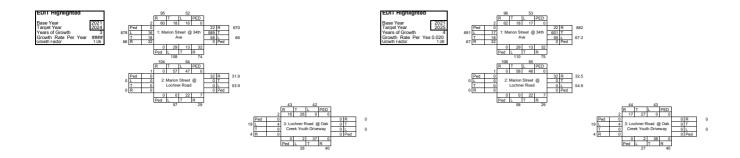
reuesti iaiis ai	iiu cuis																		
Time Period		Southb	ound			West	bound			North	nbound				Eastbo	ound		15 Minute	Hourly
Tillie Fellou	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left		Peds	Right	Thru	Left	Volume	Volume
7:00 AM		1	3								6	0)				1	11	
7:15 AM		4	4								7	1					2	18	
7:30 AM		3	8								9	0)				1	21	
7:45 AM		7	9								12	1					0	29	79
8:00 AM		1	3								8	0)		1		0	13	81
8:15 AM		0	5								7	0)				1	13	76
8:30 AM		1	3								4	1					1	10	65
8:45 AM		. 1	4								11	2	2	l .				18	54
9:00 AM																		0	41
9:15 AM																		0	28
9:30 AM																		0	18
9:45 AM																		0	0
Total	0	18	39	0	0	0	0	0	0	0	64	5		0	1	0	6		
Peak Hour	0	15	24	0	0	0	0	0	0	0	36	2		0	1	0	3	81	

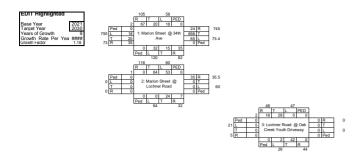
Time Period		Southb	ound		Westb	ound		Northbo	und		East	tbound	15 Minute	Hourly
illile Fellou	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Volume	Volume
7:00 AM													0	
7:15 AM													0	
7:30 AM													0	
7:45 AM													0	0
8:00 AM													0	0
8:15 AM													0	0
8:30 AM													0	0
8:45 AM													0	0
9:00 AM													0	0
9:15 AM													0	0
9:30 AM													0	0
9:45 AM													0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0		
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bi	k	e	s

Time Period		Southb	ound		Westbo	ound		Northbo	und		Eastboun	d	SB	WB	NB	EB
Time Period	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	28	WB	NB	EB
7:00 AM							-						0	0	0	0
7:15 AM													0	0	0	0
7:30 AM													0	0	0	0
7:45 AM													0	0	0	0
8:00 AM													0	0	0	0
8:15 AM													0	0	0	0
8:30 AM													0	0	0	0
8:45 AM													0	0	0	0
9:00 AM													0	0	0	0
9:15 AM													0	0	0	0
9:30 AM													0	0	0	0
9:45 AM													0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


Pedestrians


Time Period		N	E		NV	1		SW			SE		SB	WB	NB	EB
	Left	Right	Total	30	****	140	[5									
7:00 AM			0			0			0			0	0	0	0	0
7:15 AM			0			0			0			0	0	0	0	0
7:30 AM			0			0			0			0	0	0	0	0
7:45 AM			0			0			0			0	0	0	0	0
8:00 AM			0			0			0			0	0	0	0	0
8:15 AM			0			0			0			0	0	0	0	0
8:30 AM			0			0			0			0	0	0	0	0
8:45 AM			0			0			0			0	0	0	0	0
9:00 AM			0			0			0			0	0	0	0	0
9:15 AM			0			0			0			0	0	0	0	0
9:30 AM			0			0			0			0	0	0	0	0
9:45 AM			0			0			0			0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	


Global Peak Hour

			Intersection	S	
		1: Marion Street @ 34th Ave	2: Marion Street @ Lochner Road	3: Lochner Road @ Oak Creek Youth Driveway	
Time I	Period	Volume	Volume	Volume	Total
7:00 AM	8:00 AM	822	150	79	1051
7:15 AM	8:15 AM	794	135	81	1010
7:30 AM	8:30 AM	752	126	76	954
7:45 AM	8:45 AM	645	121	65	831
8:00 AM	9:00 AM	564	98	54	716
		822	150	81	1051

Peak Hour 7:00 AM 7:15 AM 7:30 AM 7:45 AM

Intersecti	ion:	1: Mari	ion Stre	et @ 34	1th Ave		City:	Albany	1														
Counter otal of A			Enginee	ering			Date:	Thursd	lay, May 13	3, 2021													
			South	nbound			West	bound			Northb	ound			Eastb	ound		15	Hourly		Pedest	rians	
Time Peri	od	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Minute Volume	Volume	SB	WB	NB	EB
16:00	16:15	6	3	11	20	4	100	3	107	21	9	15	45	3	117	9	129	301		0	0	0	0
16:15	16:30	7	4	4	15	3	81	2	86	11	5	10	26	8	112	12	132	259		0	0	0	0
16:30	16:45	8	2	5	15	8	81	6	95	15	6	2	23	3	151	19	173	306		0	0	0	0
16:45	17:00	6	5	4	15	4	102	5	111	9	5	3	17	3	135	12	150	293	1159	0	0	0	0
17:00	17:15	9	6	14	29	5	66	4	75	17	6	7	30	9	133	13	155	289	1147	0	0	0	0
17:15	17:30	10	5	4 7	19	8	85	1	94	8	2	7	17	7	148	12	167	297	1185	0	0	0	0
17:30	17:45	6	2	_ ′	15	8	81	ь _	95	10	4	2	16	10	108	15	133	259	1138	0	0	0	0
17:45	18:00	12	0	3	19	4	83 0	/	94	6	4	4 0	14	5	106 0	8	119	246	1091	0	0	0	0
18:00 18:15	18:15 18:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
18:30	18:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
		0	_	_	_	-	-	0	0	-	0		0	-		-	-			-	0	0	-
18:45	19:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
Count Period	iotai	64	31	52		44	679	34		97	41 PM Peak Hou	50		48	1010	100		2250		U	U	U	0
			outhboun	d	Approach	v	Vestbound		Approach		orthbound	ir Count Su	Approach		Eastbound		Approach				Pedest	rians	
	1	Right	Thru	Left	Total	Right	Thru	Left	Total	Right	Thru	Left	Total	Right	Thru	Left	Total		ŀ	SB	WB	NB	EB
Peak Volun	nes	27	14	24	65	19	364	16	399	56	25	30	111	17	515	52	584	1159		0	0	0	0
PHF		0.84	0.70	0.55	0.81	0.59	0.89	0.67	0.90	0.67	0.69	0.50	0.62	0.53	0.85	0.68	0.84	0.95		•		•	
Trucks		0	0.70	0.55	1.01	0.55	0.03	0	2.50	0	0	0	2.02	0	0.03	0.00	2.04	2.33					
		001	1	1				0			0	1				1							
% Trucks	S	0%	0%	0%		0%	0%	0%		0%	0%	0%		0%	0%	0%							

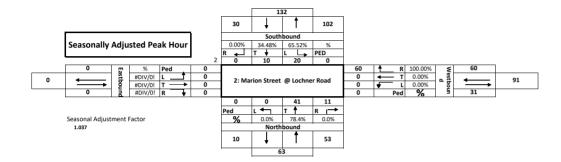
1: Marion Street @ 34th Ave

Pec	lestr	ians	and	Car
-----	-------	------	-----	-----

Time Period		Southb	ound			West	bound			Norti	nbound				Eastbo	und		15 Minute	Hourly
Time Periou	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left		Peds	Right	Thru	Left	Volume	Volume
4:00 PM		6	3	11		4	100	3		21	9	15	5		3	117	9	301	
4:15 PM		7	4	4		3	81	2		11	5	10)		8	112	12	259	
4:30 PM		8	2	5		8	81	6		15	6	2	2		3	151	19	306	
4:45 PM		6	5	4		4	102	5		9	5	3	3		3	135	12	293	1159
5:00 PM		9	6	14		5	66	4		17	6	7	1		9	133	13	289	1147
5:15 PM		10	5	4		8	85	1		8	2	7	•		7	148	12	297	1185
5:30 PM		6	2	7		8	81	6		10	4	2	2		10	108	15	259	1138
5:45 PM		12	4	3		4	83	7		6	4	4	l I		5	106	8	246	1091
6:00 PM																		0	802
6:15 PM																		0	505
6:30 PM																		0	246
6:45 PM																		0	0
Total	0	64	31	52	0	44	679	34	0	97	41	50		0	48	1010	100		
Peak Hour	0	30	17	27	0	20	330	17	0	52	22	22		0	23	531	56	1147	

	u	

Time Period		Southb	ound		Westb	ound		Northbo	und		East	bound	15 Minute	Hourly
Illile Fellou	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Volume	Volume
4:00 PM													0	
4:15 PM													0	
4:30 PM													0	
4:45 PM													0	0
5:00 PM													0	0
5:15 PM													0	0
5:30 PM													0	0
5:45 PM													0	0
6:00 PM													0	0
6:15 PM													0	0
6:30 PM													0	0
6:45 PM													0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0		
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	


Bi	k	e	s

Time Period		Southb	ound		Westbo	ound		Northbo	und		Eastboun	d	SB	WB	NB	EB
Time Terrou	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	35	****	140	
4:00 PM													0	0	0	0
4:15 PM													0	0	0	0
4:30 PM													0	0	0	0
4:45 PM													0	0	0	0
5:00 PM													0	0	0	0
5:15 PM													0	0	0	0
5:30 PM													0	0	0	0
5:45 PM													0	0	0	0
6:00 PM													0	0	0	0
6:15 PM													0	0	0	0
6:30 PM													0	0	0	0
6:45 PM													0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ed	est	riaı	ns

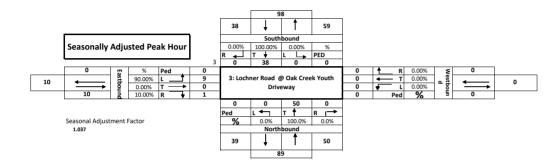
Time Period		NE			NW	1		SW			SE		SB	WB	NB	EB
mile i enou	Left	Right	Total	35	***	140										
4:00 PM			0			0			0			0	0	0	0	0
4:15 PM			0			0			0			0	0	0	0	0
4:30 PM			0			0			0			0	0	0	0	0
4:45 PM			0			0			0			0	0	0	0	0
5:00 PM			0			0			0			0	0	0	0	0
5:15 PM			0			0			0			0	0	0	0	0
5:30 PM			0			0			0			0	0	0	0	0
5:45 PM			0			0			0			0	0	0	0	0
6:00 PM			0			0			0			0	0	0	0	0
6:15 PM			0			0			0			0	0	0	0	0
6:30 PM			0			0			0			0	0	0	0	0
6:45 PM			0			0			0			0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Intersection	on:	z: ıvları	on Stree	et @ Lo	chner Roa	aa	City:	Albany	1														
Counter tal of Al			Enginee	ring			Date:	Thursd	ay, May 13	3, 2021													
			South	bound			West	bound			Northb	ound			Eastbo	ound		15	Hourly		Pedest	trians	
Time Perio	od	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Minute Volume	Volume	SB	WB	NB	E
16:00	16:15	0	1	3	4	23	0	0	23	6	11	0	17	0	0	0	0	44		0	0	0	C
16:15	16:30	0	3	6	9	11	0	0	11	2	14	0	16	0	0	0	0	36		0	0	0	(
16:30	16:45	0	2	5	7	13	0	0	13	2	9	0	11	0	0	0	0	31		0	0	0	(
16:45	17:00	0	4	5	9	11	0	0	11	1	6	0	7	0	0	0	0	27	138	0	0	0	(
17:00	17:15	0	2	11	13	14	0	0	14	3	13	0	16	0	0	0	0	43	137	0	0	0	
17:15 17:30	17:30 17:45	0	3	6	9	6	0	0	6 12	0	3	0	3	0	0	0	0	16 26	117 112	0	0	0	
17:45	18:00	0	3	0	9	11	0	0	12	1	4 7	0	0	0	0	0	0	20	106	0	0	0	
18:00	18:15	0	0	0	0	6 0	0	0	0	0	,	0	0	0	0	0	0	0	100	0	0	0	'
18:15	18:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	
18:30	18:45	0	0	0	0	0	0	0	0	0	0	ō	0	0	0	0	0	0		0	0	0	1
18:45	19:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	
Count Period 1		0	21	43	0	95	0	1		17	67	0	0	0	0	0	0	244		0	0	0	
count renou	otai					<i></i>	U	-			M Peak Hou	r Count Su	mmary	-				244					
		S	outhbound	d	Approach	v	Vestbound		Approach		orthbound	. count su	Approach		Eastbound		Approach				Pedest	trians	
		Right	Thru	Left	Total	Right	Thru	Left	Total	Right	Thru	Left	Total	Right	Thru	Left	Total			SB	WB	NB	E
Peak Volum	es	0	10	19	29	58	0	0	58	11	40	0	51	0	0	0	0	138		0	0	0	-
PHF		0.00	0.63	0.79	0.81	0.63	0.00	0.00	0.63	0.46	0.71	0.00	0.75	0.00	0.00	0.00	0.00	0.78					
Trucks		0	0	0		0	0	0		0	0	0		0	0	0							
					1				1		1												

2: Marion Street @ Lochner Road

Pedestrians and Car			

Pedestrians ar	iiu cais																		
Time Period		Southb	ound				West	tbound			North	bound			Eastbo	ound		15 Minute	Hourly
Tillie Fellou	Peds	Right	Thru	Left		Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Volume	Volume
4:00 PM			1	3			23				6	11						44	
4:15 PM			3	6			11				2	14						36	
4:30 PM			2	. 5			13				2	9						31	
4:45 PM			4	- 5			11				1	6						27	138
5:00 PM			2	11			14				3	13						43	137
5:15 PM			2	5			6				0	3						16	117
5:30 PM			3	6	i		11		1		1	4						26	112
5:45 PM			4	. 2	:		. 6				. 2	7						21	106
6:00 PM																		0	63
6:15 PM																		0	47
6:30 PM																		0	21
6:45 PM																		0	0
Total	0	0	21	43		0	95	0	1	0	17	67	0	0	0	0	0		
Peak Hour	0	0	10	19		0	58	0	0	0	11	40	0	0	0	0	0	138	


Time Period		Southb	ound		Westb	ound		Northbo	und		East	bound	15 Minute	Hourly
illile Fellou	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Volume	Volume
4:00 PM													0	
4:15 PM													0	
4:30 PM													0	
4:45 PM													0	0
5:00 PM													0	0
5:15 PM													0	0
5:30 PM													0	0
5:45 PM													0	0
6:00 PM													0	0
6:15 PM													0	0
6:30 PM													0	0
6:45 PM													0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0		
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	

Time Period		Southb	ound		Westbo	ound		Northbo	und		Eastboun	d	SB	WB	NB	EB
mile i enou	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	35	****	140	
4:00 PM													0	0	0	0
4:15 PM													0	0	0	0
4:30 PM													0	0	0	0
4:45 PM													0	0	0	0
5:00 PM													0	0	0	0
5:15 PM													0	0	0	0
5:30 PM													0	0	0	0
5:45 PM													0	0	0	0
6:00 PM													0	0	0	0
6:15 PM													0	0	0	0
6:30 PM													0	0	0	0
6:45 PM													0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ed?	est	ria	ns

Time Period		N	E		NV	1		SW			SE		SB	WB	NB	EB
Time r criou	Left	Right	Total	30	****	140										
4:00 PM			0			0			0			0	0	0	0	0
4:15 PM			0			0			0			0	0	0	0	0
4:30 PM			0			0			0			0	0	0	0	0
4:45 PM			0			0			0			0	0	0	0	0
5:00 PM			0			0			0			0	0	0	0	0
5:15 PM			0			0			0			0	0	0	0	0
5:30 PM			0			0			0			0	0	0	0	0
5:45 PM			0			0			0			0	0	0	0	0
6:00 PM			0			0			0			0	0	0	0	0
6:15 PM			0			0			0			0	0	0	0	0
6:30 PM			0			0			0			0	0	0	0	0
6:45 PM			0			0			0			0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Counte tal of A			Enginee	ering			Date:	Thursd	ay, May 13	3, 2021													
			Souti	nbound			Westl	oound			Northb	ound			Eastb	ound		15	Hourly		Pedest	rians	
Time Peri	od	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Right	Thru	Left	Approach Total	Minute Volume	Volume	SB	WB	NB	EB
16:00	16:15	0	11	0	11	0	0	0	0	0	19	0	19	0	0	5	5	35		0	0	0	0
16:15	16:30	0	8	0	8	0	0	0	0	0	7	0	7	0	0	3	3	18		0	0	0	0
16:30	16:45	0	9	0	9	0	0	0	0	0	12	0	12	0	0	0	0	21		0	0	0	0
16:45	17:00	0	9	0	9	0	0	0	0	0	10	0	10	1	0	1	2	21	95	0	0	0	0
17:00	17:15	0	13	0	13	0	0	0	0	0	12	0	12	0	0	1	1	26	86	0	0	0	0
17:15	17:30	0	5	0	5	0	0	0	0	0	5	0	5	1	0	0	1	11	79	0	0	0	0
17:30	17:45	0		0		0	0	0	0	0	10	0	10	0	0		2	19	77	0	0	0	0
17:45	18:00	0	5	0	5	0	0	0	0	0	5	0	5	0	0	0	0	10	66	0	0	0	0
18:00	18:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
18:15 18:30	18:30 18:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
		-	-		-		-	-	-		-			-		-	-			-	_	_	_
18:45	19:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0
Count Period	Total	0	67	0		0	0	0		0	80	0		2	0	12		161		0	0	0	0
			outhboun	4	Approach	14	/estbound		Approach		M Peak Hou orthbound	r Count Su	Approach		Eastbound		Approach				Pedest	rians	
	-	Right	Thru	Left	Total	Right	Thru	Left	1	Right	Thru	Left	1	Right	Thru	Left	1		-	SB	WB	NB	EB
Peak Volur	nes	O	37	0	37	0	0	Cert	Total	O Night	48	0	Total 48	1	0	9	Total 10	95		3D 0	O NA	ND 0	0
PHF		0.00	0.84	0.00	0.84	0.00	0.00	0.00	0.00	0.00	0.63	0.00	0.63	0.25	0.00	0.45	0.50	0.68		J	J		U
		0.00	0.04		0.84		0.00		0.00		0.03		0.03	0.23	0.00		0.30	0.00					
Trucks		U	0	0		0	U	0		0	0	0		0	0	0							
% Truck	s	0%	0%	0%		0%	0%	0%		10%	10%	10%		0%	0%	0%							

3: Lochner Road @ Oak Creek Youth Driveway

	and	

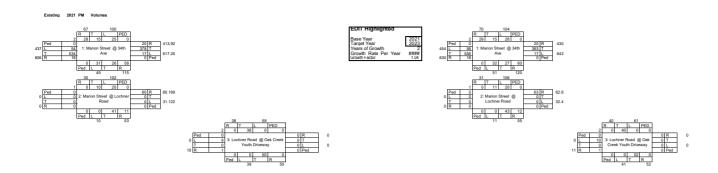
reuesti iaiis ai	iiu cais																	
Time Period		Southb	ound			West	bound			Norti	nbound			Eastbo	und		15 Minute	Hourly
Time Periou	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Peds	Right	Thru	Left	Volume	Volume
4:00 PM			11								19			0		5	35	
4:15 PM			8								7			0		3	18	
4:30 PM			9								12			0		0	21	
4:45 PM			9								10			1		1	21	95
5:00 PM			13								12			0		1	26	86
5:15 PM			5								5			1		0	11	79
5:30 PM			7								10					2	19	77
5:45 PM			5								. 5					. 0	10	66
6:00 PM																	0	40
6:15 PM																	0	29
6:30 PM																	0	10
6:45 PM																	0	0
Total	0	0	67	0	0	0	0	0	0	0	80	0	0	2	0	12		
Peak Hour	0	0	39	0	0	0	0	0	0	0	41	0	0	1	0	5	86	

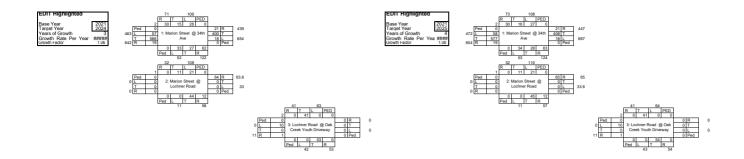
Time Period		Southb	ound		Westbo	ound		Northbo	und		East	bound	15 Minute	Hourly
Illile Fellou	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Volume	Volume
4:00 PM													0	
4:15 PM													0	
4:30 PM													0	
4:45 PM													0	0
5:00 PM													0	0
5:15 PM													0	0
5:30 PM													0	0
5:45 PM													0	0
6:00 PM													0	0
6:15 PM													0	0
6:30 PM													0	0
6:45 PM													0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0		
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	

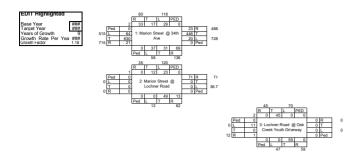
Bi	k	e	s

Time Period		Southb	ound		Westbo	ound		Northbo	und		Eastboun	d	SB	WB	NB	EB
Time Feriou	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	Right	Thru	Left	36	WD	IND	LD
4:00 PM													0	0	0	0
4:15 PM													0	0	0	0
4:30 PM													0	0	0	0
4:45 PM													0	0	0	0
5:00 PM													0	0	0	0
5:15 PM													0	0	0	0
5:30 PM													0	0	0	0
5:45 PM													0	0	0	0
6:00 PM													0	0	0	0
6:15 PM													0	0	0	0
6:30 PM													0	0	0	0
6:45 PM													0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Pedestrians


Pedestrians																
Time Period		N	E		NV	V		SW			SE		SB	WB	NB	EB
Illile Fellou	Left	Right	Total	36	WD	IND	LB									
4:00 PM			0			0			0			0	0	0	0	0
4:15 PM			0			0			0			0	0	0	0	0
4:30 PM			0			0			0			0	0	0	0	0
4:45 PM			0			0			0			0	0	0	0	0
5:00 PM			0			0			0			0	0	0	0	0
5:15 PM			0			0			0			0	0	0	0	0
5:30 PM			0			0			0			0	0	0	0	0
5:45 PM			0			0			0			0	0	0	0	0
6:00 PM			0			0			0			0	0	0	0	0
6:15 PM			0			0			0			0	0	0	0	0
6:30 PM			0			0			0			0	0	0	0	0
6:45 PM			0			0			0			0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dook Hour	0	0	0	0	0	0	0	0	0	0	0	Λ.	0	0	0	


Global Peak Hour


			Intersection	S	
		1: Marion Street @ 34th Ave	2: Marion Street @ Lochner Road	3: Lochner Road @ Oak Creek Youth Driveway	
Time I	Period	Volume	Volume	Volume	Total
4:00 PM	5:00 PM	1,159	138	95	1392
4:15 PM	5:15 PM	1,147	137	86	1370
4:30 PM	5:30 PM	1,185	117	79	1381
4:45 PM	5:45 PM	1,138	112	77	1327
5:00 PM	6:00 PM	1,091	106	66	1263
		1185	138	95	1392

Peak Hour 4:00 PM 4:15 PM 4:30 PM

4:45 PM

Meadowlark Estates Subdivision Traffic Impact Analysis

	۶	→	•	€	—	•	•	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ		7	ሻ	₽			र्स	7		र्स	7
Traffic Volume (vph)	16	17	31	57	578	22	28	13	31	16	17	59
Future Volume (vph)	16	17	31	57	578	22	28	13	31	16	17	59
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.97	1.00		0.98	1.00
Satd. Flow (prot)	1630	1716	1458	1662	1740			1675	1473		1659	1444
Flt Permitted	0.22	1.00	1.00	0.74	1.00			1.00	1.00		0.90	1.00
Satd. Flow (perm)	382	1716	1458	1303	1740			1733	1473		1531	1444
Peak-hour factor, PHF	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	19	20	37	68	688	26	33	15	37	19	20	70
RTOR Reduction (vph)	0	0	17	0	2	0	0	0	34	0	0	65
Lane Group Flow (vph)	19	20	20	68	712	0	0	48	3	0	39	5
Heavy Vehicles (%)	2%	2%	2%	0%	0%	0%	1%	1%	1%	3%	3%	3%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8			2		2	6		6
Actuated Green, G (s)	29.4	23.6	23.6	29.6	23.7			3.3	3.3		3.3	3.3
Effective Green, g (s)	31.0	24.4	24.4	30.6	24.2			3.3	3.3		3.3	3.3
Actuated g/C Ratio	0.67	0.53	0.53	0.66	0.52			0.07	0.07		0.07	0.07
Clearance Time (s)	4.8	4.8	4.8	4.5	4.5			4.0	4.0		4.0	4.0
Vehicle Extension (s)	2.5	4.0	4.0	2.5	4.0			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	435	908	771	914	913			124	105		109	103
v/s Ratio Prot	0.01	0.01		c0.01	c0.41							
v/s Ratio Perm	0.02		0.01	0.04				c0.03	0.00		0.03	0.00
v/c Ratio	0.04	0.02	0.03	0.07	0.78			0.39	0.03		0.36	0.05
Uniform Delay, d1	3.8	5.2	5.2	2.7	8.8			20.4	19.9		20.4	19.9
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.0	0.0	0.0	0.0	4.5			1.5	0.1		1.5	0.1
Delay (s)	3.8	5.2	5.2	2.7	13.3			21.9	20.0		21.9	20.1
Level of Service	Α	Α	Α	Α	В			С	В		С	С
Approach Delay (s)		4.8			12.4			21.1			20.7	
Approach LOS		Α			В			С			С	
Intersection Summary												
HCM 2000 Control Delay			13.4	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.60									
Actuated Cycle Length (s)			46.1		um of lost				12.0			
Intersection Capacity Utiliza	ition		54.5%	IC	CU Level of	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

07/14/2023

	۶	→	•	•	+	•	•	†	<i>></i>	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ţ	†	7	7	f)			ર્ન	7		र्स	7
Traffic Volume (veh/h)	16	17	31	57	578	22	28	13	31	16	17	59
Future Volume (veh/h)	16	17	31	57	578	22	28	13	31	16	17	59
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1723	1723	1723	1750	1750	1750	1736	1736	1736	1709	1709	1709
Adj Flow Rate, veh/h	19	20	37	68	688	26	33	15	37	19	20	70
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Percent Heavy Veh, %	2	2	2	0	0	0	1	1	1	3	3	3
Cap, veh/h	466	934	792	1030	888	34	219	74	170	169	124	167
Arrive On Green	0.10	0.54	0.54	0.09	0.53	0.53	0.12	0.12	0.12	0.12	0.12	0.12
Sat Flow, veh/h	1641	1723	1460	1667	1675	63	804	638	1471	500	1073	1448
Grp Volume(v), veh/h	19	20	37	68	0	714	48	0	37	39	0	70
Grp Sat Flow(s),veh/h/ln	1641	1723	1460	1667	0	1739	1442	0	1471	1572	0	1448
Q Serve(g_s), s	0.2	0.3	0.6	8.0	0.0	15.8	0.4	0.0	1.1	0.0	0.0	2.2
Cycle Q Clear(g_c), s	0.2	0.3	0.6	0.8	0.0	15.8	1.4	0.0	1.1	1.0	0.0	2.2
Prop In Lane	1.00		1.00	1.00		0.04	0.69		1.00	0.49		1.00
Lane Grp Cap(c), veh/h	466	934	792	1030	0	921	292	0	170	292	0	167
V/C Ratio(X)	0.04	0.02	0.05	0.07	0.00	0.77	0.16	0.00	0.22	0.13	0.00	0.42
Avail Cap(c_a), veh/h	609	1072	909	1185	0	1082	394	0	275	400	0	270
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	5.9	5.1	5.2	3.6	0.0	9.0	19.4	0.0	19.4	19.3	0.0	19.8
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.0	0.0	3.4	0.2	0.0	0.5	0.2	0.0	1.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	0.1	0.1	0.1	0.0	4.7	0.5	0.0	0.4	0.4	0.0	0.7
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	5.9	5.1	5.2	3.6	0.0	12.5	19.6	0.0	19.8	19.5	0.0	21.1
LnGrp LOS	A	A	Α	Α	A	В	В	A	В	В	Α	<u>C</u>
Approach Vol, veh/h		76			782			85			109	
Approach Delay, s/veh		5.4			11.7			19.7			20.5	
Approach LOS		Α			В			В			С	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		9.6	8.5	30.1		9.6	8.8	29.8				
Change Period (Y+Rc), s		4.0	4.5	4.8		4.0	4.8	* 4.8				
Max Green Setting (Gmax), s		9.0	8.5	29.2		9.0	8.2	* 30				
Max Q Clear Time (g_c+l1), s		3.4	2.8	2.6		4.2	2.2	17.8				
Green Ext Time (p_c), s		0.1	0.1	0.5		0.2	0.0	7.3				
Intersection Summary												
HCM 6th Ctrl Delay			12.8									
HCM 6th LOS			В									

Notes

User approved pedestrian interval to be less than phase max green.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	3.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	LOIK	11.02	4	,,,,,,	1,00	4	, LOIL	UDL	4	UDIT
Traffic Vol, veh/h	0	0	0	0	0	31	0	22	6	46	54	0
Future Vol, veh/h	0	0	0	0	0	31	0	22	6	46	54	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	4	4	4	9	9	9
Mvmt Flow	0	0	0	0	0	46	0	32	9	68	79	0
Major/Minor N	1inor2		ľ	Minor1			Major1		ı	Major2		
Conflicting Flow All	275	256	79	252	252	37	79	0	0	41	0	0
Stage 1	215	215	-	37	37	-	-	-	_	-	_	_
Stage 2	60	41	-	215	215	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.14	-	-	4.19	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.236	-	-	2.281	-	-
Pot Cap-1 Maneuver	681	651	987	706	655	1041	1507	-	-	1524	-	-
Stage 1	792	729	-	984	868	-	-	-	-	-	-	-
Stage 2	957	865	-	792	729	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	628	620	987	681	624	1041	1507	-	-	1524	-	-
Mov Cap-2 Maneuver	628	620	-	681	624	-	-	-	-	-	-	-
Stage 1	792	695	-	984	868	-	-	-	-	-	-	-
Stage 2	915	865	-	755	695	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			8.6			0			3.4		
HCM LOS	Α			Α								
Minor Lane/Major Mvmt		NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1507	-	-		1041	1524	-	-			
HCM Lane V/C Ratio		-	_	-		0.044		_	_			
HCM Control Delay (s)		0	-	_	0	8.6	7.5	0	-			
HCM Lane LOS		A	-	-	A	Α	Α	A	-			
HCM 95th %tile Q(veh)		0	-	-	-	0.1	0.1	-	-			

Intersection												
Int Delay, s/veh	0.6											
• •												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			₽			- î∍	
Traffic Vol, veh/h	4	0	0	0	0	0	2	37	0	0	26	16
Future Vol, veh/h	4	0	0	0	0	0	2	37	0	0	26	16
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	125	-	-	140	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	3	3	3	23	23	23
Mvmt Flow	6	0	0	0	0	0	3	54	0	0	38	24
Major/Minor N	/linor2		ı	Minor1		ı	Major1			Major2		
Conflicting Flow All	110	110	50	110	122	54	62	0	0	54	0	0
Stage 1	50	50	50	60	60	54	UΖ	U	U	54	-	-
Stage 1 Stage 2	60	60	-	50	62	-	•	-	•	-	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.13	-	-	4.33	-	-
Critical Hdwy Stg 1	6.1	5.5	0.2	6.1	5.5	0.2	4.13	-	-	4.00	_	_
Critical Hdwy Stg 2	6.1	5.5		6.1	5.5	<u>-</u>	-	<u>-</u>	<u>-</u>	<u>-</u>	-	-
Follow-up Hdwy	3.5	3.5	3.3	3.5	3.5	3.3	2.227	_	-	2.407	_	_
Pot Cap-1 Maneuver	873	784	1024	873	772	1019	1535	_	_	1427	-	-
Stage 1	968	857	1024	957	849	1019	1000	-	-	1441	_	_
Stage 1	957	849		968	847	<u>-</u>	-	_	_	<u>-</u>	-	-
Platoon blocked, %	331	043	_	300	047	_		_		_	_	_
Mov Cap-1 Maneuver	872	782	1024	872	770	1019	1535	<u>-</u>	-	1427	-	_
Mov Cap-1 Maneuver	872	782	1024	872	770	1019	1000	_		1741	_	_
Stage 1	966	857		955	847	<u>-</u>	_	<u>-</u>	-	-	-	_
Stage 2	955	847	_	968	847	_		_		_		
Olaye Z	900	041	_	300	047	_	_	<u>-</u>	_	-	-	_
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.2			0			0.4			0		
HCM LOS	Α			Α								
Minor Lane/Major Mvm	t	NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1535	-	-		-	1427	-	-			
HCM Lane V/C Ratio		0.002	_		0.007	_		_	_			
HCM Control Delay (s)		7.3	_	-	9.2	0	0	_	_			
HCM Lane LOS		A	_	_	A	A	A	_	_			
HCM 95th %tile Q(veh)		0	-	-	0	-	0	-	-			
(1011)							_					

Intersection						
Int Delay, s/veh	0					
		W/DD	NET	NES	05:	057
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	_	_ ∱		_	र्स
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	0
	_				-	_
		-				
	Minor1		//ajor1		/lajor2	
Conflicting Flow All	1	0	0	0	0	0
Stage 1	0	-	-	-	-	-
Stage 2	1	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	1022	-	_	-	-	_
Stage 1		_	_	-	_	_
Stage 2	1022	_	_	_	_	_
Platoon blocked, %	1022		_	_		_
Mov Cap-1 Maneuver	1022				_	_
•	1022	_	-	-	_	_
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	1022	-	-	-	-	-
Stage 2	1022	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
				1 (D)	05:	05-
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	-	-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		-	-	0	0	-
HCM Lane LOS		-	-	Α	Α	-
HCM 95th %tile Q(veh)	-	-	-	-	-
	,					

	۶	→	•	•	+	•	•	†	~	\	↓	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*		7	*	f)			ર્ન	7		ર્ન	7
Traffic Volume (vph)	16	18	32	58	589	22	29	13	32	16	18	60
Future Volume (vph)	16	18	32	58	589	22	29	13	32	16	18	60
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.97	1.00		0.98	1.00
Satd. Flow (prot)	1630	1716	1458	1662	1741			1674	1473		1660	1444
Flt Permitted	0.22	1.00	1.00	0.74	1.00			1.00	1.00		0.87	1.00
Satd. Flow (perm)	370	1716	1458	1301	1741			1733	1473		1474	1444
Peak-hour factor, PHF	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	19	21	38	69	701	26	35	15	38	19	21	71
RTOR Reduction (vph)	0	0	18	0	2	0	0	0	35	0	0	66
Lane Group Flow (vph)	19	21	20	69	725	0	0	50	3	0	40	5
Heavy Vehicles (%)	2%	2%	2%	0%	0%	0%	1%	1%	1%	3%	3%	3%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8			2		2	6		6
Actuated Green, G (s)	29.9	24.1	24.1	30.1	24.2			3.4	3.4		3.4	3.4
Effective Green, g (s)	31.5	24.9	24.9	31.1	24.7			3.4	3.4		3.4	3.4
Actuated g/C Ratio	0.67	0.53	0.53	0.67	0.53			0.07	0.07		0.07	0.07
Clearance Time (s)	4.8	4.8	4.8	4.5	4.5			4.0	4.0		4.0	4.0
Vehicle Extension (s)	2.5	4.0	4.0	2.5	4.0			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	427	914	777	915	920			126	107		107	105
v/s Ratio Prot	0.01	0.01		c0.01	c0.42							
v/s Ratio Perm	0.02		0.01	0.04				c0.03	0.00		0.03	0.00
v/c Ratio	0.04	0.02	0.03	0.08	0.79			0.40	0.03		0.37	0.05
Uniform Delay, d1	3.9	5.2	5.2	2.7	8.9			20.7	20.1		20.6	20.1
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.0	0.0	0.0	0.0	4.8			1.5	0.1		1.6	0.1
Delay (s)	3.9	5.2	5.2	2.7	13.7			22.2	20.2		22.2	20.3
Level of Service	A	Α	Α	Α	В			С	С		С	С
Approach Delay (s)		4.9			12.7			21.3			21.0	
Approach LOS		Α			В			С			С	
Intersection Summary			- 10 -									
HCM 2000 Control Delay			13.7	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.61									
Actuated Cycle Length (s)			46.7		um of los				12.0			
Intersection Capacity Utiliza	tion		55.1%	IC	CU Level	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

Lane Configurations 1 1 1 2 4 7 4 Traffic Volume (veh/h) 16 18 32 58 589 22 29 13 32 16 18 Future Volume (veh/h) 16 18 32 58 589 22 29 13 32 16 18 Initial Q (Qb), veh 0 </th <th></th> <th>1 /</th> <th>+ ∢</th>		1 /	+ ∢
Traffic Volume (veh/h) 16 18 32 58 589 22 29 13 32 16 18 Future Volume (veh/h) 16 18 32 58 589 22 29 13 32 16 18 Initial Q (Qb), veh 0 1 0 1 0 1 0 1<	EBL EBT EBR WBL WBT WBR NBL N	NBT NBR SBL	SBT SBR
Future Volume (veh/h) 16 18 32 58 589 22 29 13 32 16 18 Initial Q (Qb), veh 0 <	ካ ተ ሾ ካ ጉ		4 7
Initial Q (Qb), veh	16 18 32 58 589 22 29	13 32 16	18 60
Ped-Bike Adj(A_pbT) 1.00 </td <td>16 18 32 58 589 22 29</td> <td>13 32 16</td> <td>18 60</td>	16 18 32 58 589 22 29	13 32 16	18 60
Parking Bus, Adj 1.00			
Work Zone On Approach No No No No No No No Adj Sat Flow, veh/h/ln 1723 1723 1723 1750 1750 1750 1736 1736 1736 1736 1709 1709 1 Adj Flow Rate, veh/h 19 21 38 69 701 26 35 15 38 19 21 Peak Hour Factor 0.84 0.			1.00
Adj Sat Flow, veh/h/ln 1723 1723 1750 1750 1750 1736 1736 1736 1709 170			
Adj Flow Rate, veh/h 19 21 38 69 701 26 35 15 38 19 21 Peak Hour Factor 0.84			
Peak Hour Factor 0.84			
Percent Heavy Veh, % 2 2 2 2 0 0 0 1 1 1 3 3 Cap, veh/h 459 940 796 1030 894 33 219 69 169 165 126 Arrive On Green 0.10 0.55 0.55 0.09 0.53 0.53 0.12 <t< td=""><td></td><td></td><td></td></t<>			
Cap, veh/h 459 940 796 1030 894 33 219 69 169 165 126 Arrive On Green 0.10 0.55 0.55 0.09 0.53 0.53 0.12 <			
Arrive On Green 0.10 0.55 0.55 0.09 0.53 0.53 0.12 0.12 0.12 0.12 0.12 0.12 Sat Flow, veh/h 1641 1723 1460 1667 1677 62 810 604 1471 481 1096 1 Grp Volume(v), veh/h 19 21 38 69 0 727 50 0 38 40 0			
Sat Flow, veh/h 1641 1723 1460 1667 1677 62 810 604 1471 481 1096 1 Grp Volume(v), veh/h 19 21 38 69 0 727 50 0 38 40 0			
Grp Volume(v), veh/h 19 21 38 69 0 727 50 0 38 40 0			
0 0 (E) /			
	1641 1723 1460 1667 0 1739 1413	0 1471 1577	0 1448
Q Serve(g_s), s 0.2 0.3 0.6 0.8 0.0 16.3 0.6 0.0 1.1 0.0 0.0			
Cycle Q Clear(g_c), s 0.2 0.3 0.6 0.8 0.0 16.3 1.6 0.0 1.1 1.0 0.0			
			1.00
$1 - 1 \wedge P$			
$1 \times 2 \times 2$			
Incr Delay (d2), s/veh 0.0 0.0 0.0 0.0 3.8 0.2 0.0 0.5 0.2 0.0			
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			
%ile BackOfQ(50%),veh/ln 0.0 0.1 0.1 0.0 4.9 0.5 0.0 0.4 0.4 0.0	0.0 0.1 0.1 0.0 4.9 0.5	0.0 0.4 0.4	0.0 0.7
Unsig. Movement Delay, s/veh			
LnGrp LOS A A A A B B A C B A			
Approach Vol, veh/h 78 796 88 111			
Approach Delay, s/veh 5.4 12.1 20.0 20.7			
Approach LOS A B B C	A B	В	С
Timer - Assigned Phs 2 3 4 6 7 8	2 3 4 6 7	8	
Phs Duration (G+Y+Rc), s 9.6 8.5 30.5 9.6 8.8 30.2	9.6 8.5 30.5 9.6 8.8 3	30.2	
Change Period (Y+Rc), s 4.0 4.5 4.8 4.0 4.8 * 4.8	4.0 4.5 4.8 4.0 4.8 *	4.8	
Max Green Setting (Gmax), s 9.0 8.5 29.2 9.0 8.2 * 30	9.0 8.5 29.2 9.0 8.2 *	* 30	
Max Q Clear Time (g_c+l1), s 3.6 2.8 2.6 4.2 2.2 18.3	3.6 2.8 2.6 4.2 2.2 1	8.3	
Green Ext Time (p_c), s 0.1 0.1 0.6 0.2 0.0 7.1	0.1 0.1 0.6 0.2 0.0	7.1	
Intersection Summary			
HCM 6th Ctrl Delay 13.1	13.1		
HCM 6th LOS B			

Notes

User approved pedestrian interval to be less than phase max green.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	3.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	0	0	0	32	0	22	7	47	57	0
Future Vol, veh/h	0	0	0	0	0	32	0	22	7	47	57	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	4	4	4	9	9	9
Mvmt Flow	0	0	0	0	0	47	0	32	10	69	84	0
Major/Minor	line=0			line -1			Mais =1			Maisro		
	Minor2	004		Minor1	050		Major1			Major2		
Conflicting Flow All	283	264	84	259	259	37	84	0	0	42	0	0
Stage 1	222	222	-	37	37	-	-	-	-	-	-	-
Stage 2	61	42	-	222	222	-	-	-	-	4.40	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.14	-	-	4.19	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.236	-	-	2.281	-	-
Pot Cap-1 Maneuver	673	645	981	698	649	1041	1500	-	-	1523	-	-
Stage 1	785	723	-	984	868	-	-	-	-	-	-	-
Stage 2	955	864	-	785	723	-	-	-	-	-	-	-
Platoon blocked, %	- 1.5				- 1 -		1-25	-	-	1-25	-	-
Mov Cap-1 Maneuver	619	614	981	672	618	1041	1500	-	-	1523	-	-
Mov Cap-2 Maneuver	619	614	-	672	618	-	-	-	-	-	-	-
Stage 1	785	688	-	984	868	-	-	-	-	-	-	-
Stage 2	912	864	-	747	688	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			8.6			0			3.4		
HCM LOS	A			Α			- 0			0.7		
TOW LOO												
Minor Lane/Major Mvm	t	NBL	NBT	NBR F	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1500				1041	1523					
HCM Lane V/C Ratio		1300	-	_		0.045		_	_			
HCM Control Delay (s)		0	<u>-</u>	_	0	8.6	7.5	0	_			
HCM Lane LOS		A			A	6.0 A	7.5 A	A	_			
HCM 95th %tile Q(veh)		0	-	-	- -	0.1	0.1					
How your water Q(ven)		U	-	_	_	0.1	U. I	-	-			

Intersection												
Int Delay, s/veh	0.6											
• •												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			₽			f)	
Traffic Vol, veh/h	4	0	0	0	0	0	2	37	0	0	26	16
Future Vol, veh/h	4	0	0	0	0	0	2	37	0	0	26	16
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	125	-	-	140	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	3	3	3	23	23	23
Mvmt Flow	6	0	0	0	0	0	3	54	0	0	38	24
Major/Minor N	/linor2		ı	Minor1		ı	Major1			Major2		
Conflicting Flow All	110	110	50	110	122	54	62	0	0	54	0	0
Stage 1	50	50	50	60	60	54	UΖ	U	U	54	-	-
Stage 2	60	60	_	50	62	_		-	-	_	_	_
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.13	-	-	4.33	-	-
Critical Hdwy Stg 1	6.1	5.5	0.2	6.1	5.5	0.2	4.13	-	-	4.00	_	_
Critical Hdwy Stg 2	6.1	5.5		6.1	5.5	<u>-</u>	-	<u>-</u>	<u>-</u>	<u>-</u>	_	-
Follow-up Hdwy	3.5	3.5	3.3	3.5	3.5	3.3	2.227	_	-	2.407	_	_
Pot Cap-1 Maneuver	873	784	1024	873	772	1019	1535	_	_	1427	_	-
Stage 1	968	857	1024	957	849	1019	1000	-	-	1441	_	_
Stage 1	957	849		968	847	<u>-</u>	-	_	_	<u>-</u>	_	-
Platoon blocked, %	331	043	_	300	047	_		_		_	_	_
Mov Cap-1 Maneuver	872	782	1024	872	770	1019	1535	<u>-</u>	-	1427	-	_
Mov Cap-1 Maneuver	872	782	1024	872	770	1019	1000	_		1741	_	_
Stage 1	966	857		955	847	<u>-</u>	_	<u>-</u>	-	-	-	_
Stage 2	955	847	_	968	847	_		_		_		
Olaye Z	900	041	_	300	047	_	_	<u>-</u>	_	-	_	<u>-</u>
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.2			0			0.4			0		
HCM LOS	Α			Α								
Minor Lane/Major Mvmt	t	NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1535	_	_		_	1427	_	_			
HCM Lane V/C Ratio		0.002	_		0.007	_	-	_	_			
HCM Control Delay (s)		7.3	_	_	9.2	0	0	_	_			
HCM Lane LOS		Α.	_	-	A	A	A	_	_			
HCM 95th %tile Q(veh)		0	_	_	0	-	0	_	_			
					J		- 0					

Intersection				_		_
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WDL.	TIDIX	1\ B1	TIDIN	ODL	<u>- 351</u>
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	0
Major/Minor	Minor1	N	Major1		Major?	
					Major2	
Conflicting Flow All	1	0	0	0	0	0
Stage 1	0	-	-	-	-	-
Stage 2	1	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	1022	-	-	-	-	-
Stage 1	-	-	-	-	_	-
Stage 2	1022	_	-	_	-	_
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	1022	_	_	_	_	_
Mov Cap-2 Maneuve		_	_	<u>-</u>	_	_
	1022					
Stage 1		-	-	-	-	-
Stage 2	1022	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
TIOW LOO	,,					
Minor Lane/Major Mv	mt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	_	_	_	-
HCM Lane V/C Ratio		-	_	_	_	-
HCM Control Delay (s	3)	_	-	0	0	-
HCM Lane LOS	7	_	_	A	A	_
HCM 95th %tile Q(ve	h)			-		_
HOW Sout Wille Q(ve	11)	_	_	-	-	_

	۶	→	•	•	—	•	•	†	~	\	↓	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	†	7	7	f)			ર્ન	7		ર્ન	7
Traffic Volume (vph)	16	18	37	67	589	22	47	21	51	16	20	60
Future Volume (vph)	16	18	37	67	589	22	47	21	51	16	20	60
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.97	1.00		0.98	1.00
Satd. Flow (prot)	1630	1716	1458	1662	1741			1675	1473		1662	1444
Flt Permitted	0.20	1.00	1.00	0.74	1.00			0.77	1.00		0.82	1.00
Satd. Flow (perm)	337	1716	1458	1301	1741			1329	1473		1392	1444
Peak-hour factor, PHF	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	19	21	44	80	701	26	56	25	61	19	24	71
RTOR Reduction (vph)	0	0	22	0	2	0	0	0	54	0	0	63
Lane Group Flow (vph)	19	21	22	80	725	0	0	81	7	0	43	8
Heavy Vehicles (%)	2%	2%	2%	0%	0%	0%	1%	1%	1%	3%	3%	3%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8			2		2	6		6
Actuated Green, G (s)	29.6	23.8	23.8	30.2	24.1			5.3	5.3		5.3	5.3
Effective Green, g (s)	31.2	24.6	24.6	31.2	24.6			5.3	5.3		5.3	5.3
Actuated g/C Ratio	0.64	0.51	0.51	0.64	0.51			0.11	0.11		0.11	0.11
Clearance Time (s)	4.8	4.8	4.8	4.5	4.5			4.0	4.0		4.0	4.0
Vehicle Extension (s)	2.5	4.0	4.0	2.5	4.0			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	392	870	739	886	883			145	160		152	157
v/s Ratio Prot	0.01	0.01		c0.01	c0.42							
v/s Ratio Perm	0.02		0.02	0.05				c0.06	0.00		0.03	0.01
v/c Ratio	0.05	0.02	0.03	0.09	0.82			0.56	0.04		0.28	0.05
Uniform Delay, d1	4.7	6.0	6.0	3.2	10.1			20.5	19.3		19.9	19.3
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.0	0.0	0.0	0.0	6.5			3.7	0.1		0.7	0.1
Delay (s)	4.7	6.0	6.0	3.3	16.6			24.2	19.4		20.6	19.4
Level of Service	Α	Α	Α	Α	В			С	В		С	В
Approach Delay (s)		5.7			15.3			22.1			19.9	
Approach LOS		Α			В			С			В	
Intersection Summary												
HCM 2000 Control Delay			15.9	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.65									
Actuated Cycle Length (s)			48.5		um of los				12.0			
Intersection Capacity Utiliza	tion		55.1%	IC	CU Level	of Service	!		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	4	1	†	~	/	†	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	•	7	ሻ	₽			र्स	7		र्स	7
Traffic Volume (veh/h)	16	18	37	67	589	22	47	21	51	16	20	60
Future Volume (veh/h)	16	18	37	67	589	22	47	21	51	16	20	60
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1723	1723	1723	1750	1750	1750	1736	1736	1736	1709	1709	1709
Adj Flow Rate, veh/h	19	21	44	80	701	26	56	25	61	19	24	71
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Percent Heavy Veh, %	2	2	2	0	0	0	1	1	1	3	3	3
Cap, veh/h	401	896	759	967	853	32	115	29	249	98	75	245
Arrive On Green	0.09	0.52	0.52	0.08	0.51	0.51	0.17	0.17	0.17	0.17	0.17	0.17
Sat Flow, veh/h	1641	1723	1460	1667	1677	62	0	171	1471	0	445	1448
Grp Volume(v), veh/h	19	21	44	80	0	727	81	0	61	43	0	71
Grp Sat Flow(s),veh/h/ln	1641	1723	1460	1667	0	1739	171	0	1471	445	0	1448
Q Serve(g_s), s	0.2	0.3	0.8	1.1	0.0	18.8	0.0	0.0	1.9	0.0	0.0	2.3
Cycle Q Clear(g_c), s	0.2	0.3	0.8	1.1	0.0	18.8	9.0	0.0	1.9	9.0	0.0	2.3
Prop In Lane	1.00		1.00	1.00		0.04	0.69		1.00	0.44		1.00
Lane Grp Cap(c), veh/h	401	896	759	967	0	885	144	0	249	173	0	245
V/C Ratio(X)	0.05	0.02	0.06	0.08	0.00	0.82	0.56	0.00	0.24	0.25	0.00	0.29
Avail Cap(c_a), veh/h	531	972	824	1108	0	982	144	0	249	173	0	245
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	7.6	6.2	6.3	4.6	0.0	11.0	23.5	0.0	19.1	19.2	0.0	19.3
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.0	0.0	5.6	4.3	0.0	0.4	0.6	0.0	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.1	0.1	0.2	0.2	0.0	6.5	1.1	0.0	0.6	0.4	0.0	0.7
Unsig. Movement Delay, s/veh		6.0	6.4	4.6	0.0	16.6	07.0	0.0	10 E	10.0	0.0	10.0
LnGrp Delay(d),s/veh	7.6	6.2 A	6.4 A	4.6	0.0	16.6 B	27.8 C	0.0	19.5 B	19.8 B	0.0	19.8 B
LnGrp LOS	A		A	A	A	Б	U	A 440	D	D	A 444	
Approach Vol, veh/h		84			807			142			114	
Approach LOC		6.6			15.4			24.2			19.8	
Approach LOS		Α			В			С			В	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		13.0	8.5	31.6		13.0	8.8	31.3				
Change Period (Y+Rc), s		4.0	4.5	4.8		4.0	4.8	* 4.8				
Max Green Setting (Gmax), s		9.0	8.5	29.2		9.0	8.2	* 30				
Max Q Clear Time (g_c+l1), s		11.0	3.1	2.8		11.0	2.2	20.8				
Green Ext Time (p_c), s		0.0	0.1	0.6		0.0	0.0	5.8				
Intersection Summary												
HCM 6th Ctrl Delay			16.3									
HCM 6th LOS			В									

Notes

User approved pedestrian interval to be less than phase max green.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	5.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	0	0	0	77	0	22	7	63	57	0
Future Vol, veh/h	0	0	0	0	0	77	0	22	7	63	57	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	, # -	0	-	-	0	-	_	0	-	_	0	_
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	4	4	4	9	9	9
Mvmt Flow	0	0	0	0	0	113	0	32	10	93	84	0
Major/Minor N	/linor2		N	/linor1			Major1		ı	Major2		
Conflicting Flow All	364	312	84	307	307	37	84	0	0	42	0	0
Stage 1	270	270	-	37	37	-	-	-	-	-	_	-
Stage 2	94	42	-	270	270	_	_	_	_	_	-	_
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.14	-	-	4.19	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	_	_	-	_	_
Critical Hdwy Stg 2	6.1	5.5	_	6.1	5.5	_	_	_	_	_	_	_
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.236	_	_	2.281	-	_
Pot Cap-1 Maneuver	596	606	981	649	610	1041	1500	_	_	1523	-	-
Stage 1	740	690	-	984	868		-	_	_	-	-	_
Stage 2	918	864	_	740	690	_	-	_	_	-	_	-
Platoon blocked, %								_	_		-	_
Mov Cap-1 Maneuver	505	567	981	617	571	1041	1500	-	_	1523	-	-
Mov Cap-2 Maneuver	505	567	-	617	571		-	_	_	-	-	_
Stage 1	740	646	-	984	868	-	-	-	-	-	-	-
Stage 2	818	864	-	693	646	_	_	_	_	_	_	_
2.0.00 -	•											
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			8.9			0			3.9		
HCM LOS	A			A						3.0		
	,,			,,								
Minor Lane/Major Mvm	t	NBL	NBT	NBR I	EBLn1V	VBI n1	SBL	SBT	SBR			
Capacity (veh/h)		1500	-	-		1041	1523	-	-			
HCM Lane V/C Ratio		1000	_	_		0.109		_	_			
HCM Control Delay (s)		0	_		0	8.9	7.5	0	_			
HCM Lane LOS		A	_	_	A	6.9 A	7.5 A	A	-			
HCM 95th %tile Q(veh)		0	-	-	А	0.4	0.2	- -				
How som whe Q(ven)		U	-	-	_	0.4	U.Z	-	-			

Intersection												
Int Delay, s/veh	3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	LDIX	WDL		WDIX	NDL Š	1\D1	INDIX	JDL Š	<u>361</u>	JUIN
Traffic Vol, veh/h	4	0	0	2	4	31	2	52	0	13	29	16
Future Vol, veh/h	4	0	0	2	0	31	2	52	0	13	29	16
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	Olop -	- Olop	None	-	-	None	-	-	None	-	-	None
Storage Length	_	_	-	_	_	-	125	_	-	140	_	-
Veh in Median Storage,	# -	0	_	_	0	_	120	0	_	-	0	_
Grade, %	" -	0	_	_	0	_	_	0	_	_	0	_
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	3	3	3	23	23	23
Mvmt Flow	6	0	0	3	0	46	3	76	0	19	43	24
	- 0	- 0						7.0		10		
Major/Minor	Nin a -O			Ain c = 4			Maissa			Asis =0		
	linor2	475		Minor1	407		Major1			Major2		
Conflicting Flow All	198	175	55	175	187	76	67	0	0	76	0	0
Stage 1	93	93	-	82	82	-	-	-	-	-	-	-
Stage 2	105	82	-	93	105	-	1.40	-	-	4.00	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.13	-	-	4.33	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	- 0.07	-	-	- 107	-	-
Follow-up Hdwy	3.5	700	3.3	3.5	4	3.3	2.227	-	-	2.407	-	-
Pot Cap-1 Maneuver	765	722	1018	792	711	991	1528	-	-	1400	-	-
Stage 1	919	822 831	-	931	831 812	-	-	-	-	-	-	-
Stage 2	906	031	-	919	012		-	-	-	-	-	-
Platoon blocked, %	721	710	1018	782	700	991	1528	-	-	1400	-	-
Mov Cap-1 Maneuver Mov Cap-2 Maneuver	721	710		782	700	991	1326	-	-	1400	-	-
Stage 1	917	810	-	929	829	_	-	_	_	-	_	_
Stage 1 Stage 2	863	829	=	929	801		-	-	-	-	-	=
Slaye Z	003	029	-	301	001	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	10			8.9			0.3			1.7		
HCM LOS	В			Α								
Minor Lane/Major Mvmt		NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1528	-	-	721	975	1400		-			
HCM Lane V/C Ratio		0.002	_		0.008		0.014	_	_			
HCM Control Delay (s)		7.4	_	_	10	8.9	7.6	_	_			
HCM Lane LOS		Α	_	_	В	Α	Α.	_	_			
HCM 95th %tile Q(veh)		0	_	_	0	0.2	0	_	_			
		- 0			- 0	0.2	- 0					

Intersection						
Int Delay, s/veh	2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
		WBK		NBK	SBL	
Lane Configurations	¥	45	^	4	0	4
Traffic Vol, veh/h	3	15	40	1	3	28
Future Vol, veh/h	3	15	40	1	3	28
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	3	16	43	1	3	30
		. •		•		
	Minor1		Major1		Major2	
Conflicting Flow All	80	44	0	0	44	0
Stage 1	44	-	-	-	-	-
Stage 2	36	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	_	-	_	-	_
Follow-up Hdwy		3.318	_	_	2.218	_
Pot Cap-1 Maneuver	922	1026	_	_	1564	_
Stage 1	978	-	_	_	-	_
Stage 2	986	_	_	_	_	_
Platoon blocked, %	300	_	_	_	_	_
	920	1026	-	-	1564	-
Mov Cap-1 Maneuver				-		-
Mov Cap-2 Maneuver	920	-	-	-	-	-
Stage 1	978	-	-	-	-	-
Stage 2	984	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.6		0		0.7	
HCM LOS	6.0 A		U		0.1	
I IOWI LOS	А					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		_		1007	1564	-
HCM Lane V/C Ratio		_		0.019		_
HCM Control Delay (s)		-	_	8.6	7.3	0
HCM Lane LOS		_	_	A	Α	A
HCM 95th %tile Q(veh	1			0.1	0	-
HOW JULY JOINE Q(VEH	1	_	_	0.1	U	_

	۶	→	•	•	—	•	•	†	~	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*		7	*	f)			ર્ન	7		ર્ન	7
Traffic Volume (vph)	17	18	32	59	601	22	29	13	32	17	18	62
Future Volume (vph)	17	18	32	59	601	22	29	13	32	17	18	62
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.97	1.00		0.98	1.00
Satd. Flow (prot)	1630	1716	1458	1662	1741			1674	1473		1659	1444
Flt Permitted	0.19	1.00	1.00	0.74	1.00			0.77	1.00		0.82	1.00
Satd. Flow (perm)	333	1716	1458	1301	1741			1327	1473		1393	1444
Peak-hour factor, PHF	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	20	21	38	70	715	26	35	15	38	20	21	74
RTOR Reduction (vph)	0	0	18	0	2	0	0	0	34	0	0	67
Lane Group Flow (vph)	20	21	20	70	739	0	0	50	4	0	41	7
Heavy Vehicles (%)	2%	2%	2%	0%	0%	0%	1%	1%	1%	3%	3%	3%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8			2		2	6		6
Actuated Green, G (s)	30.2	24.4	24.4	30.6	24.6			4.8	4.8		4.8	4.8
Effective Green, g (s)	31.8	25.2	25.2	31.6	25.1			4.8	4.8		4.8	4.8
Actuated g/C Ratio	0.66	0.52	0.52	0.65	0.52			0.10	0.10		0.10	0.10
Clearance Time (s)	4.8	4.8	4.8	4.5	4.5			4.0	4.0		4.0	4.0
Vehicle Extension (s)	2.5	4.0	4.0	2.5	4.0			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	394	891	757	896	901			131	145		137	142
v/s Ratio Prot	0.01	0.01		c0.01	c0.42							
v/s Ratio Perm	0.03		0.01	0.04				c0.04	0.00		0.03	0.01
v/c Ratio	0.05	0.02	0.03	0.08	0.82			0.38	0.03		0.30	0.05
Uniform Delay, d1	4.6	5.7	5.7	3.1	9.8			20.5	19.7		20.3	19.8
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.0	0.0	0.0	0.0	6.3			1.4	0.1		0.9	0.1
Delay (s)	4.6	5.7	5.7	3.1	16.1			21.8	19.8		21.2	19.9
Level of Service	A	A	Α	Α	В			С	В		С	В
Approach Delay (s)		5.4			15.0			20.9			20.4	
Approach LOS		Α			В			С			С	
Intersection Summary			45.4		011 0000		<u> </u>					
HCM 2000 Control Delay			15.4	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.63	_		(C /)			40.0			
Actuated Cycle Length (s)	£		48.5		um of los				12.0			
Intersection Capacity Utiliza	ition		55.8%	IC	CU Level	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	ၨ	→	•	•	+	•	•	†	~	/	+	-✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	•	7	ነ	₽			र्स	7		र्स	7
Traffic Volume (veh/h)	17	18	32	59	601	22	29	13	32	17	18	62
Future Volume (veh/h)	17	18	32	59	601	22	29	13	32	17	18	62
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1723	1723	1723	1750	1750	1750	1736	1736	1736	1709	1709	1709
Adj Flow Rate, veh/h	20	21	38	70	715	26	35	15	38	20	21	74
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Percent Heavy Veh, %	2	2	2	0	0	0	1	1	1	3	3	3
Cap, veh/h	450	945	801	1032	900	33	217	69	169	167	123	166
Arrive On Green	0.10	0.55	0.55	0.09	0.54	0.54	0.11	0.11	0.11	0.11	0.11	0.11
Sat Flow, veh/h	1641	1723	1460	1667	1678	61	803	600	1471	502	1069	1448
Grp Volume(v), veh/h	20	21	38	70	0	741	50	0	38	41	0	74
Grp Sat Flow(s),veh/h/ln	1641	1723	1460	1667	0	1739	1402	0	1471	1571	0	1448
Q Serve(g_s), s	0.2	0.3	0.6	0.8	0.0	16.9	0.6	0.0	1.2	0.0	0.0	2.3
Cycle Q Clear(g_c), s	0.2	0.3	0.6	0.8	0.0	16.9	1.6	0.0	1.2	1.1	0.0	2.3
Prop In Lane	1.00		1.00	1.00		0.04	0.70		1.00	0.49		1.00
Lane Grp Cap(c), veh/h	450	945	801	1032	0	933	286	0	169	289	0	166
V/C Ratio(X)	0.04	0.02	0.05	0.07	0.00	0.79	0.18	0.00	0.23	0.14	0.00	0.45
Avail Cap(c_a), veh/h	591	1054	893	1185	0	1064	383	0	270	393	0	266
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	6.2	5.1	5.1	3.5	0.0	9.2	19.9	0.0	19.7	19.7	0.0	20.3
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.0	0.0	4.1	0.2	0.0	0.5	0.2	0.0	1.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.0	0.1	0.1	0.1	0.0	5.2	0.5	0.0	0.4	0.4	0.0	0.8
Unsig. Movement Delay, s/veh						40.0	22.4			10.0		21.0
LnGrp Delay(d),s/veh	6.2	5.1	5.2	3.6	0.0	13.3	20.1	0.0	20.2	19.9	0.0	21.6
LnGrp LOS	A	A	A	A	A	В	С	A	С	В	A	<u>C</u>
Approach Vol, veh/h		79			811			88			115	
Approach Delay, s/veh		5.4			12.5			20.1			21.0	
Approach LOS		Α			В			С			С	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		9.6	8.5	30.9		9.6	8.8	30.6				
Change Period (Y+Rc), s		4.0	4.5	4.8		4.0	4.8	* 4.8				
Max Green Setting (Gmax), s		9.0	8.5	29.2		9.0	8.2	* 30				
Max Q Clear Time (g_c+l1), s		3.6	2.8	2.6		4.3	2.2	18.9				
Green Ext Time (p_c), s		0.1	0.1	0.6		0.2	0.0	6.9				
Intersection Summary												
HCM 6th Ctrl Delay			13.5									
HCM 6th LOS			В									

Notes

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	3.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	0	0	0	32	0	22	7	48	58	0
Future Vol, veh/h	0	0	0	0	0	32	0	22	7	48	58	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	4	4	4	9	9	9
Mvmt Flow	0	0	0	0	0	47	0	32	10	71	85	0
Major/Minor N	1inor2		N	Minor1			Major1		ľ	Major2		
Conflicting Flow All	288	269	85	264	264	37	85	0	0	42	0	0
Stage 1	227	227	-	37	37	-	-	-	-	-	-	-
Stage 2	61	42	-	227	227	-	-	-	_	_	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.14	-	-	4.19	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.236	-	-	2.281	-	-
Pot Cap-1 Maneuver	668	641	980	693	645	1041	1499	-	-	1523	-	-
Stage 1	780	720	-	984	868	-	-	-	-	-	-	-
Stage 2	955	864	-	780	720	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	614	610	980	667	613	1041	1499	-	-	1523	-	-
Mov Cap-2 Maneuver	614	610	-	667	613	-	-	-	-	-	-	-
Stage 1	780	685	-	984	868	-	-	-	-	-	-	-
Stage 2	912	864	-	742	685	-	-	-	-	-	-	-
-												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			8.6			0			3.4		
HCM LOS	A			Α								
Minor Lane/Major Mvmt		NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1499	-	-	-	1041	1523	-	-			
HCM Lane V/C Ratio		-	-	-	-	0.045		-	-			
HCM Control Delay (s)		0	-	-	0	8.6	7.5	0	-			
HCM Lane LOS		A	-	-	A	Α	A	A	-			
HCM 95th %tile Q(veh)		0	-	-	-	0.1	0.1	-	-			

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	LDIN	VVDL	4	VVDIX	NDL 1	1\	INDIX) j	- 1dC	ODIN
Traffic Vol, veh/h	4	0	0	0	0	0	2	38	0	0	27	17
Future Vol, veh/h	4	0	0	0	0	0	2	38	0	0	27	17
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	- -	-	None	-	-	None	-	-	None
Storage Length	_	_	-	_	_	-	125	_	-	140	_	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	_	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	3	3	3	23	23	23
Mvmt Flow	6	0	0	0	0	0	3	56	0	0	40	25
Major/Minor M	linor2		N	Minor1		ı	Major1		ı	Major2		
Conflicting Flow All	115	115	53	115	127	56	65	0	0	56	0	0
Stage 1	53	53	-	62	62	-	-	-	-	-	-	-
Stage 2	62	62	_	53	65	<u> </u>	_	<u> </u>	_	_	_	_
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.13	_	_	4.33	_	_
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	- 0.2	-	_	_	-1.00	_	_
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	_	-	_	-
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.227	-	-	2.407	-	-
Pot Cap-1 Maneuver	867	779	1020	867	767	1016	1531	_	_	1425	-	_
Stage 1	965	855	-	954	847	-	-	_	_	-	_	_
Stage 2	954	847	-	965	845	-	-	_	-	-	-	-
Platoon blocked, %								_	_		-	-
Mov Cap-1 Maneuver	866	777	1020	866	765	1016	1531	-	-	1425	-	-
Mov Cap-2 Maneuver	866	777	-	866	765	-	-	-	-	-	-	-
Stage 1	963	855	-	952	845	-	-	-	-	-	-	-
Stage 2	952	845	-	965	845	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.2			0			0.4			0		
HCM LOS	A			A								
Minor Lane/Major Mvmt		NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1531	-	-	866	-	1425	-	-			
HCM Lane V/C Ratio		0.002	_		0.007	_	-	_	_			
HCM Control Delay (s)		7.4	_	-	9.2	0	0	-	-			
HCM Lane LOS		Α	-	-	A	A	A	-	_			
HCM 95th %tile Q(veh)		0	-	-	0	-	0	-	-			
		_			_							

Intersection						
Int Delay, s/veh	0					
		14/00	NET	NES	051	057
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	^	_ ∱	_	_	र्स
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	0
	-				•	_
		_		_		
	Minor1		//ajor1		Major2	
Conflicting Flow All	1	0	0	0	0	0
Stage 1	0	-	-	-	-	-
Stage 2	1	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	1022	-	_	-	-	-
Stage 1		_	_	_	_	_
Stage 2	1022	_	_	_	_	_
Platoon blocked, %	1022		_	_		_
Mov Cap-1 Maneuver	1022				_	_
•	1022	-	-	_	_	_
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	1022	-	-	-	-	-
Stage 2	1022	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
				4/D1 /	05:	05-
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	-	-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		-	-	0	0	-
HCM Lane LOS		-	-	Α	Α	-
HCM 95th %tile Q(veh)	-	-	-	-	-
	,					

	۶	→	•	€	—	•	•	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	↑	7	7	1>			ર્ન	7		ર્ન	7
Traffic Volume (vph)	17	18	41	75	601	22	64	28	67	17	22	62
Future Volume (vph)	17	18	41	75	601	22	64	28	67	17	22	62
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.97	1.00		0.98	1.00
Satd. Flow (prot)	1630	1716	1458	1662	1741			1674	1473		1663	1444
Flt Permitted	0.19	1.00	1.00	0.74	1.00			0.76	1.00		0.81	1.00
Satd. Flow (perm)	318	1716	1458	1301	1741			1323	1473		1374	1444
Peak-hour factor, PHF	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	20	21	49	89	715	26	76	33	80	20	26	74
RTOR Reduction (vph)	0	0	24	0	2	0	0	0	71	0	0	66
Lane Group Flow (vph)	20	21	25	89	739	0	0	109	9	0	46	8
Heavy Vehicles (%)	2%	2%	2%	0%	0%	0%	1%	1%	1%	3%	3%	3%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8			2		2	6		6
Actuated Green, G (s)	30.4	24.5	24.5	31.0	24.8			5.7	5.7		5.7	5.7
Effective Green, g (s)	32.0	25.3	25.3	32.0	25.3			5.7	5.7		5.7	5.7
Actuated g/C Ratio	0.64	0.51	0.51	0.64	0.51			0.11	0.11		0.11	0.11
Clearance Time (s)	4.8	4.8	4.8	4.5	4.5			4.0	4.0		4.0	4.0
Vehicle Extension (s)	2.5	4.0	4.0	2.5	4.0			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	381	873	742	886	886			151	168		157	165
v/s Ratio Prot	0.01	0.01		c0.01	c0.42							
v/s Ratio Perm	0.03		0.02	0.05				c0.08	0.01		0.03	0.01
v/c Ratio	0.05	0.02	0.03	0.10	0.83			0.72	0.05		0.29	0.05
Uniform Delay, d1	5.0	6.1	6.1	3.3	10.4			21.2	19.6		20.2	19.6
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.0	0.0	0.0	0.0	7.1			14.7	0.1		8.0	0.1
Delay (s)	5.0	6.1	6.1	3.4	17.5			36.0	19.7		20.9	19.7
Level of Service	A	Α	Α	Α	B			D	В		C	В
Approach Delay (s)		5.9			16.0			29.1			20.2	
Approach LOS		Α			В			С			С	
Intersection Summary							• •					
HCM 2000 Control Delay	., ,,		17.7	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	icity ratio		0.69	_					40.0			
Actuated Cycle Length (s)			49.7		um of lost				12.0			
Intersection Capacity Utiliza	ation		56.2%	IC	CU Level of	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	€	—	•	4	†	<i>></i>	/	ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	7	₽			ર્ન	7		र्स	7
Traffic Volume (veh/h)	17	18	41	75	601	22	64	28	67	17	22	62
Future Volume (veh/h)	17	18	41	75	601	22	64	28	67	17	22	62
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1723	1723	1723	1750	1750	1750	1736	1736	1736	1709	1709	1709
Adj Flow Rate, veh/h	20	21	49	89	715	26	76	33	80	20	26	74
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Percent Heavy Veh, %	2	2	2	0	0	0	1	1	1	3	3	3
Cap, veh/h	393	902	764	967	859	31	114	28	248	97	77	244
Arrive On Green	0.09	0.52	0.52	0.08	0.51	0.51	0.17	0.17	0.17	0.17	0.17	0.17
Sat Flow, veh/h	1641	1723	1460	1667	1678	61	0	167	1471	0	456	1448
Grp Volume(v), veh/h	20	21	49	89	0	741	109	0	80	46	0	74
Grp Sat Flow(s),veh/h/ln	1641	1723	1460	1667	0	1739	167	0	1471	456	0	1448
Q Serve(g_s), s	0.3	0.3	0.9	1.2	0.0	19.4	0.0	0.0	2.6	0.0	0.0	2.4
Cycle Q Clear(g_c), s	0.3	0.3	0.9	1.2	0.0	19.4	9.0	0.0	2.6	9.0	0.0	2.4
Prop In Lane	1.00		1.00	1.00		0.04	0.70		1.00	0.43		1.00
Lane Grp Cap(c), veh/h	393	902	764	967	0	891	142	0	248	173	0	244
V/C Ratio(X)	0.05	0.02	0.06	0.09	0.00	0.83	0.77	0.00	0.32	0.27	0.00	0.30
Avail Cap(c_a), veh/h	522	966	819	1107	0	975	142	0	248	173	0	244
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	7.8	6.2	6.3	4.6	0.0	11.1	24.5	0.0	19.6	19.4	0.0	19.5
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.0	0.0	6.2	21.0	0.0	0.6	0.6	0.0	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.1	0.1	0.2	0.3	0.0	6.9	2.2	0.0	0.8	0.5	0.0	0.8
Unsig. Movement Delay, s/veh	1											
LnGrp Delay(d),s/veh	7.8	6.2	6.3	4.6	0.0	17.3	45.5	0.0	20.1	20.0	0.0	20.0
LnGrp LOS	Α	Α	Α	Α	Α	В	D	Α	С	С	Α	С
Approach Vol, veh/h		90			830			189			120	
Approach Delay, s/veh		6.6			15.9			34.8			20.0	
Approach LOS		Α			В			С			С	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		13.0	8.5	32.0		13.0	8.8	31.7				
Change Period (Y+Rc), s		4.0	4.5	4.8		4.0	4.8	* 4.8				
Max Green Setting (Gmax), s		9.0	8.5	29.2		9.0	8.2	* 30				
Max Q Clear Time (g_c+l1), s		11.0	3.2	2.9		11.0	2.3	21.4				
Green Ext Time (p_c), s		0.0	0.1	0.7		0.0	0.0	5.5				
Intersection Summary												
HCM 6th Ctrl Delay			18.5									
HCM 6th LOS			В									

Notes

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	5.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	LDIN	VVDL	4	WDIX	NDL	4	INDIX	ODL	4	ODIN
Traffic Vol, veh/h	0	0	0	0	0	117	0	22	7	77	58	0
Future Vol, veh/h	0	0	0	0	0	117	0	22	7	77	58	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	_	_	-	_	_	-	_	_	-	_	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	_	0	-	-	0	-	-	0	_	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	4	4	4	9	9	9
Mvmt Flow	0	0	0	0	0	172	0	32	10	113	85	0
Major/Minor N	linor2		N	/linor1			Major1		ı	Major2		
Conflicting Flow All	434	353	85	348	348	37	85	0	0	42	0	0
Stage 1	311	311	-	37	37	-	-	-	-	-	-	-
Stage 2	123	42	_	311	311	_	<u>-</u>	<u>-</u>	<u>-</u>	_	_	<u>-</u>
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.14	_	_	4.19	_	_
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	5.2	-	_	_		_	_
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	_	-	-	_	-	_	_
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.236	-	-	2.281	-	-
Pot Cap-1 Maneuver	536	575	980	610	579	1041	1499	_	_	1523	-	_
Stage 1	704	662	-	984	868			_	_	-	_	_
Stage 2	886	864	-	704	662	-	-	-	-	-	-	-
Platoon blocked, %								_	_		-	-
Mov Cap-1 Maneuver	421	530	980	573	534	1041	1499	-	-	1523	-	-
Mov Cap-2 Maneuver	421	530	-	573	534	-	-	-	-	-	-	-
Stage 1	704	610	-	984	868	-	-	-	-	-	-	-
Stage 2	740	864	-	649	610	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			9.1			0			4.3		
HCM LOS	A			Α								
Minor Lane/Major Mvmt		NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1499	-	-	-	1041	1523	-	-			
HCM Lane V/C Ratio		-	-	-		0.165		-	_			
HCM Control Delay (s)		0	-	-	0	9.1	7.6	0	-			
HCM Lane LOS		A	-	-	A	Α	Α	A	_			
HCM 95th %tile Q(veh)		0	-	-	-	0.6	0.2	-	-			
., - /												

Intersection												
Int Delay, s/veh	3.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	- ↑		*	1	02.1
Traffic Vol, veh/h	4	0	0	3	0	58	2	65	1	24	32	17
Future Vol, veh/h	4	0	0	3	0	58	2	65	1	24	32	17
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None		_	None	_	_	None
Storage Length	_	_	-	_	_	-	125	_	-	140	-	_
Veh in Median Storage,	# -	0	-	-	0	_	_	0	-	-	0	-
Grade, %	_	0	-	_	0	-	_	0	-	-	0	_
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	3	3	3	23	23	23
Mvmt Flow	6	0	0	4	0	85	3	96	1	35	47	25
Major/Minor	liner?			Minor1			Major1			Major		
	linor2	000		Minor1	045		Major1	0		Major2	^	^
Conflicting Flow All	275	233	60	233	245	97	72	0	0	97	0	0
Stage 1	130	130	-	103	103	_	-	-	-	-	-	-
Stage 2	145	103	-	130	142	-	1.40	-	-	4.00	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.13	-	-	4.33	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	2.2	0.007	-	-	0.407	-	-
Follow-up Hdwy	3.5	671	3.3	3.5	4	3.3	2.227	-	-	2.407	-	-
Pot Cap-1 Maneuver	681	671	1011	726	661	965	1522	-	-	1375	-	-
Stage 1	878	792	-	908	814	-	-	-	-	-	-	-
Stage 2	863	814	-	878	783	-	-	-	-	-	-	-
Platoon blocked, %	600	652	1011	711	642	065	1500	-	-	1275	-	-
Mov Cap-1 Maneuver	608	653	1011	711	643	965	1522	-	-	1375	-	-
Mov Cap-2 Maneuver	608	653	-	711	643	-	-	-	-	-	-	-
Stage 1	876	772 812	-	906	812 763	-	-	-	-	-	-	-
Stage 2	785	012	-	856	103	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	11			9.2			0.2			2.5		
HCM LOS	В			Α								
Minor Lane/Major Mvmt		NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1522	_	_	608	948	1375	_	_			
HCM Lane V/C Ratio		0.002	_	_		0.095		_	_			
HCM Control Delay (s)		7.4	_	_	11	9.2	7.7	_	_			
HCM Lane LOS		Α.	_	_	В	Α.Σ	Α	_	_			
HCM 95th %tile Q(veh)		0	_	_	0	0.3	0.1	_	_			
How Jour June Q(Veri)		U			J	0.0	J. 1					

-						
Intersection						
Int Delay, s/veh	2.9					
		WED	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		f)		_	4
Traffic Vol, veh/h	6	27	41	2	5	30
Future Vol, veh/h	6	27	41	2	5	30
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	7	29	45	2	5	33
		_,			_	
	Minor1		//ajor1		Major2	
Conflicting Flow All	89	46	0	0	47	0
Stage 1	46	-	-	-	-	-
Stage 2	43	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	_	-	-
Follow-up Hdwy		3.318	_	_	2.218	-
Pot Cap-1 Maneuver	912	1023	_	_	1560	_
Stage 1	976	-	_	_		_
Stage 2	979	_	_	_	_	_
Platoon blocked, %	313		_			_
	909	1023	-	_	1560	
Mov Cap-1 Maneuver		1023		-		-
Mov Cap-2 Maneuver	909	-	-	_	-	-
Stage 1	976	-	-	-	-	-
Stage 2	976	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.7		0		1	
HCM LOS	A				•	
110111 200	,,					
Minor Lane/Major Mvn	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	1000	1560	-
HCM Lane V/C Ratio		-	-	0.036	0.003	-
HCM Control Delay (s))	-	-	8.7	7.3	0
HCM Lane LOS		_	_	Α	A	A
HCM 95th %tile Q(veh)	-	-	0.1	0	-
Sin oour 70tho Q(Von	7			0.1	J	

07/13/2023

	٠	→	•	•	+	•	1	†	/	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	7	ĵ.			ર્ન	7		र्स	7
Traffic Volume (vph)	18	19	34	63	634	24	31	14	34	18	19	65
Future Volume (vph)	18	19	34	63	634	24	31	14	34	18	19	65
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.97	1.00		0.98	1.00
Satd. Flow (prot)	1630	1716	1458	1662	1740			1675	1473		1659	1444
Flt Permitted	0.17	1.00	1.00	0.74	1.00			0.77	1.00		0.82	1.00
Satd. Flow (perm)	294	1716	1458	1299	1740			1330	1473		1395	1444
Peak-hour factor, PHF	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	21	23	40	75	755	29	37	17	40	21	23	77
RTOR Reduction (vph)	0	0	19	0	2	0	0	0	36	0	0	69
Lane Group Flow (vph)	21	23	21	75	782	0	0	54	4	0	44	8
Heavy Vehicles (%)	2%	2%	2%	0%	0%	0%	1%	1%	1%	3%	3%	3%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8			2	_		6	
Permitted Phases	4		4	8			2		2	6		6
Actuated Green, G (s)	31.8	26.0	26.0	32.0	26.1			4.9	4.9		4.9	4.9
Effective Green, g (s)	33.4	26.8	26.8	33.0	26.6			4.9	4.9		4.9	4.9
Actuated g/C Ratio	0.67	0.53	0.53	0.66	0.53			0.10	0.10		0.10	0.10
Clearance Time (s)	4.8	4.8	4.8	4.5	4.5			4.0	4.0		4.0	4.0
Vehicle Extension (s)	2.5	4.0	4.0	2.5	4.0			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	372	917	779	902	923			130	144		136	141
v/s Ratio Prot	0.01	0.01	2.21	c0.01	c0.45							2.24
v/s Ratio Perm	0.03	0.00	0.01	0.04	0.05			c0.04	0.00		0.03	0.01
v/c Ratio	0.06	0.03	0.03	0.08	0.85			0.42	0.03		0.32	0.05
Uniform Delay, d1	4.9	5.5	5.5	3.1	10.0			21.3	20.4		21.1	20.5
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.0	0.0	0.0	0.0	7.5			1.6	0.1		1.0	0.1
Delay (s)	5.0	5.5	5.5	3.1	17.6			22.8	20.5		22.1	20.6
Level of Service	Α	Α	Α	Α	B			C	С		C	С
Approach Delay (s)		5.4			16.3			21.8			21.1	
Approach LOS		Α			В			С			С	
Intersection Summary			10.5		0110000		<u> </u>					
HCM 2000 Control Delay			16.5	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.66	_		(C /)			40.0			
Actuated Cycle Length (s)			50.1		um of lost				12.0			
Intersection Capacity Utiliza	ation		57.8%	IC	CU Level of	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

07/13/2023

	۶	→	•	•	←	•	•	†	~	/	ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	^	7	7	4î			Ą	7		र्स	7
Traffic Volume (veh/h)	18	19	34	63	634	24	31	14	34	18	19	65
Future Volume (veh/h)	18	19	34	63	634	24	31	14	34	18	19	65
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1723	1723	1723	1750	1750	1750	1736	1736	1736	1709	1709	1709
Adj Flow Rate, veh/h	21	23	40	75	755	29	37	17	40	21	23	77
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Percent Heavy Veh, %	2	2	2	0	0	0	1	1	1	3	3	3
Cap, veh/h	378	918	778	979	873	34	140	42	237	114	82	233
Arrive On Green	0.09	0.53	0.53	0.08	0.52	0.52	0.16	0.16	0.16	0.16	0.16	0.16
Sat Flow, veh/h	1641	1723	1460	1667	1674	64	168	260	1471	94	508	1448
Grp Volume(v), veh/h	21	23	40	75	0	784	54	0	40	44	0	77
Grp Sat Flow(s),veh/h/ln	1641	1723	1460	1667	0	1738	427	0	1471	602	0	1448
Q Serve(g_s), s	0.3	0.3	0.7	1.0	0.0	21.2	0.9	0.0	1.3	0.2	0.0	2.5
Cycle Q Clear(g_c), s	0.3	0.3	0.7	1.0	0.0	21.2	8.1	0.0	1.3	7.7	0.0	2.5
Prop In Lane	1.00		1.00	1.00		0.04	0.69		1.00	0.48		1.00
Lane Grp Cap(c), veh/h	378	918	778	979	0	907	181	0	237	196	0	233
V/C Ratio(X)	0.06	0.03	0.05	0.08	0.00	0.86	0.30	0.00	0.17	0.22	0.00	0.33
Avail Cap(c_a), veh/h	506	959	813	1118	0	968	190	0	246	204	0	242
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	8.1	6.0	6.1	4.4	0.0	11.2	22.0	0.0	19.5	19.7	0.0	20.0
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.0	0.0	8.2	0.7	0.0	0.2	0.4	0.0	0.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.1	0.1	0.2	0.2	0.0	7.8	0.7	0.0	0.4	0.5	0.0	0.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	8.2	6.0	6.1	4.4	0.0	19.5	22.7	0.0	19.7	20.2	0.0	20.6
LnGrp LOS	Α	Α	Α	Α	Α	В	С	Α	В	С	Α	<u>C</u>
Approach Vol, veh/h		84			859			94			121	
Approach Delay, s/veh		6.6			18.2			21.4			20.5	
Approach LOS		Α			В			С			С	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		12.8	8.5	32.8		12.8	8.8	32.5				
Change Period (Y+Rc), s		4.0	4.5	4.8		4.0	4.8	* 4.8				
Max Green Setting (Gmax), s		9.0	8.5	29.2		9.0	8.2	* 30				
Max Q Clear Time (g_c+l1), s		10.1	3.0	2.7		9.7	2.3	23.2				
Green Ext Time (p_c), s		0.0	0.1	0.6		0.0	0.0	4.6				
Intersection Summary												
HCM 6th Ctrl Delay			17.8									
HCM 6th LOS			В									

Notes

User approved pedestrian interval to be less than phase max green.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	3.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	0	0	0	34	0	24	7	51	61	0
Future Vol, veh/h	0	0	0	0	0	34	0	24	7	51	61	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	4	4	4	9	9	9
Mvmt Flow	0	0	0	0	0	50	0	35	10	75	90	0
Major/Minor N	1inor2		_	Minor1			Major1		N	Major2		
Conflicting Flow All	305	285	90	280	280	40	90	0	0	45	0	0
Stage 1	240	240	-	40	40	-	-	-	-	-	-	-
Stage 2	65	45	_	240	240	_	_	_	_	_	_	_
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.14	_	-	4.19	_	_
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.236	-	-	2.281	-	-
Pot Cap-1 Maneuver	651	628	973	676	632	1037	1493	-	-	1519	-	-
Stage 1	768	711	-	980	866	-	-	-	-	-	-	-
Stage 2	951	861	-	768	711	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	595	595	973	649	599	1037	1493	-	-	1519	-	-
Mov Cap-2 Maneuver	595	595	-	649	599	-	-	-	-	-	-	-
Stage 1	768	674	-	980	866	-	-	-	-	-	-	-
Stage 2	905	861	-	728	674	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			8.6			0			3.4		
HCM LOS	A			Α								
Minor Lane/Major Mvmt		NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1493	-	-	-	1037	1519	-	-			
HCM Lane V/C Ratio		-	-	-	-	0.048		-	-			
HCM Control Delay (s)		0	-	-	0	8.6	7.5	0	-			
HCM Lane LOS		A	-	-	A	Α	A	A	-			
HCM 95th %tile Q(veh)		0	-	-	-	0.2	0.2	-	-			

Intersection												
Int Delay, s/veh	0.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	5	0	0	0	0	0	2	40	0	0	28	18
Future Vol, veh/h	5	0	0	0	0	0	2	40	0	0	28	18
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	3	3	3	23	23	23
Mvmt Flow	7	0	0	0	0	0	3	59	0	0	41	26
Major/Minor N	linor2			Minor1		ľ	Major1		ľ	Major2		
Conflicting Flow All	119	119	54	119	132	59	67	0	0	59	0	0
Stage 1	54	54	-	65	65	-	-	-	-	-	-	-
Stage 2	65	65	-	54	67	-	-	-	_	-	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.13	-	-	4.33	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.227	-	-	2.407	-	-
Pot Cap-1 Maneuver	861	775	1019	861	762	1012	1528	-	-	1421	-	-
Stage 1	963	854	-	951	845	-	-	-	-	-	-	-
Stage 2	951	845	-	963	843	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	859	773	1019	859	760	1012	1528	-	-	1421	-	-
Mov Cap-2 Maneuver	859	773	-	859	760	-	-	-	-	-	-	-
Stage 1	961	854	-	949	843	-	-	-	-	-	-	-
Stage 2	949	843	-	963	843	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.2			0			0.4			0		
HCM LOS	Α			A								
Minor Lane/Major Mvmt		NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1528	-	-	859	-	1421	-	-			
HCM Lane V/C Ratio		0.002	-	-	0.009	-	-	-	-			
HCM Control Delay (s)		7.4	0	-	9.2	0	0	-	-			
HCM Lane LOS		Α	A	-	Α	A	A	-	-			
HCM 95th %tile Q(veh)		0	-	-	0	-	0	-	-			

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	WEIT	4	HOIL	ODL	4
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	-	None	-	None
Storage Length	0	NOITE				NOHE
			-	-	-	_
Veh in Median Storag		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	0
Major/Minor	Minor1	N	/lajor1		Major2	
Conflicting Flow All	1	0	0	0	0	0
Stage 1	0	-	-	-	-	-
Stage 2	1	_	_	_	_	_
Critical Hdwy	6.42	6.22	_	_	4.12	
Critical Hdwy Stg 1	5.42	0.22	_	_	4.12	_
	5.42	-	-	_		
Critical Hdwy Stg 2	3.518	3.318	-	-	2 240	-
Follow-up Hdwy		3.310	-	-	2.218	-
Pot Cap-1 Maneuver	1022	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	1022	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver		_	-	-	-	-
Mov Cap-2 Maneuver	1022	-	-	-	-	-
Stage 1	_	-	-	-	-	-
Stage 2	1022	-	-	-	-	-
Approach	WB		NB		SB	
			0		0	
HCM Control Delay, s			U		U	
HCM LOS	Α					
Minor Lane/Major Mvr	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)						
HCM Lane V/C Ratio		_	_	_	<u>-</u>	_
HCM Control Delay (s			_	0	0	_
HCM Lane LOS	7)	_	_	A	A	-
	٠١	-	-		- -	
HCM 95th %tile Q(veh	IJ	-	-	-	-	-

	۶	→	•	€	—	•	•	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ		7	ሻ	f)			र्स	7		र्स	7
Traffic Volume (vph)	18	20	35	65	656	24	32	15	35	18	20	67
Future Volume (vph)	18	20	35	65	656	24	32	15	35	18	20	67
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.97	1.00		0.98	1.00
Satd. Flow (prot)	1630	1716	1458	1662	1741			1676	1473		1660	1444
Flt Permitted	0.17	1.00	1.00	0.74	1.00			0.77	1.00		0.82	1.00
Satd. Flow (perm)	288	1716	1458	1298	1741			1332	1473		1399	1444
Peak-hour factor, PHF	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	21	24	42	77	781	29	38	18	42	21	24	80
RTOR Reduction (vph)	0	0	19	0	2	0	0	0	38	0	0	72
Lane Group Flow (vph)	21	24	23	77	808	0	0	56	4	0	45	8
Heavy Vehicles (%)	2%	2%	2%	0%	0%	0%	1%	1%	1%	3%	3%	3%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8			2		2	6		6
Actuated Green, G (s)	34.3	28.4	28.4	34.5	28.5			5.0	5.0		5.0	5.0
Effective Green, g (s)	35.9	29.2	29.2	35.5	29.0			5.0	5.0		5.0	5.0
Actuated g/C Ratio	0.68	0.55	0.55	0.67	0.55			0.09	0.09		0.09	0.09
Clearance Time (s)	4.8	4.8	4.8	4.5	4.5			4.0	4.0		4.0	4.0
Vehicle Extension (s)	2.5	4.0	4.0	2.5	4.0			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	366	950	807	919	958			126	139		132	137
v/s Ratio Prot	0.01	0.01		c0.01	c0.46							
v/s Ratio Perm	0.03		0.02	0.05				c0.04	0.00		0.03	0.01
v/c Ratio	0.06	0.03	0.03	0.08	0.84			0.44	0.03		0.34	0.06
Uniform Delay, d1	5.1	5.3	5.3	2.9	9.9			22.5	21.6		22.3	21.7
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.0	0.0	0.0	0.0	7.1			1.8	0.1		1.1	0.1
Delay (s)	5.1	5.3	5.3	3.0	17.1			24.4	21.7		23.4	21.8
Level of Service	Α	Α	Α	Α	В			С	С		С	С
Approach Delay (s)		5.3			15.9			23.2			22.4	
Approach LOS		Α			В			С			С	
Intersection Summary												
HCM 2000 Control Delay			16.4	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.67									
Actuated Cycle Length (s)			52.7		um of los				12.0			
Intersection Capacity Utiliza	tion		59.1%	IC	CU Level	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	•	†	~	/	ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	J.	†	7	, J	f)			ર્ન	7		4	7
Traffic Volume (veh/h)	18	20	35	65	656	24	32	15	35	18	20	67
Future Volume (veh/h)	18	20	35	65	656	24	32	15	35	18	20	67
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1723	1723	1723	1750	1750	1750	1736	1736	1736	1709	1709	1709
Adj Flow Rate, veh/h	21	24	42	77	781	29	38	18	42	21	24	80
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Percent Heavy Veh, %	2	2	2	0	0	0	1	1	1	3	3	3
Cap, veh/h	371	969	822	1000	926	34	104	28	227	91	63	224
Arrive On Green	0.08	0.56	0.56	0.08	0.55	0.55	0.15	0.15	0.15	0.15	0.15	0.15
Sat Flow, veh/h	1641	1723	1460	1667	1677	62	0	182	1471	0	408	1448
Grp Volume(v), veh/h	21	24	42	77	0	810	56	0	42	45	0	80
Grp Sat Flow(s),veh/h/ln	1641	1723	1460	1667	0	1739	182	0	1471	408	0	1448
Q Serve(g_s), s	0.3	0.4	8.0	1.0	0.0	22.8	0.0	0.0	1.4	0.0	0.0	2.9
Cycle Q Clear(g_c), s	0.3	0.4	0.8	1.0	0.0	22.8	9.0	0.0	1.4	9.0	0.0	2.9
Prop In Lane	1.00		1.00	1.00		0.04	0.68		1.00	0.47		1.00
Lane Grp Cap(c), veh/h	371	969	822	1000	0	961	132	0	227	154	0	224
V/C Ratio(X)	0.06	0.02	0.05	0.08	0.00	0.84	0.43	0.00	0.18	0.29	0.00	0.36
Avail Cap(c_a), veh/h	489	1034	876	1129	0	1044	132	0	227	154	0	224
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	8.4	5.7	5.7	4.2	0.0	10.9	24.9	0.0	21.5	21.8	0.0	22.1
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.0	0.0	6.4	1.6	0.0	0.3	8.0	0.0	0.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.1	0.1	0.2	0.2	0.0	8.0	0.8	0.0	0.5	0.5	0.0	0.9
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	8.5	5.7	5.8	4.2	0.0	17.3	26.5	0.0	21.8	22.6	0.0	22.8
LnGrp LOS	A	A	A	A	A	В	С	A	С	С	A	<u>C</u>
Approach Vol, veh/h		87			887			98			125	
Approach Delay, s/veh		6.4			16.2			24.5			22.7	
Approach LOS		Α			В			С			С	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		13.0	8.5	36.8		13.0	8.8	36.5				
Change Period (Y+Rc), s		4.0	4.5	4.8		4.0	4.8	* 4.8				
Max Green Setting (Gmax), s		9.0	8.5	34.2		9.0	8.2	* 35				
Max Q Clear Time (g_c+I1), s		11.0	3.0	2.8		11.0	2.3	24.8				
Green Ext Time (p_c), s		0.0	0.1	0.7		0.0	0.0	7.0				
Intersection Summary												
HCM 6th Ctrl Delay			16.8									
HCM 6th LOS			В									

Notes

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	3.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	0	0	0	35	0	24	7	53	64	0
Future Vol, veh/h	0	0	0	0	0	35	0	24	7	53	64	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	4	4	4	9	9	9
Mvmt Flow	0	0	0	0	0	51	0	35	10	78	94	0
Major/Minor N	1inor2		<u> </u>	Minor1		1	Major1		ľ	Major2		
Conflicting Flow All	316	295	94	290	290	40	94	0	0	45	0	0
Stage 1	250	250	-	40	40	-	-	-	-	-	-	-
Stage 2	66	45	-	250	250	-	-	-	_	_	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.14	-	-	4.19	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.236	-	-	2.281	-	-
Pot Cap-1 Maneuver	641	620	968	666	624	1037	1488	-	-	1519	-	-
Stage 1	759	704	-	980	866	-	-	-	-	-	-	-
Stage 2	950	861	-	759	704	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	584	587	968	639	590	1037	1488	-	-	1519	-	-
Mov Cap-2 Maneuver	584	587	-	639	590	-	-	-	-	-	-	-
Stage 1	759	666	-	980	866	-	-	-	-	-	-	-
Stage 2	903	861	-	718	666	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			8.7			0			3.4		
HCM LOS	A			Α								
Minor Lane/Major Mvmt		NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1488	-	-	-	1037	1519	_	-			
HCM Lane V/C Ratio		-	-	-	-		0.051	-	-			
HCM Control Delay (s)		0	-	-	0	8.7	7.5	0	-			
HCM Lane LOS		A	-	-	A	Α	A	A	-			
HCM 95th %tile Q(veh)		0	-	-	-	0.2	0.2	-	-			

Intersection												
Int Delay, s/veh	0.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			₽			- î∍	
Traffic Vol, veh/h	5	0	0	0	0	0	2	42	0	0	29	18
Future Vol, veh/h	5	0	0	0	0	0	2	42	0	0	29	18
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	125	-	-	140	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	3	3	3	23	23	23
Mvmt Flow	7	0	0	0	0	0	3	62	0	0	43	26
Major/Minor N	/linor2		N	Minor1		N	Major1			Major2		
Conflicting Flow All	124	124	56	124	137	62	69	0	0	62	0	0
Stage 1						02	69	U	U	02		
•	56	56	-	68	68	-	-	-	-	-	-	-
Stage 2	68 7.4	68	- 6.0	56	69	6.2	1.12	-	-	4.22	-	-
Critical Holy	7.1	6.5	6.2	7.1	6.5	6.2	4.13	-	-	4.33	-	-
Critical Holy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	- 2 2	6.1	5.5	2.2	2 227	-	-	2 407	-	-
Follow-up Hdwy	3.5	4	3.3	3.5	4 750	3.3	2.227	-	-	2.407	-	-
Pot Cap-1 Maneuver	855	770	1016	855	758	1009	1526	-	-	1417	-	-
Stage 1	961	852	-	947	842	-	-	-	-	-	-	-
Stage 2	947	842	-	961	841	-	-	-	-	-	-	-
Platoon blocked, %	0.5.4	700	1010	0.54	750	1000	1500	-	-	1117	-	-
Mov Cap-1 Maneuver	854	768	1016	854	756	1009	1526	-	-	1417	-	-
Mov Cap-2 Maneuver	854	768	-	854	756	-	-	-	-	-	-	-
Stage 1	959	852	-	945	840	-	-	-	-	-	-	-
Stage 2	945	840	-	961	841	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.3			0			0.3			0		
HCM LOS	Α			A								
Minor Lane/Major Mvmt	t	NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1526	_	_	0=4	_	1417	_				
HCM Lane V/C Ratio		0.002	<u>-</u>		0.009	_	-	<u>-</u>	<u>-</u>			
HCM Control Delay (s)		7.4	_	_	9.3	0	0	_	_			
HCM Lane LOS		Α	_	_	3.5 A	A	A	<u>-</u>	_			
HCM 95th %tile Q(veh)		0	_	_	0	-	0	_	_			
HOW JOHN JOHNE W(VEII)		U	_	_	U		U		<u>-</u>			

Intersection						
Int Delay, s/veh	0					
		14/00	NET	NES	051	057
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	^	_ ∱	_	_	र्स
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	0
	-				•	_
		_		_		
	Minor1		//ajor1		Major2	
Conflicting Flow All	1	0	0	0	0	0
Stage 1	0	-	-	-	-	-
Stage 2	1	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	1022	-	_	-	-	_
Stage 1		_	_	_	_	_
Stage 2	1022	_	_	_	_	_
Platoon blocked, %	1022		_	_		_
Mov Cap-1 Maneuver	1022				_	
•	1022	-	-	_	_	_
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	1022	-	-	-	-	-
Stage 2	1022	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
				4/D1 /	05:	05-
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	-	-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		-	-	0	0	-
HCM Lane LOS		-	-	Α	Α	-
HCM 95th %tile Q(veh)	-	-	-	-	-
	,					

	۶	→	•	•	←	4	1	†	~	/	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	7	ĵ.			ર્ન	7		ર્ન	7
Traffic Volume (vph)	18	20	44	81	656	24	67	30	70	18	24	67
Future Volume (vph)	18	20	44	81	656	24	67	30	70	18	24	67
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.97	1.00		0.98	1.00
Satd. Flow (prot)	1630	1716	1458	1662	1741			1675	1473		1664	1444
Flt Permitted	0.16	1.00	1.00	0.74	1.00			0.76	1.00		0.81	1.00
Satd. Flow (perm)	278	1716	1458	1298	1741			1322	1473		1377	1444
Peak-hour factor, PHF	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Adj. Flow (vph)	21	24	52	96	781	29	80	36	83	21	29	80
RTOR Reduction (vph)	0	0	24	0	2	0	0	0	74	0	0	71
Lane Group Flow (vph)	21	24	28	96	808	0	0	116	9	0	50	9
Heavy Vehicles (%)	2%	2%	2%	0%	0%	0%	1%	1%	1%	3%	3%	3%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8			2		2	6		6
Actuated Green, G (s)	34.8	28.8	28.8	35.4	29.1			6.0	6.0		6.0	6.0
Effective Green, g (s)	36.4	29.6	29.6	36.4	29.6			6.0	6.0		6.0	6.0
Actuated g/C Ratio	0.67	0.54	0.54	0.67	0.54			0.11	0.11		0.11	0.11
Clearance Time (s)	4.8	4.8	4.8	4.5	4.5			4.0	4.0		4.0	4.0
Vehicle Extension (s)	2.5	4.0	4.0	2.5	4.0			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	355	933	793	914	947			145	162		151	159
v/s Ratio Prot	0.01	0.01		c0.01	c0.46							
v/s Ratio Perm	0.03		0.02	0.06				c0.09	0.01		0.04	0.01
v/c Ratio	0.06	0.03	0.04	0.11	0.85			0.80	0.06		0.33	0.06
Uniform Delay, d1	5.5	5.7	5.8	3.2	10.6			23.6	21.7		22.3	21.7
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.1	0.0	0.0	0.0	7.8			25.5	0.1		0.9	0.1
Delay (s)	5.6	5.7	5.8	3.2	18.4			49.1	21.8		23.3	21.8
Level of Service	Α	Α	Α	Α	В			D	С		С	С
Approach Delay (s)		5.7			16.8			37.7			22.4	
Approach LOS		Α			В			D			С	
Intersection Summary												
HCM 2000 Control Delay			19.6	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.73									
Actuated Cycle Length (s)			54.4	S	um of lost	time (s)			12.0			
Intersection Capacity Utiliza	ation		59.8%	IC	CU Level of	of Service	.		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	—	•	1	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	•	7	7	₽			ર્ન	7		4	7
Traffic Volume (veh/h)	18	20	44	81	656	24	67	30	70	18	24	67
Future Volume (veh/h)	18	20	44	81	656	24	67	30	70	18	24	67
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No	.=		No	.=
Adj Sat Flow, veh/h/ln	1723	1723	1723	1750	1750	1750	1736	1736	1736	1709	1709	1709
Adj Flow Rate, veh/h	21	24	52	96	781	29	80	36	83	21	29	80
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Percent Heavy Veh, %	2	2	2	0	0	0	1	1	1	3	3	3
Cap, veh/h	371	969	822	993	926	34	104	27	227	88	74	224
Arrive On Green	0.08	0.56	0.56	0.08	0.55	0.55	0.15	0.15	0.15	0.15	0.15	0.15
Sat Flow, veh/h	1641	1723	1460	1667	1677	62	0	173	1471	0	479	1448
Grp Volume(v), veh/h	21	24	52	96	0	810	116	0	83	50	0	80
Grp Sat Flow(s),veh/h/ln	1641	1723	1460	1667	0	1739	173	0	1471	479	0	1448
Q Serve(g_s), s	0.3	0.4	0.9	1.3	0.0	22.8	0.0	0.0	2.9	0.0	0.0	2.9
Cycle Q Clear(g_c), s	0.3	0.4	0.9	1.3	0.0	22.8	9.0	0.0	2.9	9.0	0.0	2.9
Prop In Lane	1.00		1.00	1.00		0.04	0.69		1.00	0.42		1.00
Lane Grp Cap(c), veh/h	371	969	822	993	0	961	131	0	227	162	0	224
V/C Ratio(X)	0.06	0.02	0.06	0.10	0.00	0.84	0.89	0.00	0.37	0.31	0.00	0.36
Avail Cap(c_a), veh/h	489	1034	876	1122	0	1044	131	0	227	162	0	224
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	8.4	5.7	5.8	4.2	0.0	10.9	27.2	0.0	22.1	21.8	0.0	22.1
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.0	0.0	6.4	45.6	0.0	0.7	0.8	0.0	0.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0 3.2	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln		0.1	0.2	0.3	0.0	8.0	3.2	0.0	1.0	0.0	0.0	0.9
Unsig. Movement Delay, s/veh	8.5	5.7	5.8	4.3	0.0	17.3	72.8	0.0	22.8	22.6	0.0	22.8
LnGrp Delay(d),s/veh LnGrp LOS	o.5 A	5. <i>1</i>	5.0 A	4.3 A	0.0 A	17.3 B	72.0 E	0.0 A	22.0 C	22.0 C	0.0 A	22.0 C
	A	97	A	A	906	D		199	U	U		
Approach Vol, veh/h		6.4			15.9			52.0			130 22.7	
Approach LOS								_				
Approach LOS		Α			В			D			С	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		13.0	8.5	36.8		13.0	8.8	36.5				
Change Period (Y+Rc), s		4.0	4.5	4.8		4.0	4.8	* 4.8				
Max Green Setting (Gmax), s		9.0	8.5	34.2		9.0	8.2	* 35				
Max Q Clear Time (g_c+I1), s		11.0	3.3	2.9		11.0	2.3	24.8				
Green Ext Time (p_c), s		0.0	0.1	0.8		0.0	0.0	7.0				
Intersection Summary												
HCM 6th Ctrl Delay			21.3									
HCM 6th LOS			С									

Notes

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	5.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	0	0	0	120	0	24	7	82	64	0
Future Vol, veh/h	0	0	0	0	0	120	0	24	7	82	64	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	4	4	4	9	9	9
Mvmt Flow	0	0	0	0	0	176	0	35	10	121	94	0
Major/Minor N	linor2		N	Minor1			Major1		N	Major2		
Conflicting Flow All	464	381	94	376	376	40	94	0	0	45	0	0
Stage 1	336	336	-	40	40	-	-	-	-	-	-	-
Stage 2	128	45	-	336	336	-	-	-	_	-	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.14	_	-	4.19	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-		_	_	-	_	_
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	_	-	_	-	-	_	_
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.236	-	-	2.281	-	-
Pot Cap-1 Maneuver	512	555	968	585	558	1037	1488	-	-	1519	-	-
Stage 1	682	645	-	980	866	-	-	-	_	-	-	-
Stage 2	881	861	-	682	645	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	397	508	968	548	511	1037	1488	-	-	1519	-	-
Mov Cap-2 Maneuver	397	508	-	548	511	-	-	-	-	-	-	-
Stage 1	682	591	-	980	866	-	-	-	-	-	-	-
Stage 2	731	861	-	625	591	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			9.2			0			4.3		
HCM LOS	A			A								
200	, ,			, ,								
Minor Lane/Major Mvmt		NBL	NBT	NRR	EBLn1V	VRI n1	SBL	SBT	SBR			
Capacity (veh/h)		1488	- 1101	-	-	1037	1519					
HCM Lane V/C Ratio		1400	-	-	<u> </u>		0.079	_	<u> </u>			
HCM Control Delay (s)		0	<u>-</u>	_	0	9.2	7.6	0				
HCM Lane LOS		A	-	-	A	9.2 A	Α.	A	-			
HCM 95th %tile Q(veh)		0		_		0.6	0.3	-	_			
HOW JOHN JOHN Q (VOII)		U				0.0	0.0					

Intersection												
Int Delay, s/veh	3.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	f)		ሻ	4	
Traffic Vol, veh/h	5	0	0	3	0	58	2	69	1	24	34	18
Future Vol, veh/h	5	0	0	3	0	58	2	69	1	24	34	18
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	125	-	-	140	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	3	3	3	23	23	23
Mvmt Flow	7	0	0	4	0	85	3	101	1	35	50	26
Major/Minor N	linor2		<u> </u>	Minor1			Major1		<u> </u>	Major2		
Conflicting Flow All	283	241	63	241	254	102	76	0	0	102	0	0
Stage 1	133	133	-	108	108	-	-	-	-	-	-	-
Stage 2	150	108	-	133	146	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.13	-	-	4.33	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.227	-	-	2.407	-	-
Pot Cap-1 Maneuver	673	664	1007	717	653	959	1517	-	-	1369	-	-
Stage 1	875	790	-	902	810	-	-	-	-	-	-	-
Stage 2	857	810	-	875	780	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	600	645	1007	702	635	959	1517	-	-	1369	-	-
Mov Cap-2 Maneuver	600	645	-	702	635	-	-	-	-	-	-	-
Stage 1	873	769	-	900	808	-	-	-	-	-	-	-
Stage 2	779	808	-	853	760	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	11.1			9.2			0.2			2.4		
HCM LOS	В			Α								
Minor Lane/Major Mvmt		NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1517	-	-	600	942	1369	-	-			
HCM Lane V/C Ratio		0.002	-	-	0.012	0.095	0.026	-	-			
HCM Control Delay (s)		7.4	-	-	11.1	9.2	7.7	-	-			
HCM Lane LOS		Α	-	-	В	Α	Α	-	-			
HCM 95th %tile Q(veh)		0	-	-	0	0.3	0.1	-	-			

Intersection						
Int Delay, s/veh	2.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
		WDK		NDK	ODL	
Lane Configurations	À	07	∱	^	_	ન
Traffic Vol, veh/h	6	27	43	2	5	31
Future Vol, veh/h	6	27	43	2	5	31
Conflicting Peds, #/hr	0	0	_ 0	_ 0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	7	29	47	2	5	34
Maiay/Minay	Minord		1-:1		\4-:Q	
	Minor1		Major1		Major2	
Conflicting Flow All	92	48	0	0	49	0
Stage 1	48	-	-	-	-	-
Stage 2	44	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	908	1021	-	-	1558	-
Stage 1	974	_	-	-	-	-
Stage 2	978	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	905	1021	-	-	1558	-
Mov Cap-2 Maneuver		-	-	-	-	_
Stage 1	974	_	_	_	_	_
Stage 2	975	_	_	_	_	_
	3.3					
Approach	WB		NB		SB	
HCM Control Delay, s			0		1	
HCM LOS	Α					
Minor Lanc/Major Mur	nt	NBT	NIDDV	VBLn1	SBL	SBT
Minor Lane/Major Mvr	Ш	INDI	NDRV			ODI
Capacity (veh/h)		-	-	998	1558	-
HCM Lane V/C Ratio	,	-	-	0.036		-
HCM Control Delay (s	5)	-	-	8.7	7.3	0
HCM Lane LOS		-	-	Α	Α	Α
HCM 95th %tile Q(veh	1)	-	-	0.1	0	-

	۶	→	•	•	—	•	•	†	~	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7		7	7	ĵ»			ર્ન	7		ર્ન	7
Traffic Volume (vph)	56	556	18	17	393	20	32	27	60	26	15	29
Future Volume (vph)	56	556	18	17	393	20	32	27	60	26	15	29
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.97	1.00		0.97	1.00
Satd. Flow (prot)	1662	1750	1488	1662	1737			1703	1488		1697	1488
Flt Permitted	0.41	1.00	1.00	0.31	1.00			0.91	1.00		0.96	1.00
Satd. Flow (perm)	721	1750	1488	545	1737			1594	1488		1676	1488
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	59	585	19	18	414	21	34	28	63	27	16	31
RTOR Reduction (vph)	0	0	10	0	3	0	0	0	58	0	0	28
Lane Group Flow (vph)	59	585	9	18	432	0	0	62	5	0	43	3
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8			2		2	6		6
Actuated Green, G (s)	25.1	19.0	19.0	24.3	18.6			3.4	3.4		3.4	3.4
Effective Green, g (s)	26.7	19.8	19.8	25.3	19.1			3.4	3.4		3.4	3.4
Actuated g/C Ratio	0.64	0.48	0.48	0.61	0.46			0.08	0.08		0.08	0.08
Clearance Time (s)	4.8	4.8	4.8	4.5	4.5			4.0	4.0		4.0	4.0
Vehicle Extension (s)	2.5	4.0	4.0	2.5	4.0			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	621	836	711	500	801			130	122		137	122
v/s Ratio Prot	c0.02	c0.33		0.01	0.25							
v/s Ratio Perm	0.05		0.01	0.02				c0.04	0.00		0.03	0.00
v/c Ratio	0.10	0.70	0.01	0.04	0.54			0.48	0.04		0.31	0.02
Uniform Delay, d1	2.9	8.5	5.7	3.6	8.0			18.2	17.5		17.9	17.5
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.0	2.8	0.0	0.0	0.9			2.0	0.1		1.0	0.1
Delay (s)	2.9	11.3	5.7	3.6	8.9			20.2	17.6		18.9	17.5
Level of Service	A	В	Α	Α	A			C	В		В	В
Approach Delay (s)		10.4			8.7			18.9			18.3	
Approach LOS		В			Α			В			В	
Intersection Summary												
HCM 2000 Control Delay	., .,		11.0	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.55	_								
Actuated Cycle Length (s)			41.4		um of lost				12.0			
Intersection Capacity Utiliza	tion		55.2%	IC	U Level	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	1	†	~	/	ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	•	7	ሻ	₽			र्स	7		र्स	7
Traffic Volume (veh/h)	56	556	18	17	393	20	32	27	60	26	15	29
Future Volume (veh/h)	56	556	18	17	393	20	32	27	60	26	15	29
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Adj Flow Rate, veh/h	59	585	19	18	414	21	34	28	63	27	16	31
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	664	897	760	542	825	42	191	110	181	203	86	181
Arrive On Green	0.11	0.51	0.51	0.10	0.50	0.50	0.12	0.12	0.12	0.12	0.12	0.12
Sat Flow, veh/h	1667	1750	1483	1667	1651	84	553	904	1483	601	708	1483
Grp Volume(v), veh/h	59	585	19	18	0	435	62	0	63	43	0	31
Grp Sat Flow(s),veh/h/ln	1667	1750	1483	1667	0	1735	1457	0	1483	1309	0	1483
Q Serve(g_s), s	0.6	11.0	0.3	0.2	0.0	7.6	0.1	0.0	1.8	0.0	0.0	0.8
Cycle Q Clear(g_c), s	0.6	11.0	0.3	0.2	0.0	7.6	1.9	0.0	1.8	1.9	0.0	0.8
Prop In Lane	1.00		1.00	1.00	_	0.05	0.55		1.00	0.63		1.00
Lane Grp Cap(c), veh/h	664	897	760	542	0	866	301	0	181	289	0	181
V/C Ratio(X)	0.09	0.65	0.02	0.03	0.00	0.50	0.21	0.00	0.35	0.15	0.00	0.17
Avail Cap(c_a), veh/h	820	1163	985	708	0	1153	419	0	296	402	0	296
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	4.2	8.1	5.4	5.0	0.0	7.6	18.1	0.0	18.2	17.9	0.0	17.8
Incr Delay (d2), s/veh	0.0	1.2	0.0	0.0	0.0	0.6	0.2	0.0	0.9	0.2	0.0	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.1	2.7	0.1	0.0	0.0	2.0	0.6	0.0	0.6	0.4	0.0	0.3
Unsig. Movement Delay, s/veh		0.0		- 0	0.0	0.0	40.0	0.0	40.0	40.0	0.0	10.1
LnGrp Delay(d),s/veh	4.2	9.2	5.5	5.0	0.0	8.2	18.3	0.0	19.0	18.0	0.0	18.1
LnGrp LOS	Α	A	A	A	A	A	В	A	В	В	<u>A</u>	<u>B</u>
Approach Vol, veh/h		663			453			125			74	
Approach Delay, s/veh		8.7			8.1			18.7			18.1	
Approach LOS		Α			Α			В			В	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		9.5	8.5	27.1		9.5	8.8	26.8				
Change Period (Y+Rc), s		4.0	4.5	4.8		4.0	4.8	* 4.8				
Max Green Setting (Gmax), s		9.0	8.5	29.2		9.0	8.2	* 30				
Max Q Clear Time (g_c+I1), s		3.9	2.2	13.0		3.9	2.6	9.6				
Green Ext Time (p_c), s		0.2	0.0	9.3		0.1	0.0	6.1				
Intersection Summary												
HCM 6th Ctrl Delay			9.9									
HCM 6th LOS			А									

Notes

User approved pedestrian interval to be less than phase max green.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	4.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	0	0	0	63	0	43	12	20	11	0
Future Vol, veh/h	0	0	0	0	0	63	0	43	12	20	11	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	_	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	_	0	-	-	0	_
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	78	78	78	78	78	78	78	78	78	78	78	78
Heavy Vehicles, %	0	0	0	0	0	0	10	10	10	0	0	0
Mvmt Flow	0	0	0	0	0	81	0	55	15	26	14	0
Major/Minor N	/linor2		N	Minor1			Major1		N	Major2		
	169	136	14	129	129	63	14	0	0	70	0	0
Conflicting Flow All	66	66		63	63	03	14	U	U	70	-	U
Stage 1 Stage 2	103	70	-	66	66	-	-	=	=	-		-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.2	_	-	4.1	-	_
Critical Hdwy Stg 1	6.1	5.5	0.2	6.1	5.5	0.2	4.2	-	-	4.1	_	-
Critical Hdwy Stg 2	6.1	5.5		6.1	5.5		_	-	<u>-</u>	-	-	-
Follow-up Hdwy	3.5	3.5	3.3	3.5	3.5	3.3	2.29	_	-	2.2	_	-
	799	759	1072	849	765	1007	1553	-	<u>-</u>	1544	-	-
Pot Cap-1 Maneuver	950	844	1072	953	846	1007	1000	=	=	1544		-
Stage 1 Stage 2	908	841	-	950	844	-	-	-	<u>-</u>	-	-	-
Platoon blocked, %	300	041	-	300	044	-	-	-	-	-	-	-
Mov Cap-1 Maneuver	725	746	1072	838	752	1007	1553	_	<u>-</u>	1544	-	<u>-</u>
Mov Cap-2 Maneuver	725	746	1072	838	752	1007	1000	_	_	1544	_	_
Stage 1	950	830	<u>-</u>	953	846	-	<u>-</u>	_	<u>-</u>	-	-	<u>-</u>
Stage 2	835	841	_	934	830	_	_	_	_	-	_	_
Staye Z	000	041	_	504	030	-	<u>-</u>	_	<u>-</u>	_	-	<u>-</u>
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			8.9			0			4.8		
HCM LOS	Α			Α								
Minor Lane/Major Mvmt	t	NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1553	_	_	_	1007	1544	_	_			
HCM Lane V/C Ratio			-	-	_		0.017	_	_			
HCM Control Delay (s)		0	_	_	0	8.9	7.4	0	_			
HCM Lane LOS		A	-	-	A	A	Α	A	_			
HCM 95th %tile Q(veh)		0	_	_	-	0.3	0.1	-	_			
75												

Intersection												
Int Delay, s/veh	1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		*	ĵ.		*	1>	
Traffic Vol., veh/h	10	0	1	0	0	0	0	52	0	0	40	0
Future Vol, veh/h	10	0	1	0	0	0	0	52	0	0	40	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	_	_	None	_	_	None	_	_	None	_	_	None
Storage Length	-	-	-	-	-	-	125	-	-	140	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	_	0	-	-	0	_	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	10	10	10	0	0	0
Mvmt Flow	15	0	1	0	0	0	0	76	0	0	59	0
Major/Minor N	1inor2		ľ	Minor1		N	Major1		N	Major2		
Conflicting Flow All	135	135	59	136	135	76	59	0	0	76	0	0
Stage 1	59	59	-	76	76	-	-	-	-	-	-	-
Stage 2	76	76	-	60	59	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.2	-	-	4.1	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.29	-	-	2.2	-	-
Pot Cap-1 Maneuver	841	760	1012	840	760	991	1495	-	-	1536	-	-
Stage 1	958	850	-	938	836	-	-	-	-	-	-	-
Stage 2	938	836	-	957	850	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	841	760	1012	839	760	991	1495	-	-	1536	-	-
Mov Cap-2 Maneuver	841	760	-	839	760	-	-	-	-	-	-	-
Stage 1	958	850	-	938	836	-	-	-	-	-	-	-
Stage 2	938	836	-	956	850	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.3			0			0			0		
HCM LOS	Α			Α								
Minor Lane/Major Mvmt		NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1495	-	-	854	-	1536	-	-			
HCM Lane V/C Ratio		-	-	-	0.019	-	-	-	-			
HCM Control Delay (s)		0	-	-	9.3	0	0	-	-			
HCM Lane LOS		Α	-	-	Α	Α	Α	-	-			
HCM 95th %tile Q(veh)		0	-	-	0.1	-	0	-	-			

Intersection						
Int Delay, s/veh	0					
		14/00	NET	NES	051	057
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	^	_ ∱	_	_	र्स
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	0
	-				•	_
		_		_		
	Minor1		//ajor1		Major2	
Conflicting Flow All	1	0	0	0	0	0
Stage 1	0	-	-	-	-	-
Stage 2	1	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	1022	-	_	-	-	-
Stage 1		_	_	_	_	_
Stage 2	1022	_	_	_	_	_
Platoon blocked, %	1022		_	_		_
Mov Cap-1 Maneuver	1022				_	_
•	1022	-	-	_	_	_
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	1022	-	-	-	-	-
Stage 2	1022	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
				4/D1 /	05:	05-
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	-	-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		-	-	0	0	-
HCM Lane LOS		-	-	Α	Α	-
HCM 95th %tile Q(veh)	-	-	-	-	-
	,					

	۶	→	•	•	+	•	•	†	/	/	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	7	7	₽			4	7		र्स	7
Traffic Volume (vph)	57	566	19	18	400	21	33	27	62	26	15	30
Future Volume (vph)	57	566	19	18	400	21	33	27	62	26	15	30
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.97	1.00		0.97	1.00
Satd. Flow (prot)	1662	1750	1488	1662	1737			1703	1488		1697	1488
Flt Permitted	0.39	1.00	1.00	0.29	1.00			0.80	1.00		0.77	1.00
Satd. Flow (perm)	690	1750	1488	504	1737			1406	1488		1351	1488
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	60	596	20	19	421	22	35	28	65	27	16	32
RTOR Reduction (vph)	0	0	11	0	3	0	0	0	58	0	0	28
Lane Group Flow (vph)	60	596	9	19	440	0	0	63	7	0	43	4
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8			2		2	6		6
Actuated Green, G (s)	25.3	19.3	19.3	24.5	18.9			4.9	4.9		4.9	4.9
Effective Green, g (s)	26.9	20.1	20.1	25.5	19.4			4.9	4.9		4.9	4.9
Actuated g/C Ratio	0.62	0.47	0.47	0.59	0.45			0.11	0.11		0.11	0.11
Clearance Time (s)	4.8	4.8	4.8	4.5	4.5			4.0	4.0		4.0	4.0
Vehicle Extension (s)	2.5	4.0	4.0	2.5	4.0			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	584	816	693	462	781			159	169		153	169
v/s Ratio Prot	c0.02	c0.34		0.01	0.25							
v/s Ratio Perm	0.05		0.01	0.02				c0.04	0.00		0.03	0.00
v/c Ratio	0.10	0.73	0.01	0.04	0.56			0.40	0.04		0.28	0.02
Uniform Delay, d1	3.4	9.3	6.2	4.2	8.7			17.7	17.0		17.5	17.0
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.1	3.6	0.0	0.0	1.1			1.2	0.1		0.7	0.0
Delay (s)	3.5	12.9	6.2	4.2	9.9			18.9	17.1		18.2	17.0
Level of Service	Α	В	Α	Α	А			В	В		В	В
Approach Delay (s)		11.9			9.6			18.0			17.7	
Approach LOS		В			Α			В			В	
Intersection Summary			400									
HCM 2000 Control Delay	., .,		12.0	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.56						400			
Actuated Cycle Length (s)			43.1		um of los				12.0			
Intersection Capacity Utiliza	ation		55.9%	IC	CU Level	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	•	†	~	/	ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	,	†	7	, J	f)			ર્ન	7		4	7
Traffic Volume (veh/h)	57	566	19	18	400	21	33	27	62	26	15	30
Future Volume (veh/h)	57	566	19	18	400	21	33	27	62	26	15	30
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Adj Flow Rate, veh/h	60	596	20	19	421	22	35	28	65	27	16	32
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	660	903	765	535	829	43	180	99	180	189	78	180
Arrive On Green	0.11	0.52	0.52	0.10	0.50	0.50	0.12	0.12	0.12	0.12	0.12	0.12
Sat Flow, veh/h	1667	1750	1483	1667	1648	86	470	814	1483	497	645	1483
Grp Volume(v), veh/h	60	596	20	19	0	443	63	0	65	43	0	32
Grp Sat Flow(s),veh/h/ln	1667	1750	1483	1667	0	1734	1284	0	1483	1142	0	1483
Q Serve(g_s), s	0.7	11.4	0.3	0.2	0.0	7.8	0.2	0.0	1.8	0.0	0.0	0.9
Cycle Q Clear(g_c), s	0.7	11.4	0.3	0.2	0.0	7.8	2.6	0.0	1.8	2.6	0.0	0.9
Prop In Lane	1.00		1.00	1.00		0.05	0.56		1.00	0.63		1.00
Lane Grp Cap(c), veh/h	660	903	765	535	0	872	279	0	180	268	0	180
V/C Ratio(X)	0.09	0.66	0.03	0.04	0.00	0.51	0.23	0.00	0.36	0.16	0.00	0.18
Avail Cap(c_a), veh/h	813	1153	977	700	0	1143	395	0	293	378	0	293
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	4.2	8.1	5.4	5.0	0.0	7.6	18.3	0.0	18.4	18.0	0.0	18.0
Incr Delay (d2), s/veh	0.0	1.3	0.0	0.0	0.0	0.7	0.3	0.0	0.9	0.2	0.0	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.1	2.8	0.1	0.0	0.0	2.1	0.6	0.0	0.6	0.4	0.0	0.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	4.3	9.4	5.4	5.1	0.0	8.2	18.6	0.0	19.3	18.2	0.0	18.3
LnGrp LOS	Α	Α	Α	Α	Α	Α	В	Α	В	В	Α	<u> </u>
Approach Vol, veh/h		676			462			128			75	
Approach Delay, s/veh		8.8			8.1			18.9			18.3	
Approach LOS		Α			А			В			В	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		9.5	8.5	27.5		9.5	8.8	27.2				
Change Period (Y+Rc), s		4.0	4.5	4.8		4.0	4.8	* 4.8				
Max Green Setting (Gmax), s		9.0	8.5	29.2		9.0	8.2	* 30				
Max Q Clear Time (g_c+l1), s		4.6	2.2	13.4		4.6	2.7	9.8				
Green Ext Time (p_c), s		0.2	0.0	9.3		0.1	0.1	6.2				
Intersection Summary												
HCM 6th Ctrl Delay			10.0									
HCM 6th LOS			В									

Notes

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	4.8											
• •		CDT		WDI	WDT	WDD	NDI	NDT	NDD	ODI	ODT	000
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	•	4	•	•	4	0.4	^	4	40	0.4	4	^
Traffic Vol, veh/h	0	0	0	0	0	64	0	44	12	21	11	0
Future Vol, veh/h	0	0	0	0	0	64	0	44	12	21	11	0
Conflicting Peds, #/hr	0	0	0	0	0	0	_ 0	_ 0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	78	78	78	78	78	78	78	78	78	78	78	78
Heavy Vehicles, %	0	0	0	0	0	0	10	10	10	9	9	9
Mvmt Flow	0	0	0	0	0	82	0	56	15	27	14	0
Major/Minor N	/linor2		_	Minor1		_	Major1		ı	Major2		
Conflicting Flow All	173	139	14	132	132	64	14	0	0	71	0	0
Stage 1	68	68	-	64	64	-	-	-	-		-	-
Stage 2	105	71	_	68	68	_	_	_	_	_	_	_
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.2			4.19		
Critical Hdwy Stg 1	6.1	5.5	- 0.2	6.1	5.5	0.2	7.2	_	_	10	_	_
Critical Hdwy Stg 2	6.1	5.5	_	6.1	5.5	_	_					
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.29	_	_	2.281	_	_
Pot Cap-1 Maneuver	794	756	1072	845	762	1006	1553	_	_	1486	_	
Stage 1	947	842	1072	952	846	1000	1000	_	_	1700	_	_
Stage 2	906	840	_	947	842	_	_	_	_	_	_	
Platoon blocked, %	300	U 1 U		J 1 1	U7Z			_	_		_	_
Mov Cap-1 Maneuver	719	742	1072	833	748	1006	1553	_	_	1486	_	
Mov Cap-1 Maneuver	719	742	1072	833	748	1000	1000		_	1700	_	_
Stage 1	947	827	-	952	846	-	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	-	<u>-</u>
Stage 2	832	840	_	930	827	_	_	_	_	_	_	_
Olaye Z	002	040	_	900	021	-	_	<u>-</u>	_	_	-	<u>-</u>
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			8.9			0			4.9		
HCM LOS	Α			Α								
Minor Lane/Major Mvmt	t	NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1553	_	_		1006	1486	_	_			
HCM Lane V/C Ratio		-	_	_		0.082		_	_			
HCM Control Delay (s)		0	_	_	0	8.9	7.5	0	_			
HCM Lane LOS		A	_	_	A	A	Α.	A	_			
HCM 95th %tile Q(veh)		0		_	-	0.3	0.1	-	_			
HOW JOHN JUNE Q(VEII)		U				0.0	0.1					

Intersection												
Int Delay, s/veh	1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL		LDK	VVDL		WDK	NDL		אמוו			SDR
Traffic Vol, veh/h	10	↔ 0	1	0	4	0	0	Љ 53	0	ነ	♣	0
Future Vol, veh/h	10	0	1	0	0	0	0	53	0	0	41	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	- Otop	None	-	-	None	-	-	None	-	-	None
Storage Length	_	_	-	_	_	-	125	_	-	140	_	-
Veh in Median Storage,	# -	0	_	_	0	_	-	0	_	-	0	_
Grade, %	<i>''</i>	0	_	_	0	_	-	0	_	_	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	3	3	3	23	23	23
Mvmt Flow	15	0	1	0	0	0	0	78	0	0	60	0
Major/Minor N	1inor2		ı	Minor1			Major1		ı	Major2		
Conflicting Flow All	138	138	60	139	138	78	60	0	0	78	0	0
Stage 1	60	60	-	78	78	-	-	-	-	-	-	-
Stage 2	78	78	-	61	60	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.13	-	-	4.33	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.227	-	-	2.407	-	-
Pot Cap-1 Maneuver	837	757	1011	836	757	988	1537	-	-	1398	-	-
Stage 1	957	849	-	936	834	-	-	-	-	-	-	-
Stage 2	936	834	-	955	849	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	837	757	1011	835	757	988	1537	-	-	1398	-	-
Mov Cap-2 Maneuver	837	757	-	835	757	-	-	-	-	-	-	-
Stage 1	957	849	-	936	834	-	-	-	-	-	-	-
Stage 2	936	834	-	954	849	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.3			0			0			0		
HCM LOS	Α			Α								
Minor Lane/Major Mvmt		NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1537	-	-		-	1398	-	-			
HCM Lane V/C Ratio		-	_		0.019	_	-	_	_			
HCM Control Delay (s)		0	-	-	9.3	0	0	-	_			
HCM Lane LOS		A	_	_	A	A	A	_	_			
HCM 95th %tile Q(veh)		0	-	-	0.1	-	0	-	-			

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	WEIT	4	HOIL	ODL	4
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None	-	None	-	None
Storage Length	0	NOITE				NOHE
			-	-	-	_
Veh in Median Storag		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	0
Major/Minor	Minor1	N	/lajor1		Major2	
Conflicting Flow All	1	0	0	0	0	0
Stage 1	0	-	-	-	-	-
Stage 2	1	_	_	_	_	_
Critical Hdwy	6.42	6.22	_	_	4.12	
Critical Hdwy Stg 1	5.42	0.22	_	_	4.12	_
	5.42	-	-	_		
Critical Hdwy Stg 2	3.518	3.318	-	-	2 240	-
Follow-up Hdwy		3.310	-	-	2.218	-
Pot Cap-1 Maneuver	1022	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	1022	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver		_	-	-	-	-
Mov Cap-2 Maneuver	1022	-	-	-	-	-
Stage 1	_	-	-	-	-	-
Stage 2	1022	-	-	-	-	-
Approach	WB		NB		SB	
			0		0	
HCM Control Delay, s			U		U	
HCM LOS	Α					
Minor Lane/Major Mvr	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)						
HCM Lane V/C Ratio		_	_	_	<u>-</u>	_
HCM Control Delay (s			_	0	0	_
HCM Lane LOS	7)	_	_	A	A	-
	٠١	-	-		- -	
HCM 95th %tile Q(veh	IJ	-	-	-	-	-

	۶	→	•	•	—	•	•	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	7	ሻ	ĵ»			ર્ન	7		ની	7
Traffic Volume (vph)	57	566	35	46	400	21	45	32	74	26	21	30
Future Volume (vph)	57	566	35	46	400	21	45	32	74	26	21	30
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.97	1.00		0.97	1.00
Satd. Flow (prot)	1662	1750	1488	1662	1737			1701	1488		1703	1488
Flt Permitted	0.40	1.00	1.00	0.28	1.00			0.79	1.00		0.78	1.00
Satd. Flow (perm)	703	1750	1488	490	1737			1388	1488		1372	1488
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	60	596	37	48	421	22	47	34	78	27	22	32
RTOR Reduction (vph)	0	0	20	0	3	0	0	0	69	0	0	28
Lane Group Flow (vph)	60	596	17	48	440	0	0	81	9	0	49	4
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8			2		2	6		6
Actuated Green, G (s)	25.7	19.7	19.7	25.5	19.6			5.2	5.2		5.2	5.2
Effective Green, g (s)	27.3	20.5	20.5	26.5	20.1			5.2	5.2		5.2	5.2
Actuated g/C Ratio	0.62	0.46	0.46	0.60	0.46			0.12	0.12		0.12	0.12
Clearance Time (s)	4.8	4.8	4.8	4.5	4.5			4.0	4.0		4.0	4.0
Vehicle Extension (s)	2.5	4.0	4.0	2.5	4.0			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	583	813	691	464	791			163	175		161	175
v/s Ratio Prot	c0.02	c0.34		0.01	0.25							
v/s Ratio Perm	0.05		0.01	0.05				c0.06	0.01		0.04	0.00
v/c Ratio	0.10	0.73	0.02	0.10	0.56			0.50	0.05		0.30	0.02
Uniform Delay, d1	3.5	9.6	6.4	4.3	8.7			18.2	17.3		17.8	17.2
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.1	3.7	0.0	0.1	1.0			1.7	0.1		0.8	0.0
Delay (s)	3.6	13.2	6.4	4.3	9.8			20.0	17.4		18.6	17.2
Level of Service	Α	В	Α	Α	Α			В	В		В	В
Approach Delay (s)		12.0			9.3			18.7			18.0	
Approach LOS		В			Α			В			В	
Intersection Summary												
HCM 2000 Control Delay			12.2	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.57									
Actuated Cycle Length (s)			44.1		um of lost				12.0			
Intersection Capacity Utiliza	tion		56.9%	IC	U Level	of Service	•		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	—	•	•	†	~	/		✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	ሻ	1>			4	7		र्स	7
Traffic Volume (veh/h)	57	566	35	46	400	21	45	32	74	26	21	30
Future Volume (veh/h)	57	566	35	46	400	21	45	32	74	26	21	30
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Adj Flow Rate, veh/h	60	596	37	48	421	22	47	34	78	27	22	32
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	598	858	727	472	789	41	114	50	267	112	55	267
Arrive On Green	0.10	0.49	0.49	0.09	0.48	0.48	0.18	0.18	0.18	0.18	0.18	0.18
Sat Flow, veh/h	1667	1750	1483	1667	1648	86	0	276	1483	0	308	1483
Grp Volume(v), veh/h	60	596	37	48	0	443	81	0	78	49	0	32
Grp Sat Flow(s),veh/h/ln	1667	1750	1483	1667	0	1734	276	0	1483	308	0	1483
Q Serve(g_s), s	8.0	13.2	0.7	0.6	0.0	9.0	0.0	0.0	2.3	0.0	0.0	0.9
Cycle Q Clear(g_c), s	8.0	13.2	0.7	0.6	0.0	9.0	9.0	0.0	2.3	9.0	0.0	0.9
Prop In Lane	1.00		1.00	1.00		0.05	0.58		1.00	0.55		1.00
Lane Grp Cap(c), veh/h	598	858	727	472	0	830	163	0	267	167	0	267
V/C Ratio(X)	0.10	0.69	0.05	0.10	0.00	0.53	0.50	0.00	0.29	0.29	0.00	0.12
Avail Cap(c_a), veh/h	737	1049	889	622	0	1040	163	0	267	167	0	267
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	5.4	9.9	6.7	6.6	0.0	9.1	20.0	0.0	17.8	17.9	0.0	17.2
Incr Delay (d2), s/veh	0.1	1.9	0.0	0.1	0.0	0.8	1.7	0.0	0.4	0.7	0.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.2	3.8	0.1	0.2	0.0	2.6	1.0	0.0	0.7	0.5	0.0	0.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	5.5	11.7	6.7	6.6	0.0	9.9	21.7	0.0	18.2	18.6	0.0	17.4
LnGrp LOS	A	B	A	A	A	A	С	A	B	В	A	B
Approach Vol, veh/h		693			491			159			81	
Approach Delay, s/veh		10.9			9.6			20.0			18.1	
Approach LOS		В			Α			В			В	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		13.0	8.5	28.6		13.0	8.8	28.3				
Change Period (Y+Rc), s		4.0	4.5	4.8		4.0	4.8	* 4.8				
Max Green Setting (Gmax), s		9.0	8.5	29.2		9.0	8.2	* 30				
Max Q Clear Time (g_c+I1), s		11.0	2.6	15.2		11.0	2.8	11.0				
Green Ext Time (p_c), s		0.0	0.0	8.6		0.0	0.1	6.0				
Intersection Summary												
HCM 6th Ctrl Delay			11.9									
HCM 6th LOS			В									

Notes

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	0	1	0	93	0	44	13	71	11	0
Future Vol, veh/h	0	0	0	1	0	93	0	44	13	71	11	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	78	78	78	78	78	78	78	78	78	78	78	78
Heavy Vehicles, %	0	0	0	0	0	0	10	10	10	9	9	9
Mvmt Flow	0	0	0	1	0	119	0	56	17	91	14	0
Major/Minor M	linor2		ľ	Minor1			Major1		N	Major2		
Conflicting Flow All	320	269	14	261	261	65	14	0	0	73	0	0
Stage 1	196	196	-	65	65	-	-	-	-	-	-	-
Stage 2	124	73	-	196	196	-	-	-	_	_	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.2	-	-	4.19	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.29	_	_	2.281	-	_
Pot Cap-1 Maneuver	637	641	1072	696	647	1005	1553	-	-	1483	-	-
Stage 1	810	742	-	951	845	-	-	-	-	-	-	-
Stage 2	885	838	-	810	742	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	535	601	1072	663	607	1005	1553	-	-	1483	-	-
Mov Cap-2 Maneuver	535	601	-	663	607	-	-	-	-	-	-	-
Stage 1	810	696	-	951	845	-	-	-	-	-	-	-
Stage 2	780	838	-	760	696	-	-	-	-	-	-	-
-												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			9.1			0			6.6		
HCM LOS	A			A								
	_											
Minor Lane/Major Mvmt		NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1553				1000	1483	_	_			
HCM Lane V/C Ratio		-	_	_		0.121		_	<u>-</u>			
HCM Control Delay (s)		0	_	_	0	9.1	7.6	0	_			
HCM Lane LOS		A	_	_	A	Α	Α.	A	_			
HCM 95th %tile Q(veh)		0	_	_	-	0.4	0.2	-	_			
HOW JOHN JOHN Q(VEII)		J				J.7	0.2					

Intersection												
Int Delay, s/veh	3.3											
•												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	₽		7	- î∍	
Traffic Vol, veh/h	10	0	1	1	0	21	0	62	1	41	51	0
Future Vol, veh/h	10	0	1	1	0	21	0	62	1	41	51	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	125	-	-	140	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	3	3	3	23	23	23
Mvmt Flow	15	0	1	1	0	31	0	91	1	60	75	0
Major/Minor N	/linor2		N	/linor1			Major1			Major2		
Conflicting Flow All	302	287	75	288	287	92	75	0	0	92	0	0
Stage 1	195	195	-	92	92	32	13	U	U	32	U	-
Stage 2	193	92	-	196	195	_	_	_		-	_	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.13	-	-	4.33	-	-
Critical Hdwy Stg 1	6.1	5.5	0.2	6.1	5.5	0.2	4.13	_	-	4.00	_	-
Critical Hdwy Stg 2	6.1	5.5		6.1	5.5	-	-	_	<u>-</u>	<u>-</u>	-	<u>-</u>
Follow-up Hdwy	3.5	3.5	3.3	3.5	3.5	3.3	2.227	_	-	2.407	_	-
Pot Cap-1 Maneuver	654	626	992	668	626	971	1518	_	_	1381	-	<u>-</u>
Stage 1	811	743	992	920	823	311	1310	_	-	1001	_	-
Stage 2	903	823	<u>-</u>	810	743	-	-	_	_	<u>-</u>	-	<u>-</u>
Platoon blocked, %	300	020	_	010	140		_	_		_	_	_
Mov Cap-1 Maneuver	612	599	992	645	599	971	1518	-	-	1381	-	-
Mov Cap-2 Maneuver	612	599	332	645	599	31 1	1010	_		1001	_	_
Stage 1	811	711	<u>-</u>	920	823	-	-	-	-	-	-	-
Stage 2	874	823	_	774	711		_	_		_		_
Olaye Z	0/4	020	_	114	111	_	-	-	_	-	-	<u>-</u>
Approach	EB			WB			NB			SB		
HCM Control Delay, s	10.8			8.9			0			3.4		
HCM LOS	В			Α								
Minor Lane/Major Mvm	t	NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1518	-	-	634	949	1381	-	-			
HCM Lane V/C Ratio		-	_			0.034	0.044	_	_			
HCM Control Delay (s)		0	-	_		8.9	7.7	_	_			
HCM Lane LOS		A	_	_	В	A	A	_	_			
HCM 95th %tile Q(veh)		0	-	-	0.1	0.1	0.1	-	-			
70th Q(1011)					J. 1	0.1	7.1					

Intersection					_	_
Int Delay, s/veh	1.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	₩.	WDIX		NDIX	ODL	
Traffic Vol, veh/h	'T'	0	♣ 54	5	10	4 1 43
		9	54 54	5		
Future Vol, veh/h	2	9		5	10	43
Conflicting Peds, #/hr	0	0	0	0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	2	10	59	5	11	47
Maiaa/Miaaa	N 4: 4		1-:1		M-:0	
	Minor1		//ajor1		Major2	
Conflicting Flow All	131	62	0	0	64	0
Stage 1	62	-	-	-	-	-
Stage 2	69	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	863	1003	-	-	1538	-
Stage 1	961	-	-	_	-	_
Stage 2	954	-	-	_	-	_
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	857	1003	_	_	1538	_
Mov Cap 1 Maneuver		-	_	_	-	_
Stage 1	961	_	_	_	_	
	947	-	-	-	_	-
Stage 2	947	-	-	_	_	_
Approach	WB		NB		SB	
HCM Control Delay, s	8.7		0		1.4	
HCM LOS	Α					
	, ,					
Minor Lane/Major Mvr	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	973	1538	-
HCM Lane V/C Ratio		-	-	0.012		-
HCM Control Delay (s)	_	-	8.7	7.4	0
HCM Lane LOS	,	_	-	Α	Α	A
HCM 95th %tile Q(veh	1)	_	_	0	0	-
TOW JOHN JOHN Q(VEI	1/			U	U	

	•	→	•	•	+	•	1	†	~	/	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	Ť	f)			र्स	7		ર્ન	7
Traffic Volume (vph)	58	577	19	18	408	21	34	28	63	27	16	30
Future Volume (vph)	58	577	19	18	408	21	34	28	63	27	16	30
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.97	1.00		0.97	1.00
Satd. Flow (prot)	1662	1750	1488	1662	1737			1703	1488		1697	1488
Flt Permitted	0.39	1.00	1.00	0.28	1.00			0.80	1.00		0.77	1.00
Satd. Flow (perm)	679	1750	1488	490	1737			1405	1488		1351	1488
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	61	607	20	19	429	22	36	29	66	28	17	32
RTOR Reduction (vph)	0	0	11	0	3	0	0	0	58	0	0	28
Lane Group Flow (vph)	61	607	9	19	448	0	0	65	8	0	45	4
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8			2		2	6		6
Actuated Green, G (s)	25.7	19.7	19.7	24.9	19.3			5.0	5.0		5.0	5.0
Effective Green, g (s)	27.3	20.5	20.5	25.9	19.8			5.0	5.0		5.0	5.0
Actuated g/C Ratio	0.63	0.47	0.47	0.59	0.45			0.11	0.11		0.11	0.11
Clearance Time (s)	4.8	4.8	4.8	4.5	4.5			4.0	4.0		4.0	4.0
Vehicle Extension (s)	2.5	4.0	4.0	2.5	4.0			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	578	822	699	455	788			161	170		154	170
v/s Ratio Prot	c0.02	c0.35		0.01	0.26							
v/s Ratio Perm	0.05		0.01	0.02				c0.05	0.01		0.03	0.00
v/c Ratio	0.11	0.74	0.01	0.04	0.57			0.40	0.04		0.29	0.02
Uniform Delay, d1	3.4	9.4	6.2	4.2	8.8			17.9	17.2		17.7	17.1
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.1	3.7	0.0	0.0	1.1			1.2	0.1		0.8	0.0
Delay (s)	3.5	13.1	6.2	4.2	9.9			19.1	17.3		18.4	17.2
Level of Service	Α	В	Α	Α	Α			В	В		В	В
Approach Delay (s)		12.0			9.7			18.2			17.9	
Approach LOS		В			Α			В			В	
Intersection Summary												
HCM 2000 Control Delay			12.1	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.57									
Actuated Cycle Length (s)			43.6	Sı	um of lost	t time (s)			12.0			
Intersection Capacity Utiliza	ation		56.6%	IC	U Level	of Service)		В			
Analysis Period (min)			15									
c Critical Lane Group												

	ၨ	→	•	•	←	4	4	†	<i>></i>	/	†	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	ሻ	₽			4	7		र्स	7
Traffic Volume (veh/h)	58	577	19	18	408	21	34	28	63	27	16	30
Future Volume (veh/h)	58	577	19	18	408	21	34	28	63	27	16	30
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Adj Flow Rate, veh/h	61	607	20	19	429	22	36	29	66	28	17	32
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	655	909	770	529	835	43	162	85	180	168	68	180
Arrive On Green	0.10	0.52	0.52	0.10	0.51	0.51	0.12	0.12	0.12	0.12	0.12	0.12
Sat Flow, veh/h	1667	1750	1483	1667	1650	85	332	696	1483	338	561	1483
Grp Volume(v), veh/h	61	607	20	19	0	451	65	0	66	45	0	32
Grp Sat Flow(s),veh/h/ln	1667	1750	1483	1667	0	1735	1029	0	1483	899	0	1483
Q Serve(g_s), s	0.7	11.7	0.3	0.2	0.0	8.0	0.3	0.0	1.9	0.1	0.0	0.9
Cycle Q Clear(g_c), s	0.7	11.7	0.3	0.2	0.0	8.0	3.7	0.0	1.9	3.6	0.0	0.9
Prop In Lane	1.00		1.00	1.00		0.05	0.55		1.00	0.62		1.00
Lane Grp Cap(c), veh/h	655	909	770	529	0	878	247	0	180	236	0	180
V/C Ratio(X)	0.09	0.67	0.03	0.04	0.00	0.51	0.26	0.00	0.37	0.19	0.00	0.18
Avail Cap(c_a), veh/h	807	1143	969	692	0	1133	360	0	291	345	0	291
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	4.2	8.1	5.4	5.1	0.0	7.6	18.7	0.0	18.5	18.3	0.0	18.1
Incr Delay (d2), s/veh	0.0	1.4	0.0	0.0	0.0	0.7	0.4	0.0	0.9	0.3	0.0	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.1	2.9	0.1	0.0	0.0	2.1	0.6	0.0	0.6	0.4	0.0	0.3
Unsig. Movement Delay, s/veh		_										
LnGrp Delay(d),s/veh	4.3	9.5	5.4	5.1	0.0	8.2	19.1	0.0	19.5	18.5	0.0	18.5
LnGrp LOS	A	A	Α	Α	Α	Α	В	Α	В	В	Α	B
Approach Vol, veh/h		688			470			131			77	
Approach Delay, s/veh		8.9			8.1			19.3			18.5	
Approach LOS		Α			Α			В			В	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		9.6	8.5	27.8		9.6	8.8	27.5				
Change Period (Y+Rc), s		4.0	4.5	4.8		4.0	4.8	* 4.8				
Max Green Setting (Gmax), s		9.0	8.5	29.2		9.0	8.2	* 30				
Max Q Clear Time (g_c+l1), s		5.7	2.2	13.7		5.6	2.7	10.0				
Green Ext Time (p_c), s		0.2	0.0	9.3		0.1	0.1	6.3				
Intersection Summary												
HCM 6th Ctrl Delay			10.2									
HCM 6th LOS			В									

Notes

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Int Delay, siveh 4.8 Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBR SBR Canconfigurations Canconfigurati	Intersection												
Lane Configurations		4.8											
Traffic Vol, veh/h	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	Lane Configurations		43-			43-			43-			43-	
Conflicting Peds, #/hr		0		0	0		65	0		12	21		0
Conflicting Peds, #/hr	Future Vol., veh/h	0	0	0	0	0	65	0	45	12	21	11	0
Sign Control Stop	<u> </u>	0	0	0	0	0	0	0	0	0	0	0	0
RT Channelized		Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
Veh in Median Storage, # 0 - - 0 - - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 0 0 0 0 0 10 10 10 10 9 9 9 Meavy Vehicles, % 0 0 0 0 0 0 10 10 10 10 9 9 9 Mwrnt Flow 0 0 0 0 83 0 58 15 27 14 0 Major/Minor Minor1 Major1 Major2 Major2 14 0 0 73 0 0 Stage 1 68 68 -66 66 -6 -2 -2 4.19		•							-	None	-	-	None
Veh in Median Storage, # 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 <td>Storage Length</td> <td>-</td>	Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Grade, %		# -	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor		-	0	-	-	0	-	-	0	-	-	0	-
Mynt Flow 0 0 0 0 83 0 58 15 27 14 0 Major/Minor Minor2 Minor1 Major1 Major2 Conflicting Flow All 175 141 14 134 134 66 14 0 0 73 0 0 Stage 1 68 68 - 66 66 -		78	78	78	78	78	78	78	78	78	78	78	78
Mynt Flow 0 0 0 0 0 83 0 58 15 27 14 0 Major/Minor Minor1 Major1 Major2 Conflicting Flow All 175 141 14 134 134 66 14 0 0 73 0 0 Stage 1 68 68 6 66 66 -													
Conflicting Flow All 175 141 14 134 134 66 14 0 0 73 0 0 Stage 1 68 68 - 66 66				0	0	0	83						
Conflicting Flow All 175 141 14 134 134 66 14 0 0 73 0 0 Stage 1 68 68 - 66 66 Stage 2 107 73 - 68 68 68													
Conflicting Flow All 175 141 14 134 134 66 14 0 0 73 0 0 Stage 1 68 68 - 66 66	Major/Minor N	linor2		ľ	Minor1		ľ	Major1		1	Major2		
Stage 1 68 68 - 66 66 - <th< td=""><td>Conflicting Flow All</td><td>175</td><td>141</td><td>14</td><td>134</td><td>134</td><td>66</td><td>14</td><td>0</td><td></td><td></td><td>0</td><td>0</td></th<>	Conflicting Flow All	175	141	14	134	134	66	14	0			0	0
Stage 2			68	-			-	-	-	-		-	-
Critical Hdwy 7.1 6.5 6.2 7.1 6.5 6.2 4.2 - 4.19 - - Critical Hdwy Stg 1 6.1 5.5 - 6.1 5.5 - </td <td></td> <td></td> <td></td> <td>-</td> <td>68</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>				-	68		-	-	-	-	-	-	-
Critical Hdwy Stg 1 6.1 5.5 - 6.1 5.5 -			6.5	6.2	7.1		6.2	4.2	-	-	4.19	-	-
Critical Hdwy Stg 2 6.1 5.5 - 6.1 5.5 -<				-			-	-	-	-	-	-	-
Follow-up Hdwy 3.5 4 3.3 3.5 4 3.3 2.29 - 2.281 Pot Cap-1 Maneuver 792 754 1072 842 760 1003 1553 - 1483 Stage 1 947 842 - 950 844 Stage 2 903 838 - 947 842	, ,	6.1		-	6.1		-	-	-	-	-	-	-
Pot Cap-1 Maneuver 792 754 1072 842 760 1003 1553 -				3.3			3.3	2.29	-	-	2.281	-	-
Stage 1 947 842 - 950 844 -									-	-		-	-
Stage 2 903 838 - 947 842 -	•		842		950		-	-	-	-	-	-	-
Platoon blocked, %				-			-	-	-	-	-	-	-
Mov Cap-1 Maneuver 716 740 1072 830 746 1003 1553 - - 1483 - - Mov Cap-2 Maneuver 716 740 - 830 746 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td>									-	-		-	-
Mov Cap-2 Maneuver 716 740 - 830 746 - </td <td></td> <td>716</td> <td>740</td> <td>1072</td> <td>830</td> <td>746</td> <td>1003</td> <td>1553</td> <td>-</td> <td>-</td> <td>1483</td> <td>-</td> <td>-</td>		716	740	1072	830	746	1003	1553	-	-	1483	-	-
Stage 1 947 827 - 950 844 -	•	716	740	-	830	746	-	-	-	-	-	-	-
Stage 2 828 838 - 930 827 -	•	947	827	-	950	844	-	-	-	-	-	-	-
Approach EB WB NB SB HCM Control Delay, s 0 8.9 0 4.9 HCM LOS A A A A Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR Capacity (veh/h) 1553 - - 1003 1483 - - HCM Lane V/C Ratio - - - 0.083 0.018 - - HCM Control Delay (s) 0 - - 0 8.9 7.5 0 - HCM Lane LOS A - - A A A A -		828	838	-	930	827	-	-	-	-	-	-	-
HCM Control Delay, s	-												
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR Capacity (veh/h) 1553 - - 1003 1483 - - HCM Lane V/C Ratio - - - 0.083 0.018 - - HCM Control Delay (s) 0 - - 0 8.9 7.5 0 - HCM Lane LOS A - - A A A -	Approach	EB			WB			NB			SB		
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR Capacity (veh/h) 1553 - - 1003 1483 - - HCM Lane V/C Ratio - - - 0.083 0.018 - - HCM Control Delay (s) 0 - - 0 8.9 7.5 0 - HCM Lane LOS A - - A A A -	HCM Control Delay, s	0			8.9			0			4.9		
Capacity (veh/h) 1553 1003 1483 HCM Lane V/C Ratio 0.083 0.018 HCM Control Delay (s) 0 0 8.9 7.5 0 - HCM Lane LOS A - A A A A -	HCM LOS	Α			Α								
Capacity (veh/h) 1553 1003 1483 HCM Lane V/C Ratio 0.083 0.018 HCM Control Delay (s) 0 - 0 8.9 7.5 0 - HCM Lane LOS A - A A A A -													
HCM Lane V/C Ratio - - - 0.083 0.018 - - HCM Control Delay (s) 0 - - 0 8.9 7.5 0 - HCM Lane LOS A - - A A A -		t		NBT	NBR I	EBLn1V			SBT	SBR			
HCM Control Delay (s) 0 0 8.9 7.5 0 - HCM Lane LOS A A A A A -			1553	-	-	-			-	-			
HCM Lane LOS A A A A -				-	-	-			-	-			
			0	-	-	0	8.9	7.5	0	-			
HCM 95th %tile Q(veh) 0 0.3 0.1				-	-	Α			Α	-			
	HCM 95th %tile Q(veh)		0	-	-	-	0.3	0.1	-	-			

Intersection												
Int Delay, s/veh	1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	1→		ሻ	ĵ.	
Traffic Vol, veh/h	10	0	1	0	0	0	0	54	0	0	41	0
Future Vol, veh/h	10	0	1	0	0	0	0	54	0	0	41	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	125	-	-	140	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	3	3	3	23	23	23
Mvmt Flow	15	0	1	0	0	0	0	79	0	0	60	0
Major/Minor N	1inor2			Minor1			Major1			Major2		
Conflicting Flow All	139	139	60	140	139	79	60	0	0	79	0	0
Stage 1	60	60	-	79	79	-	-	-	-	-	-	-
Stage 2	79	79	-	61	60	-	-	-	_	-	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.13	-	-	4.33	_	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	_	_	-	_	_
Critical Hdwy Stg 2	6.1	5.5	_	6.1	5.5	_	_	_	-	-	_	_
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.227	-	_	2.407	-	-
Pot Cap-1 Maneuver	836	756	1011	835	756	987	1537	-	-	1396	_	-
Stage 1	957	849	-	935	833	-	-	-	_	-	-	-
Stage 2	935	833	-	955	849	-	-	-	-	-	_	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	836	756	1011	834	756	987	1537	-	-	1396	-	-
Mov Cap-2 Maneuver	836	756	-	834	756	-	-	-	-	-	-	-
Stage 1	957	849	-	935	833	-	-	-	-	-	-	-
Stage 2	935	833	-	954	849	-	-	-	-	-	-	-
<u></u>												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.3			0			0			0		
HCM LOS	Α			A			U			- 0		
	, ·			,,								
Minor Lane/Major Mvmt		NBL	NBT	NRR	EBLn1V	VRI n1	SBL	SBT	SBR			
Capacity (veh/h)		1537	NDT	NOIN	849		1396	ODT	OBIX			
HCM Lane V/C Ratio			-	-	0.019	-		-	-			
HCM Control Delay (s)		0	-		9.3	0	0	-	-			
HCM Lane LOS			-	-	9.3 A	A		-	-			
HCM 95th %tile Q(veh)		A 0	-	-	0.1	- A	A 0	-	-			
		U	_	_	U. I	-	U	_	_			

Intersection						
Int Delay, s/veh	0					
		14/00	NET	NES	051	057
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	^	_ ∱	_	_	र्स
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	0
	-				•	_
		_		_		
	Minor1		//ajor1		Major2	
Conflicting Flow All	1	0	0	0	0	0
Stage 1	0	-	-	-	-	-
Stage 2	1	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	1022	-	_	-	-	-
Stage 1		_	_	_	_	_
Stage 2	1022	_	_	_	_	_
Platoon blocked, %	1022		_	_		_
Mov Cap-1 Maneuver	1022				_	
•	1022	-	-	_	_	_
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	1022	-	-	-	-	-
Stage 2	1022	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	A					
				4/D1 /	05:	05-
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	-	-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		-	-	0	0	-
HCM Lane LOS		-	-	Α	Α	-
HCM 95th %tile Q(veh)	-	-	-	-	-
	,					

	۶	→	•	•	—	•	•	†	~	/	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	7	ሻ	1>			ર્ન	7		ર્ન	7
Traffic Volume (vph)	58	577	48	71	408	21	56	38	86	27	30	30
Future Volume (vph)	58	577	48	71	408	21	56	38	86	27	30	30
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.97	1.00		0.98	1.00
Satd. Flow (prot)	1662	1750	1488	1662	1737			1699	1488		1710	1488
Flt Permitted	0.40	1.00	1.00	0.26	1.00			0.78	1.00		0.80	1.00
Satd. Flow (perm)	695	1750	1488	462	1737			1369	1488		1404	1488
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	61	607	51	75	429	22	59	40	91	28	32	32
RTOR Reduction (vph)	0	0	27	0	3	0	0	0	80	0	0	28
Lane Group Flow (vph)	61	607	24	75	448	0	0	99	11	0	60	4
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8			2		2	6		6
Actuated Green, G (s)	26.3	20.2	20.2	26.5	20.3			5.6	5.6		5.6	5.6
Effective Green, g (s)	27.9	21.0	21.0	27.5	20.8			5.6	5.6		5.6	5.6
Actuated g/C Ratio	0.62	0.46	0.46	0.61	0.46			0.12	0.12		0.12	0.12
Clearance Time (s)	4.8	4.8	4.8	4.5	4.5			4.0	4.0		4.0	4.0
Vehicle Extension (s)	2.5	4.0	4.0	2.5	4.0			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	575	811	689	457	797			169	183		173	183
v/s Ratio Prot	0.02	c0.35		c0.02	0.26							
v/s Ratio Perm	0.05		0.02	0.08				c0.07	0.01		0.04	0.00
v/c Ratio	0.11	0.75	0.03	0.16	0.56			0.59	0.06		0.35	0.02
Uniform Delay, d1	3.7	10.0	6.6	4.5	8.9			18.8	17.5		18.2	17.4
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.1	4.1	0.0	0.1	1.1			4.2	0.1		0.9	0.0
Delay (s)	3.8	14.0	6.7	4.6	10.0			23.0	17.6		19.1	17.5
Level of Service	A	В	Α	Α	В			С	В		В	В
Approach Delay (s)		12.6			9.3			20.4			18.5	
Approach LOS		В			Α			С			В	
Intersection Summary												
HCM 2000 Control Delay			12.8	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.60	_								
Actuated Cycle Length (s)			45.3		um of lost				12.0			
Intersection Capacity Utiliza	tion		59.4%	IC	CU Level of	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	4	1	†	~	/	†	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	ሻ	₽			र्स	7		र्स	7
Traffic Volume (veh/h)	58	577	48	71	408	21	56	38	86	27	30	30
Future Volume (veh/h)	58	577	48	71	408	21	56	38	86	27	30	30
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Adj Flow Rate, veh/h	61	607	51	75	429	22	59	40	91	28	32	32
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	574	844	715	446	777	40	112	46	290	103	75	290
Arrive On Green	0.09	0.48	0.48	0.09	0.47	0.47	0.20	0.20	0.20	0.20	0.20	0.20
Sat Flow, veh/h	1667	1750	1483	1667	1650	85	0	235	1483	0	383	1483
Grp Volume(v), veh/h	61	607	51	75	0	451	99	0	91	60	0	32
Grp Sat Flow(s),veh/h/ln	1667	1750	1483	1667	0	1735	235	0	1483	383	0	1483
Q Serve(g_s), s	0.8	14.1	0.9	1.1	0.0	9.5	0.0	0.0	2.7	0.0	0.0	0.9
Cycle Q Clear(g_c), s	0.8	14.1	0.9	1.1	0.0	9.5	10.0	0.0	2.7	10.0	0.0	0.9
Prop In Lane	1.00		1.00	1.00		0.05	0.60		1.00	0.47		1.00
Lane Grp Cap(c), veh/h	574	844	715	446	0	816	158	0	290	178	0	290
V/C Ratio(X)	0.11	0.72	0.07	0.17	0.00	0.55	0.63	0.00	0.31	0.34	0.00	0.11
Avail Cap(c_a), veh/h	711	991	840	593	0	983	158	0	290	178	0	290
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	5.9	10.5	7.1	7.3	0.0	9.7	21.3	0.0	17.7	17.8	0.0	16.9
Incr Delay (d2), s/veh	0.1	2.5	0.1	0.1	0.0	0.8	6.8	0.0	0.5	0.8	0.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.2	4.3	0.2	0.3	0.0	2.9	1.4	0.0	0.8	0.6	0.0	0.3
Unsig. Movement Delay, s/veh		12.0	7.0	7.4	0.0	10 E	28.1	0.0	10.1	10.6	0.0	17 1
LnGrp Delay(d),s/veh LnGrp LOS	5.9	13.0 B	7.2 A	7.4 A	0.0	10.5 B	20.1 C	0.0 A	18.1 B	18.6 B	0.0 A	17.1
	A		A	A	A	D	U		D	D		B
Approach Vol, veh/h		719			526			190			92	
Approach LOC		12.0			10.1			23.3			18.1	
Approach LOS		В			В			С			В	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		14.0	8.5	28.7		14.0	8.8	28.4				
Change Period (Y+Rc), s		4.0	4.5	4.8		4.0	4.8	* 4.8				
Max Green Setting (Gmax), s		10.0	8.5	28.2		10.0	8.2	* 29				
Max Q Clear Time (g_c+l1), s		12.0	3.1	16.1		12.0	2.8	11.5				
Green Ext Time (p_c), s		0.0	0.1	7.8		0.0	0.1	5.8				
Intersection Summary												
HCM 6th Ctrl Delay			13.1									
HCM 6th LOS			В									

Notes

User approved pedestrian interval to be less than phase max green.

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	6.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	EDL		EDN	WDL		WDIN	NDL		NDI	ODL		SDN
Lane Configurations Traffic Vol, veh/h	0	4	0	1	4	120	0	♣ 45	13	117	♣ 11	0
Future Vol, veh/h	0	0	0	1	0	120	0	45	13	117	11	0
· · · · · · · · · · · · · · · · · · ·	0	0	0	0	0	0	0	40	0	0	0	0
Conflicting Peds, #/hr											Free	-
Sign Control RT Channelized	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free -	Free	Free		Free None
	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length		_	-	-	_	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	70	0	- 70	- 70	0	- 70	- 70	0	- 70	- 70	0	- 70
Peak Hour Factor	78	78	78	78	78	78	78	78	78	78	78	78
Heavy Vehicles, %	0	0	0	0	0	0	10	10	10	9	9	9
Mvmt Flow	0	0	0	1	0	154	0	58	17	150	14	0
Major/Minor N	/linor2			Minor1			Major1			Major2		
Conflicting Flow All	458	389	14	381	381	67	14	0	0	75	0	0
Stage 1	314	314	_	67	67	-		_	_	-	_	-
Stage 2	144	75	_	314	314	_	_	_	_	_	_	_
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.2	_	_	4.19	_	_
Critical Hdwy Stg 1	6.1	5.5	- 0.2	6.1	5.5	- 0.2	- '.'	_	_		_	_
Critical Hdwy Stg 2	6.1	5.5	_	6.1	5.5	_	_	_	_	_	_	_
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.29	_	_	2.281	_	_
Pot Cap-1 Maneuver	516	549	1072	581	555	1002	1553			1481		
Stage 1	701	660	1072	948	843	1002	1000	_	_	-		
Stage 2	864	836		701	660						-	
Platoon blocked, %	004	000		701	000			_	_			
Mov Cap-1 Maneuver	402	493	1072	536	498	1002	1553	<u>-</u>	<u>-</u>	1481	-	-
Mov Cap-2 Maneuver	402	493	1072	536	498	1002	1000	_	_	1-01		_
Stage 1	701	593	<u>-</u>	948	843	<u>-</u>	-	_	<u>-</u>	<u>-</u>	_	<u>-</u>
Stage 2	731	836	-	629	593	_	-	-	_	-		-
Slaye Z	131	030	-	UZIJ	030	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			9.3			0			7		
HCM LOS	Α			Α								
Minor Lane/Major Mvm	t	NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1553	_		-	995	1481	_	_			
HCM Lane V/C Ratio		_	_	-	_	0.156		_	_			
HCM Control Delay (s)		0	_	-	0	9.3	7.7	0	_			
HCM Lane LOS		A	_	_	A	A	Α	A	_			
HCM 95th %tile Q(veh)		0	_	_	-	0.6	0.3	-	_			
		- 0				0.0	3.0					

Int Delay, s/veh
Lane Configurations Image: Configuration of the confi
Lane Configurations Image: Configuration of the confi
Traffic Vol, veh/h 10 0 1 2 0 38 0 72 3 80 58 0 Future Vol, veh/h 10 0 1 2 0 38 0 72 3 80 58 0 Conflicting Peds, #/hr 0<
Future Vol, veh/h 10 0 1 2 0 38 0 72 3 80 58 0 Conflicting Peds, #/hr 0
Conflicting Peds, #/hr 0
Sign Control Stop Stop Stop Stop Stop Stop Free Free Free Free Free Free Free Fre
RT Channelized - - None - - -
Storage Length - - - - 125 - - 140 - - Veh in Median Storage, # - 0 - - 0 - - 0 - - 0 -
Veh in Median Storage, # - 0 0 0 -
5 ,
Grade, % - 0 0 0 -
Peak Hour Factor 68 68 68 68 68 68 68 68 68 68 68 68 68
Heavy Vehicles, % 0 0 0 0 0 0 3 3 3 23 23 23
Mymt Flow 15 0 1 3 0 56 0 106 4 118 85 0
Major/Minor Minor2 Minor1 Major1 Major2
Conflicting Flow All 457 431 85 430 429 108 85 0 0 110 0 0
Stage 1 321 321 - 108 108
Stage 2 136 110 - 322 321
Critical Hdwy 7.1 6.5 6.2 7.1 6.5 6.2 4.13 - 4.33 -
Critical Hdwy Stg 1 6.1 5.5 - 6.1 5.5
Critical Hdwy Stg 2 6.1 5.5 - 6.1 5.5
Follow-up Hdwy 3.5 4 3.3 3.5 4 3.3 2.227 2.407
Pot Cap-1 Maneuver 517 520 980 539 521 951 1505 1359
Stage 1 695 655 - 902 810
Stage 2 872 808 - 694 655
Platoon blocked, %
Mov Cap-1 Maneuver 454 475 980 502 476 951 1505 1359
Mov Cap-2 Maneuver 454 475 - 502 476
Stage 1 695 598 - 902 810
Stage 2 821 808 - 633 598
Approach EB WB NB SB
HCM Control Delay, s 12.8 9.2 0 4.6
HCM LOS B A
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR
Capacity (veh/h) 1505 477 910 1359
HCM Lane V/C Ratio 0.034 0.065 0.087
HCM Control Delay (s) 0 12.8 9.2 7.9
HCM Control Delay (s) 0 12.8 9.2 7.9 HCM Lane LOS A B A A HCM 95th %tile Q(veh) 0 0.1 0.2 0.3

2.1					
WDI	\\/DD	NDT	NIDD	CDI	SBT
	WDK		NDK	ODL	
	40		7	47	4
					45
					45
					0
Stop		Free		Free	Free
-	None	-	None	-	None
0	-	-	-	-	-
e, # 0	-	0	-	-	0
0	-	0	-	-	0
92	92	92	92	92	92
2	2	2	2	2	2
4	20	62	8	18	49
. 4					
	66	0	0	70	0
	-	-	-	-	-
	-	-	-	-	-
	6.22	-	-	4.12	-
5.42	-	-	-	-	-
5.42	-	-	-	-	-
3.518	3.318	-	-	2.218	-
841	998	-	-	1531	-
957	-	-	_	-	_
	-	_	_	_	_
		_	_		_
831	998	_	_	1531	_
	-	_	_	-	_
			_		
JLI	-	-	-	-	-
WB		NB		SB	
8.8		0		2	
nt	NBT	NBRV			SBT
	-	-	963	1531	-
	-	-	0.025	0.012	-
)	-	-	8.8	7.4	0
	-	-			Α
)	_	_	0.1	0	_
	WBL 4 4 4 0 Stop 0 92 2 4 Minor1 151 66 85 6.42 5.42 5.42 5.42 3.518 841 957 938 831 831 957 927 WB 8.8 A	WBL WBR 4 18 4 18 0 0 0 Stop Stop - None 0 9, # 0 92 92 2 2 4 20 Minor1 N 151 66 66 85 6.42 6.22 5.42 5.42 3.518 3.318 841 998 957 938 WB 831 998 831 957 927 WB 8.8 A nt NBT	WBL WBR NBT 4 18 57 4 18 57 0 0 0 Stop Stop Free None - 0 0 - 0 92 92 92 2 2 2 4 20 62 Minor1 Major1 151 66 0 66 85 5.42 5.42 5.42 5.42 5.42 3.518 3.318 957 938 831 998 831 998 831 998 831 998 831 957 927 WB NB 8.8 0 A NBT NBRV	WBL WBR NBT NBR 4 18 57 7 4 18 57 7 0 0 0 0 Stop Stop Free Free - None - None - None 0 92 92 92 92 2 2 2 2 2 4 20 62 8 Minor1 Major1 Major1 Major1 151 66 0 0 0 66 642 6.22 542 542 542 542 542 542 542 542 542 542 93518 3.318 957 938 938 957 938 938 957 938 938 957 927 927 MB NB NB NB NB NB NB NB NB NB NB N	WBL WBR NBT NBR SBL Y Image: Control of the control of th

07/13/2023

	•	→	•	•	+	•	4	†	~	/	 	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	Ť	f)			र्स	7		ર્ન	7
Traffic Volume (vph)	61	609	20	19	430	22	35	30	66	28	17	32
Future Volume (vph)	61	609	20	19	430	22	35	30	66	28	17	32
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.97	1.00		0.97	1.00
Satd. Flow (prot)	1662	1750	1488	1662	1737			1704	1488		1698	1488
Flt Permitted	0.37	1.00	1.00	0.26	1.00			0.81	1.00		0.77	1.00
Satd. Flow (perm)	644	1750	1488	453	1737			1412	1488		1350	1488
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	64	641	21	20	453	23	37	32	69	29	18	34
RTOR Reduction (vph)	0	0	11	0	3	0	0	0	61	0	0	30
Lane Group Flow (vph)	64	641	10	20	473	0	0	69	8	0	47	4
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8			2		2	6		6
Actuated Green, G (s)	26.8	20.7	20.7	25.8	20.2			5.0	5.0		5.0	5.0
Effective Green, g (s)	28.4	21.5	21.5	26.8	20.7			5.0	5.0		5.0	5.0
Actuated g/C Ratio	0.64	0.48	0.48	0.60	0.46			0.11	0.11		0.11	0.11
Clearance Time (s)	4.8	4.8	4.8	4.5	4.5			4.0	4.0		4.0	4.0
Vehicle Extension (s)	2.5	4.0	4.0	2.5	4.0			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	567	843	717	437	806			158	166		151	166
v/s Ratio Prot	c0.02	c0.37		0.01	0.27							
v/s Ratio Perm	0.05		0.01	0.02				c0.05	0.01		0.03	0.00
v/c Ratio	0.11	0.76	0.01	0.05	0.59			0.44	0.05		0.31	0.02
Uniform Delay, d1	3.4	9.4	6.0	4.3	8.8			18.5	17.7		18.2	17.6
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.1	4.3	0.0	0.0	1.3			1.4	0.1		0.9	0.0
Delay (s)	3.5	13.8	6.0	4.4	10.1			19.9	17.8		19.1	17.7
Level of Service	Α	В	Α	Α	В			В	В		В	В
Approach Delay (s)		12.6			9.9			18.8			18.5	
Approach LOS		В			Α			В			В	
Intersection Summary												
HCM 2000 Control Delay			12.6	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.59									
Actuated Cycle Length (s)			44.6	Sı	um of lost	t time (s)			12.0			
Intersection Capacity Utiliza	ition		58.6%	IC	U Level o	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

07/13/2023

_	۶	→	•	•	—	•	4	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	ሻ	ĵ∍			4	7		र्स	7
Traffic Volume (veh/h)	61	609	20	19	430	22	35	30	66	28	17	32
Future Volume (veh/h)	61	609	20	19	430	22	35	30	66	28	17	32
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Adj Flow Rate, veh/h	64	641	21	20	453	23	37	32	69	29	18	34
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	613	902	764	483	831	42	140	81	218	147	60	218
Arrive On Green	0.10	0.52	0.52	0.09	0.50	0.50	0.15	0.15	0.15	0.15	0.15	0.15
Sat Flow, veh/h	1667	1750	1483	1667	1651	84	182	552	1483	190	411	1483
Grp Volume(v), veh/h	64	641	21	20	0	476	69	0	69	47	0	34
Grp Sat Flow(s),veh/h/ln	1667	1750	1483	1667	0	1735	734	0	1483	601	0	1483
Q Serve(g_s), s	8.0	13.7	0.3	0.2	0.0	9.2	0.3	0.0	2.0	0.1	0.0	1.0
Cycle Q Clear(g_c), s	8.0	13.7	0.3	0.2	0.0	9.2	5.9	0.0	2.0	5.8	0.0	1.0
Prop In Lane	1.00		1.00	1.00		0.05	0.54		1.00	0.62		1.00
Lane Grp Cap(c), veh/h	613	902	764	483	0	873	221	0	218	207	0	218
V/C Ratio(X)	0.10	0.71	0.03	0.04	0.00	0.55	0.31	0.00	0.32	0.23	0.00	0.16
Avail Cap(c_a), veh/h	756	1075	911	637	0	1065	278	0	273	262	0	273
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	4.8	9.1	5.8	5.9	0.0	8.3	18.9	0.0	18.6	18.5	0.0	18.2
Incr Delay (d2), s/veh	0.1	2.1	0.0	0.0	0.0	8.0	0.6	0.0	0.6	0.4	0.0	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.1	3.8	0.1	0.1	0.0	2.6	0.7	0.0	0.6	0.5	0.0	0.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	4.9	11.2	5.8	5.9	0.0	9.1	19.5	0.0	19.3	18.9	0.0	18.4
LnGrp LOS	A	B	A	A	A	A	В	A	B	В	A	B
Approach Vol, veh/h		726			496			138			81	
Approach Delay, s/veh		10.5			8.9			19.4			18.7	
Approach LOS		В			Α			В			В	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		11.4	8.5	29.2		11.4	8.8	28.9				
Change Period (Y+Rc), s		4.0	4.5	4.8		4.0	4.8	* 4.8				
Max Green Setting (Gmax), s		9.0	8.5	29.2		9.0	8.2	* 30				
Max Q Clear Time (g_c+l1), s		7.9	2.2	15.7		7.8	2.8	11.2				
Green Ext Time (p_c), s		0.1	0.0	8.8		0.0	0.1	6.5				
Intersection Summary												
HCM 6th Ctrl Delay			11.3									
HCM 6th LOS			В									

Notes

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	4.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	LDIN	WDL		WDIX	NDL	4	NDIX	ODL	4	אומט
Traffic Vol, veh/h	0	0	0	0	4 >	69	0	47	13	22	12	0
Future Vol, veh/h	0	0	0	0	0	69	0	47	13	22	12	0
Conflicting Peds, #/hr	0	0	0	0	0	03	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	- -	-	None	-	-	None	-	-	None	-	-	None
Storage Length	_	_	-	_	_	-	_	_	-	_	_	-
Veh in Median Storage,	# -	0	_	_	0	_	_	0	_	_	0	_
Grade, %	-	0	_	-	0	_	_	0	_	_	0	_
Peak Hour Factor	78	78	78	78	78	78	78	78	78	78	78	78
Heavy Vehicles, %	0	0	0	0	0	0	10	10	10	9	9	9
Mvmt Flow	0	0	0	0	0	88	0	60	17	28	15	0
Major/Minor N	linor2		ı	Minor1			Major1		ı	Major2		
Conflicting Flow All	184	148	15	140	140	69	15	0	0	77	0	0
Stage 1	71	71	15	69	69	09	15	U	U	11	-	U
Stage 1 Stage 2	113	71	-	71	71	-	-	-	-	=		-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.2	-	-	4.19	-	-
Critical Hdwy Stg 1	6.1	5.5	0.2	6.1	5.5	0.2	4.2	_	_	4.13	_	_
Critical Hdwy Stg 2	6.1	5.5		6.1	5.5	_	<u>-</u>	_	_	_	-	
Follow-up Hdwy	3.5	3.5	3.3	3.5	4	3.3	2.29	_	_	2.281		_
Pot Cap-1 Maneuver	781	747	1070	835	755	1000	1552	_	_	1478		
Stage 1	944	840	-	946	841	-	-	_	_	- 1770	_	_
Stage 2	897	835	_	944	840	_	_	_	_	_	_	_
Platoon blocked, %	001	000		UTT	0+0			_	_		_	_
Mov Cap-1 Maneuver	701	733	1070	823	741	1000	1552	_	_	1478	_	_
Mov Cap-2 Maneuver	701	733	-	823	741	- 1000		_	_		_	_
Stage 1	944	824	-	946	841	_	-	-	_	_	_	_
Stage 2	818	835	_	926	824	_	_	_	_	_	_	_
5.00g0 L	0.10	500		520	JL 1							
Annroach	ED			WD			ND			CD		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			8.9			0			4.8		
HCM LOS	Α			Α								
Minor Lane/Major Mvmt		NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1552	-	-		1000	1478	-	-			
HCM Lane V/C Ratio		-	-	-	-	0.088	0.019	-	-			
HCM Control Delay (s)		0	-	-	0	8.9	7.5	0	-			
HCM Lane LOS		Α	-	-	Α	Α	Α	Α	-			
HCM 95th %tile Q(veh)		0	-	-	-	0.3	0.1	-	-			

Intersection												
Int Delay, s/veh	1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	LDI	WDL		וטיי	NDL		NDI	ODL	- 3B1 - ♣	SDIX
Traffic Vol, veh/h	11	0	1	0	4 >	0	0	♣ 57	0	0	44	0
Future Vol, veh/h	11	0	1	0	0	0	0	57	0	0	44	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	Stop -	Stop -	None	Stop -	- -	None	-	-	None	-	-	None
Storage Length	_	_	INOHE	_	_	-	_	_	-	_	_	INOHE
Veh in Median Storage,	# -	0		_	0		_	0		<u>-</u> -	0	-
Grade, %	,# -	0	_	_	0	_	_	0	_	_	0	_
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	00	0	0	00	3	3	3	23	23	23
Mymt Flow	16	0	1	0	0	0	0	84	0	23	65	23
IVIVIIIL FIOW	10	U		U	U	U	U	04	U	U	00	U
Major/Minor N	/linor2		ľ	Minor1		1	Major1		N	Major2		
Conflicting Flow All	149	149	65	150	149	84	65	0	0	84	0	0
Stage 1	65	65	-	84	84	-	-	-	-	-	-	-
Stage 2	84	84	-	66	65	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.13	-	-	4.33	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.227	-	-	2.407	-	-
Pot Cap-1 Maneuver	824	746	1005	822	746	981	1531	-	-	1390	-	-
Stage 1	951	845	-	929	829	_	-	-	_	-	-	-
Stage 2	929	829	-	950	845	-	_	-	-	-	-	-
Platoon blocked, %								-	_		-	_
Mov Cap-1 Maneuver	824	746	1005	821	746	981	1531	-	-	1390	-	-
Mov Cap-2 Maneuver	824	746	-	821	746	_	-	-	_	-	-	-
Stage 1	951	845	-	929	829	-	-	_	-	-	-	-
Stage 2	929	829	_	949	845	_	_	_	_	_	_	_
												
Annanah	ED			WD			ND			CD		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	9.4			0			0			0		
HCM LOS	Α			Α								
Minor Lane/Major Mvmt	t	NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1531	_	_	837	-	1390	-	-			
HCM Lane V/C Ratio		-	-	_	0.021	-	-	-	_			
HCM Control Delay (s)		0	_	-	9.4	0	0	_	_			
HCM Lane LOS		A	_	-	A	A	A	_	_			
HCM 95th %tile Q(veh)		0	-	-	0.1	-	0	-	-			

Intersection						
Int Delay, s/veh	0					
		WIDD	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	À	•	_ ∱	•	^	र्न
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr	0	0	_ 0	0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	0
Major/Mina	Min c =4		Asia at		Ania TO	
	Minor1		Major1		Major2	
Conflicting Flow All	1	0	0	0	0	0
Stage 1	0	-	-	-	-	-
Stage 2	1	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	1022	_	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	1022	-	-	-	-	-
Platoon blocked, %			-	_		-
Mov Cap-1 Maneuver	1022	_	-	_	-	_
Mov Cap-2 Maneuver	1022	_	_	_	_	_
Stage 1		_	_	_	_	_
Stage 2	1022					
Olaye Z	1022		•		_	_
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	Α					
Minor Long/Major M.	.1	NDT	MDDV	MDI 1	CDI	CDT
Minor Lane/Major Mvm	IL	NBT	NRKA	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	-	-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		-	-	0	0	-
HCM Lane LOS HCM 95th %tile Q(veh)		-	-	Α	Α	-

	۶	→	•	•	←	•	1	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	7	ሻ	₽			ર્ન	7		र्स	7
Traffic Volume (vph)	64	630	21	20	446	23	37	31	69	29	17	33
Future Volume (vph)	64	630	21	20	446	23	37	31	69	29	17	33
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.97	1.00		0.97	1.00
Satd. Flow (prot)	1662	1750	1488	1662	1737			1704	1488		1696	1488
Flt Permitted	0.36	1.00	1.00	0.24	1.00			0.80	1.00		0.77	1.00
Satd. Flow (perm)	628	1750	1488	426	1737			1407	1488		1339	1488
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	67	663	22	21	469	24	39	33	73	31	18	35
RTOR Reduction (vph)	0	0	11	0	3	0	0	0	65	0	0	31
Lane Group Flow (vph)	67	663	11	21	490	0	0	72	8	0	49	4
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8			2		2	6		6
Actuated Green, G (s)	27.5	21.4	21.4	26.7	21.0			5.0	5.0		5.0	5.0
Effective Green, g (s)	29.1	22.2	22.2	27.7	21.5			5.0	5.0		5.0	5.0
Actuated g/C Ratio	0.64	0.49	0.49	0.61	0.47			0.11	0.11		0.11	0.11
Clearance Time (s)	4.8	4.8	4.8	4.5	4.5			4.0	4.0		4.0	4.0
Vehicle Extension (s)	2.5	4.0	4.0	2.5	4.0			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	559	855	727	428	822			154	163		147	163
v/s Ratio Prot	c0.02	c0.38		0.01	0.28							
v/s Ratio Perm	0.06		0.01	0.02				c0.05	0.01		0.04	0.00
v/c Ratio	0.12	0.78	0.01	0.05	0.60			0.47	0.05		0.33	0.02
Uniform Delay, d1	3.4	9.5	6.0	4.4	8.8			19.0	18.1		18.7	18.0
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.1	4.7	0.0	0.0	1.4			1.6	0.1		1.0	0.0
Delay (s)	3.5	14.3	6.0	4.4	10.1			20.6	18.2		19.6	18.1
Level of Service	Α	В	Α	Α	В			C	В		B	В
Approach Delay (s)		13.1			9.9			19.4			19.0	
Approach LOS		В			Α			В			В	
Intersection Summary			400				• •					
HCM 2000 Control Delay	., .,		12.9	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.61						40.0			
Actuated Cycle Length (s)			45.4		um of lost				12.0			
Intersection Capacity Utiliza	ition		60.0%	IC	CU Level of	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	•	†	~	/	ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†	7	ሻ	ĵ∍			4	7		र्स	7
Traffic Volume (veh/h)	64	630	21	20	446	23	37	31	69	29	17	33
Future Volume (veh/h)	64	630	21	20	446	23	37	31	69	29	17	33
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Adj Flow Rate, veh/h	67	663	22	21	469	24	39	33	73	31	18	35
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	571	889	753	439	819	42	108	56	257	114	39	257
Arrive On Green	0.09	0.51	0.51	0.09	0.50	0.50	0.17	0.17	0.17	0.17	0.17	0.17
Sat Flow, veh/h	1667	1750	1483	1667	1650	84	2	321	1483	2	225	1483
Grp Volume(v), veh/h	67	663	22	21	0	493	72	0	73	49	0	35
Grp Sat Flow(s),veh/h/ln	1667	1750	1483	1667	0	1735	324	0	1483	227	0	1483
Q Serve(g_s), s	0.9	15.6	0.4	0.3	0.0	10.4	0.0	0.0	2.2	0.0	0.0	1.0
Cycle Q Clear(g_c), s	0.9	15.6	0.4	0.3	0.0	10.4	9.0	0.0	2.2	9.0	0.0	1.0
Prop In Lane	1.00		1.00	1.00		0.05	0.54		1.00	0.63		1.00
Lane Grp Cap(c), veh/h	571	889	753	439	0	861	163	0	257	153	0	257
V/C Ratio(X)	0.12	0.75	0.03	0.05	0.00	0.57	0.44	0.00	0.28	0.32	0.00	0.14
Avail Cap(c_a), veh/h	706	1013	858	584	0	1004	163	0	258	153	0	258
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	5.5	10.1	6.4	6.9	0.0	9.2	19.6	0.0	18.6	19.3	0.0	18.1
Incr Delay (d2), s/veh	0.1	3.0	0.0	0.0	0.0	0.9	1.4	0.0	0.4	0.9	0.0	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.2	4.7	0.1	0.1	0.0	3.1	0.8	0.0	0.7	0.5	0.0	0.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	5.6	13.1	6.4	6.9	0.0	10.0	21.0	0.0	19.1	20.1	0.0	18.3
LnGrp LOS	A	B	A	A	A	В	С	A	B	С	A	B
Approach Vol, veh/h		752			514			145			84	
Approach Delay, s/veh		12.3			9.9			20.0			19.4	
Approach LOS		В			Α			С			В	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		13.0	8.5	30.3		13.0	8.8	30.0				
Change Period (Y+Rc), s		4.0	4.5	4.8		4.0	4.8	* 4.8				
Max Green Setting (Gmax), s		9.0	8.5	29.2		9.0	8.2	* 30				
Max Q Clear Time (g_c+l1), s		11.0	2.3	17.6		11.0	2.9	12.4				
Green Ext Time (p_c), s		0.0	0.0	8.0		0.0	0.1	6.5				
Intersection Summary												
HCM 6th Ctrl Delay			12.6									
HCM 6th LOS			В									

Notes

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	4.8											
IIIL Delay, S/VeII												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	0	0	0	71	0	49	13	23	12	0
Future Vol, veh/h	0	0	0	0	0	71	0	49	13	23	12	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	78	78	78	78	78	78	78	78	78	78	78	78
Heavy Vehicles, %	0	0	0	0	0	0	10	10	10	9	9	9
Mvmt Flow	0	0	0	0	0	91	0	63	17	29	15	0
Majay/Mina-	Aire a =O			Alima 4			1-1-1			Maisin		
	linor2	4-0		Minor1	4.4-		//ajor1			Major2		
Conflicting Flow All	190	153	15	145	145	72	15	0	0	80	0	0
Stage 1	73	73	-	72	72	-	-	-	-	-	-	-
Stage 2	117	80	-	73	73	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.2	-	-	4.19	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.29	-	-	2.281	-	-
Pot Cap-1 Maneuver	774	742	1070	828	750	996	1552	-	-	1475	-	-
Stage 1	942	838	-	943	839	-	-	-	-	-	-	-
Stage 2	892	832	-	942	838	-	-	-	-	-	-	-
Platoon blocked, %			40=-				4===	-	-	==	-	-
Mov Cap-1 Maneuver	693	727	1070	816	735	996	1552	-	-	1475	-	-
Mov Cap-2 Maneuver	693	727	-	816	735	-	-	-	-	-	-	-
Stage 1	942	821	-	943	839	-	-	-	-	-	-	-
Stage 2	810	832	-	923	821	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			9			0			4.9		
HCM LOS	A			A			- 0			1.0		
TIOM LOO												
Minor Lane/Major Mvmt		NBL	NBT	NBR E	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1552	_		_	996	1475	_	_			
HCM Lane V/C Ratio		-	_	_		0.091	0.02	<u>-</u>	<u>-</u>			
HCM Control Delay (s)		0	_	_	0	9	7.5	0	_			
HCM Lane LOS		A	_	_	A	A	7.5 A	A	_			
HCM 95th %tile Q(veh)		0	_	_	-	0.3	0.1	-	_			
HOW JOHN JOHN W(VEII)		U	_	_		0.5	0.1	_	<u>-</u>			

Intersection												
Int Delay, s/veh	1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		11.02	4	1,51	ሻ	4	, , j	<u> </u>	<u>₽</u>	UDIK
Traffic Vol, veh/h	11	0	1	0	0	0	0	59	0	0	45	0
Future Vol, veh/h	11	0	1	0	0	0	0	59	0	0	45	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	- Clop	None	- Otop	-	None	-	-	None	-	-	None
Storage Length	_	_	-	_	_	-	125	_	-	140	_	-
Veh in Median Storage,	# -	0	_	_	0	_	-	0	_	-	0	_
Grade, %	_	0	_	_	0	_	_	0	_	_	0	_
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	3	3	3	23	23	23
Mvmt Flow	16	0	1	0	0	0	0	87	0	0	66	0
				•	•	•			•	•		•
Major/Minor N	/linor2		N	Minor1			Major1		ı	Major		
		150	66		153	87		0		Major2	0	0
Conflicting Flow All	153	153		154			66	0	0	87	0	0
Stage 1	66	66	-	87	87	-	-	-	-	-	-	-
Stage 2	87 7.1	87 6.5	6.2	67 7.1	66 6.5	6.2	4.13	-	-	4.33	-	-
Critical Hdwy Critical Hdwy Stg 1	6.1	5.5	0.2	6.1	5.5	0.2	4.13	-	-	4.33	-	-
Critical Hdwy Stg 1 Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	_	_	-	_	_	-	-
Follow-up Hdwy	3.5	5.5 4	3.3	3.5	3.5	3.3	2.227	_	-	2.407	-	_
Pot Cap-1 Maneuver	819	742	1003	817	742	977	1529	-	<u>-</u>	1387	-	
Stage 1	950	844	1003	926	827	311	1323	_	_	1307	-	_
Stage 1	926	827		948	844	<u>-</u>	-		<u>-</u>			
Platoon blocked, %	320	UZI	_	340	044	_	_	_	_	_	_	_
Mov Cap-1 Maneuver	819	742	1003	816	742	977	1529	_	_	1387	_	_
Mov Cap-1 Maneuver	819	742	1003	816	742	-	1323	_	_	1307	_	_
Stage 1	950	844	_	926	827	_	_	_	_	_	_	_
Stage 2	926	827	_	947	844	_	_	_	_	_	_	_
Olugo Z	520	021		J-11	UT7							
Annroach	ED.			WD			ND			CD		
Approach	EB 0.4			WB			NB			SB		
HCM LOS	9.4			0			0			0		
HCM LOS	Α			Α								
					-DI (:		0	05=	055			
Minor Lane/Major Mvm	i e	NBL	NBT	NBR I	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1529	-	-	832	-	1387	-	-			
HCM Lane V/C Ratio		-	-	-	0.021	-	-	-	-			
HCM Control Delay (s)		0	-	-	9.4	0	0	-	-			
HCM Lane LOS		Α	-	-	Α	Α	Α	-	-			
HCM 95th %tile Q(veh)		0	-	-	0.1	-	0	-	-			

Intersection						
Int Delay, s/veh	0					
	WBL	WBR	NDT	NIDD	CDI	SBT
Movement		WBK	NBT	NBR	SBL	
Lane Configurations	¥	•	_ ∱	•	^	<u>ન</u> ્
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	0	0
IVIVIII(I IOVV	U	U	U	U	U	U
Major/Minor	Minor1	N	//ajor1	N	Major2	
Conflicting Flow All	1	0	0	0	0	0
Stage 1	0	_	-	-	-	-
Stage 2	1	_	-	-	_	_
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_		_
Critical Hdwy Stg 2	5.42	_		_	_	_
Follow-up Hdwy		3.318	_		2.218	_
	1022	3.310	-	-		_
Pot Cap-1 Maneuver		-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	1022	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	1022	-	-	-	-	-
Mov Cap-2 Maneuver	1022	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	1022	_	_	-	_	_
2.0.30 2						
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	Α					
NA: I /NA		NET	NIDD	MDL 4	051	ODT
Minor Lane/Major Mvn	nt	NBT	NRKA	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	-	-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)		-	-	0	0	-
HCM Lane LOS		-	-	Α	Α	-
HCM 95th %tile Q(veh)	_	_	_	_	-
2111 701110 2(1011	,					

	۶	→	•	•	←	•	1	†	~	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	7	ሻ	ĵ∍			ર્ન	7		ર્ન	7
Traffic Volume (vph)	64	630	50	73	446	23	59	41	92	29	31	33
Future Volume (vph)	64	630	50	73	446	23	59	41	92	29	31	33
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0			4.0	4.0		4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99			1.00	0.85		1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.97	1.00		0.98	1.00
Satd. Flow (prot)	1662	1750	1488	1662	1737			1700	1488		1709	1488
Flt Permitted	0.36	1.00	1.00	0.23	1.00			0.78	1.00		0.79	1.00
Satd. Flow (perm)	634	1750	1488	399	1737			1368	1488		1388	1488
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Adj. Flow (vph)	67	663	53	77	469	24	62	43	97	31	33	35
RTOR Reduction (vph)	0	0	28	0	3	0	0	0	85	0	0	31
Lane Group Flow (vph)	67	663	25	77	490	0	0	105	12	0	64	4
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm	Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4		4	8			2		2	6		6
Actuated Green, G (s)	28.0	21.8	21.8	28.0	21.8			5.8	5.8		5.8	5.8
Effective Green, g (s)	29.6	22.6	22.6	29.0	22.3			5.8	5.8		5.8	5.8
Actuated g/C Ratio	0.63	0.48	0.48	0.62	0.47			0.12	0.12		0.12	0.12
Clearance Time (s)	4.8	4.8	4.8	4.5	4.5			4.0	4.0		4.0	4.0
Vehicle Extension (s)	2.5	4.0	4.0	2.5	4.0			2.5	2.5		2.5	2.5
Lane Grp Cap (vph)	551	839	713	425	822			168	183		170	183
v/s Ratio Prot	0.02	c0.38		c0.03	0.28							
v/s Ratio Perm	0.06		0.02	0.09				c0.08	0.01		0.05	0.00
v/c Ratio	0.12	0.79	0.04	0.18	0.60			0.62	0.07		0.38	0.02
Uniform Delay, d1	3.8	10.3	6.5	4.8	9.1			19.6	18.3		19.0	18.2
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2	0.1	5.4	0.0	0.1	1.4			6.1	0.1		1.0	0.0
Delay (s)	3.8	15.7	6.5	5.0	10.5			25.8	18.4		20.0	18.2
Level of Service	Α	В	Α	Α	В			С	В		C	В
Approach Delay (s)		14.0			9.7			22.2			19.4	
Approach LOS		В			А			С			В	
Intersection Summary			40.0				• •					
HCM 2000 Control Delay			13.9	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.65						40.0			
Actuated Cycle Length (s)			47.1		um of lost				12.0			
Intersection Capacity Utiliza	tion		62.9%	IC	CU Level of	of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	ၨ	→	•	•	←	4	1	†	<i>></i>	>	†	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	↑	7	ሻ	₽			र्स	7		र्स	7
Traffic Volume (veh/h)	64	630	50	73	446	23	59	41	92	29	31	33
Future Volume (veh/h)	64	630	50	73	446	23	59	41	92	29	31	33
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Adj Flow Rate, veh/h	67	663	53	77	469	24	62	43	97	31	33	35
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	0	0	0	0	0	0	0	0	0	0	0	0
Cap, veh/h	552	868	736	416	800	41	109	46	282	102	68	282
Arrive On Green	0.09	0.50	0.50	0.09	0.48	0.48	0.19	0.19	0.19	0.19	0.19	0.19
Sat Flow, veh/h	1667	1750	1483	1667	1650	84	0	240	1483	0	359	1483
Grp Volume(v), veh/h	67	663	53	77	0	493	105	0	97	64	0	35
Grp Sat Flow(s),veh/h/ln	1667	1750	1483	1667	0	1735	240	0	1483	359	0	1483
Q Serve(g_s), s	0.9	16.2	1.0	1.1	0.0	10.8	0.0	0.0	3.0	0.0	0.0	1.0
Cycle Q Clear(g_c), s	0.9	16.2	1.0	1.1	0.0	10.8	10.0	0.0	3.0	10.0	0.0	1.0
Prop In Lane	1.00		1.00	1.00		0.05	0.59		1.00	0.48		1.00
Lane Grp Cap(c), veh/h	552	868	736	416	0	841	154	0	282	170	0	282
V/C Ratio(X)	0.12	0.76	0.07	0.18	0.00	0.59	0.68	0.00	0.34	0.38	0.00	0.12
Avail Cap(c_a), veh/h	685	965	818	559	0	956	154	0	282	170	0	282
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	6.0	10.7	6.9	7.8	0.0	9.8	22.3	0.0	18.5	18.5	0.0	17.7
Incr Delay (d2), s/veh	0.1	3.7	0.1	0.2	0.0	1.0	10.6	0.0	0.5	1.0	0.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.2	5.2	0.2	0.3	0.0	3.3	1.7	0.0	0.9	0.7	0.0	0.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	6.1	14.4	7.0	7.9	0.0	10.7	32.9	0.0	19.0	19.5	0.0	17.8
LnGrp LOS	A	B	A	Α	A	В	С	A	В	В	A	B
Approach Vol, veh/h		783			570			202			99	
Approach Delay, s/veh		13.2			10.4			26.2			18.9	
Approach LOS		В			В			С			В	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s		14.0	8.5	30.1		14.0	8.8	29.8				
Change Period (Y+Rc), s		4.0	4.5	4.8		4.0	4.8	* 4.8				
Max Green Setting (Gmax), s		10.0	8.5	28.2		10.0	8.2	* 29				
Max Q Clear Time (g_c+l1), s		12.0	3.1	18.2		12.0	2.9	12.8				
Green Ext Time (p_c), s		0.0	0.1	7.1		0.0	0.1	6.1				
Intersection Summary												
HCM 6th Ctrl Delay			14.2									
HCM 6th LOS			В									

Notes

^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Intersection												
Int Delay, s/veh	6.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL		LDK	VVDL		WDK	INDL		אמוו	SDL		אמט
Traffic Vol, veh/h	0	4	0	1	4	126	0	♣ 49	14	119	♣ 12	0
Future Vol, veh/h	0	0	0	1	0	126	0	49	14	119	12	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	Stop -	Slop	None	Stop -	Slop -	None	-	-	None	-	-	None
Storage Length	_	_	-	_	_	110116	_	_	-	_	_	INOITE
Veh in Median Storage,		0	_	_	0	_	_	0	_	_	0	_
Grade, %	π -	0	_	_	0	_	<u>-</u>	0	_	_	0	_
Peak Hour Factor	78	78	78	78	78	78	78	78	78	78	78	78
Heavy Vehicles, %	0	0	0	0	0	0	10	10	10	9	9	9
Mymt Flow	0	0	0	1	0	162	0	63	18	153	15	0
MATILE IOW	U	- 0	U		- 0	102	-	- 00	10	100	10	
						_						
	linor2	4		/linor1			Major1			Major2		
Conflicting Flow All	474	402	15	393	393	72	15	0	0	81	0	0
Stage 1	321	321	-	72	72	-	-	-	-	-	-	-
Stage 2	153	81	-	321	321	-	-	-	-	-	-	-
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.2	-	-	4.19	-	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.1	5.5	-	6.1	5.5	-	-	-	-	-	-	-
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.29	-	-	2.281	-	-
Pot Cap-1 Maneuver	504	540	1070	570	546	996	1552	-	-	1473	-	-
Stage 1	695	655	-	943	839	-	-	-	-	-	-	-
Stage 2	854	832	-	695	655	-	-	-	-	-	-	-
Platoon blocked, %	000	400	40-0	== 1	400	000	4===	-	-	4.4=0	-	-
Mov Cap-1 Maneuver	388	483	1070	524	489	996	1552	-	-	1473	-	-
Mov Cap-2 Maneuver	388	483	-	524	489	-	-	-	-	-	-	-
Stage 1	695	586	-	943	839	-	-	-	-	-	-	-
Stage 2	715	832	-	622	586	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			9.4			0			7		
HCM LOS	A			Α								
Minor Lane/Major Mvmt		NBL	NBT	NBR F	EBLn1V	VBI n1	SBL	SBT	SBR			
Capacity (veh/h)		1552				989	1473	-				
HCM Lane V/C Ratio		1002	-		_	0.165		_				
HCM Control Delay (s)		0	<u>-</u>	_	0	9.4	7.7	0	_			
HCM Lane LOS		A	-	-	A	9.4 A	Α.	A	_			
HCM 95th %tile Q(veh)		0		-	- -	0.6	0.3	- -	-			
How som while Q(ven)		U	_	_		0.0	0.5	_	_			

Intersection												
Int Delay, s/veh	4.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	î,		ሻ	ĵ.	
Traffic Vol, veh/h	11	0	1	2	0	38	0	77	3	80	62	0
Future Vol, veh/h	11	0	1	2	0	38	0	77	3	80	62	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	125	-	-	140	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	68	68	68	68	68	68	68	68	68	68	68	68
Heavy Vehicles, %	0	0	0	0	0	0	3	3	3	23	23	23
Mvmt Flow	16	0	1	3	0	56	0	113	4	118	91	0
Major/Minor M	1inor2			Minor1			Major1			Major2		
Conflicting Flow All	470	444	91	443	442	115	91	0	0	117	0	0
Stage 1	327	327	-	115	115	-	-	-	-	-	-	-
Stage 2	143	117	_	328	327	_	_	_	_	_	_	_
Critical Hdwy	7.1	6.5	6.2	7.1	6.5	6.2	4.13	-	_	4.33	_	-
Critical Hdwy Stg 1	6.1	5.5	-	6.1	5.5	-	-	_	_	-	_	_
Critical Hdwy Stg 2	6.1	5.5	_	6.1	5.5	-	-	-	_	-	_	_
Follow-up Hdwy	3.5	4	3.3	3.5	4	3.3	2.227	_	_	2.407	_	_
Pot Cap-1 Maneuver	507	511	972	528	513	943	1498	-	_	1351	_	_
Stage 1	690	651	-	895	804	_	-	-	_	-	-	-
Stage 2	865	803	-	689	651	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	445	467	972	492	468	943	1498	-	-	1351	-	-
Mov Cap-2 Maneuver	445	467	-	492	468	-	-	-	-	-	-	-
Stage 1	690	594	-	895	804	-	-	-	-	-	-	-
Stage 2	814	803	-	628	594	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	13			9.3			0			4.5		
HCM LOS	В			Α						1.0		
				,,								
Minor Lane/Major Mvmt		NBL	NBT	NBR I	EBLn1V	VBI n1	SBL	SBT	SBR			
Capacity (veh/h)		1498		- 12111	466	902	1351	-				
HCM Lane V/C Ratio		1430	-	_				_	_			
HCM Control Delay (s)		0	-	_	13	9.3	7.9	_	<u>-</u>			
HCM Lane LOS		A	-	-	В	9.5 A	7.9 A	_	_			
HCM 95th %tile Q(veh)		0	_	_	0.1	0.2	0.3	_	_			
TION JOHT JOHN Q(VEII)		0			0.1	0.2	0.0					

Intersection						
Int Delay, s/veh	2					
		W/DD	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y	40	\$	7	47	ન
Traffic Vol, veh/h	4	18	62	7	17	49
Future Vol, veh/h	4	18	62	7	17	49
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	4	20	67	8	18	53
NA - :/NA:	N 41: 4		1-1-4		M-:- C	
	Minor1		//ajor1		Major2	
Conflicting Flow All	160	71	0	0	75	0
Stage 1	71	-	-	-	-	-
Stage 2	89	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	831	991	-	-	1524	-
Stage 1	952	-	-	_	-	_
Stage 2	934	-	_	_	_	_
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	821	991	_	_	1524	_
Mov Cap-1 Maneuver	821	-	_		1024	_
Stage 1	952	_				_
•	923		_	_	_	_
Stage 2	323	-	-	_	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	8.9		0		1.9	
HCM LOS	Α					
				VD. /	0	05-
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	955	1524	-
HCM Lane V/C Ratio		-		0.025	0.012	-
HCM Control Delay (s)		-	-	8.9	7.4	0
HCM Lane LOS		-	-	Α	Α	Α
HCM 95th %tile Q(veh)	-	-	0.1	0	-
70410 4(1011	,			- J. 1	_	

Meadowlark Estates Subdivision Traffic Impact Analysis

Intersection: 3: Marion St SE & 34th Ave SE, Interval #1

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	T	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	24	18	16	29	175	51	22	42	48	
Average Queue (ft)	10	5	5	12	114	27	14	22	31	
95th Queue (ft)	29	22	17	33	187	55	30	48	51	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					2			0	0	
Queuing Penalty (veh)					1			0	0	

Intersection: 3: Marion St SE & 34th Ave SE, Interval #2

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	29	30	20	32	177	69	34	47	62	
Average Queue (ft)	8	4	4	12	74	25	13	21	30	
95th Queue (ft)	27	19	15	32	140	55	32	48	55	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					0			0	0	
Queuing Penalty (veh)					0			0	0	

Intersection: 3: Marion St SE & 34th Ave SE, All Intervals

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	30	35	21	36	192	69	34	51	63	
Average Queue (ft)	9	4	4	12	84	26	13	21	31	
95th Queue (ft)	27	20	16	32	157	55	32	48	54	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					1			0	0	
Queuing Penalty (veh)					0			0	0	

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #1

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	20	39
Average Queue (ft)	11	6
95th Queue (ft)	22	31
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #2

Movement	WB	NB	SB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	14	4	18
Average Queue (ft)	7	0	1
95th Queue (ft)	16	3	10
Link Distance (ft)	1402	544	917
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Movement	WB	NB	SB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	20	4	39
Average Queue (ft)	8	0	2
95th Queue (ft)	18	3	17
Link Distance (ft)	1402	544	917
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 10: Lochner Rd SE & N Site Access, Interval #1

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	30
Average Queue (ft)	7
95th Queue (ft)	28
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 10: Lochner Rd SE & N Site Access, Interval #2

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	30
Average Queue (ft)	3
95th Queue (ft)	17
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	30
Average Queue (ft)	4
95th Queue (ft)	20
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 12: S Site Access & Lochner Rd SE, Interval #1

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, Interval #2

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, All Intervals

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Network Summary

Network wide Queuing Penalty, Interval #1: 1

Network wide Queuing Penalty, Interval #2: 0

Network wide Queuing Penalty, All Intervals: 1

Intersection: 3: Marion St SE & 34th Ave SE, Interval #1

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	T	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	27	21	21	68	250	70	42	63	77	
Average Queue (ft)	9	7	7	26	151	43	21	25	41	
95th Queue (ft)	29	27	22	91	297	75	45	63	76	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					6			0	2	
Queuing Penalty (veh)					5			0	1	

Intersection: 3: Marion St SE & 34th Ave SE, Interval #2

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	R	L	TR	LT	R	LT	R
Maximum Queue (ft)	28	28	24	45	188	76	30	60	70
Average Queue (ft)	6	4	6	14	87	33	17	22	31
95th Queue (ft)	24	18	20	38	160	67	33	55	63
Link Distance (ft)		734			671	917		546	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	170		200	150			150		70
Storage Blk Time (%)					1			0	0
Queuing Penalty (veh)					1			0	0

Intersection: 3: Marion St SE & 34th Ave SE, All Intervals

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	34	30	28	76	269	86	42	68	85	
Average Queue (ft)	7	4	6	17	102	36	18	23	33	
95th Queue (ft)	25	20	20	56	208	69	37	57	67	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					2			0	1	
Queuing Penalty (veh)					2			0	0	

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #1

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	16	12
Average Queue (ft)	13	3
95th Queue (ft)	19	19
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #2

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	20	50
Average Queue (ft)	11	4
95th Queue (ft)	18	24
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	20	50
Average Queue (ft)	11	4
95th Queue (ft)	19	23
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 10: Lochner Rd SE & N Site Access, Interval #1

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	31	28	6	20
Average Queue (ft)	6	22	0	1
95th Queue (ft)	26	40	0	8
Link Distance (ft)	604	558		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			125	140
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 10: Lochner Rd SE & N Site Access, Interval #2

Movement	EB	WB	SB
Directions Served	LTR	LTR	L
Maximum Queue (ft)	30	33	5
Average Queue (ft)	2	15	0
95th Queue (ft)	14	38	4
Link Distance (ft)	604	558	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			140
Storage Blk Time (%)			
Queuing Penalty (veh)			

Movement	EB	WB	NB	SB	
Directions Served	LTR	LTR	L	L	
Maximum Queue (ft)	31	33	6	20	
Average Queue (ft)	3	17	0	0	
95th Queue (ft)	18	40	0	6	
Link Distance (ft)	604	558			
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)			125	140	
Storage Blk Time (%)					
Queuing Penalty (veh)					

AM Build 07/14/2023

Intersection: 12: S Site Access & Lochner Rd SE, Interval #1

Movement	WB
Directions Served	LR
Maximum Queue (ft)	31
Average Queue (ft)	11
95th Queue (ft)	36
Link Distance (ft)	442
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 12: S Site Access & Lochner Rd SE, Interval #2

Movement	WB
Directions Served	LR
Maximum Queue (ft)	40
Average Queue (ft)	15
95th Queue (ft)	41
Link Distance (ft)	442
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 12: S Site Access & Lochner Rd SE, All Intervals

Movement	WB
Directions Served	LR
Maximum Queue (ft)	40
Average Queue (ft)	14
95th Queue (ft)	40
Link Distance (ft)	442
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Network Summary

Network wide Queuing Penalty, Interval #1: 6
Network wide Queuing Penalty, Interval #2: 1
Network wide Queuing Penalty, All Intervals: 2

Intersection: 3: Marion St SE & 34th Ave SE, Interval #1

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	T	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	29	17	23	67	206	69	22	55	65	
Average Queue (ft)	11	5	5	20	122	33	13	30	37	
95th Queue (ft)	31	19	21	70	205	72	29	64	67	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					3			1	1	
Queuing Penalty (veh)					2			1	0	

Intersection: 3: Marion St SE & 34th Ave SE, Interval #2

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	28	26	20	38	181	48	36	67	67	
Average Queue (ft)	5	3	5	11	79	21	13	23	30	
95th Queue (ft)	21	15	16	33	149	47	33	52	56	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					1			1	0	
Queuing Penalty (veh)					0			0	0	

Intersection: 3: Marion St SE & 34th Ave SE, All Intervals

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	33	26	24	67	218	69	36	68	74	
Average Queue (ft)	6	3	5	13	90	24	13	25	31	
95th Queue (ft)	24	16	18	45	169	55	32	56	59	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					1			1	0	
Queuing Penalty (veh)					1			0	0	

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #1

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	15	22
Average Queue (ft)	10	6
95th Queue (ft)	18	27
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #2

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	14	32
Average Queue (ft)	6	2
95th Queue (ft)	15	19
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	15	42
Average Queue (ft)	7	3
95th Queue (ft)	16	22
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 10: Lochner Rd SE & N Site Access, Interval #1

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	24
Average Queue (ft)	6
95th Queue (ft)	26
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 10: Lochner Rd SE & N Site Access, Interval #2

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	24
Average Queue (ft)	2
95th Queue (ft)	14
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	30
Average Queue (ft)	3
95th Queue (ft)	18
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 12: S Site Access & Lochner Rd SE, Interval #1

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, Interval #2

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, All Intervals

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Network Summary

Network wide Queuing Penalty, Interval #1: 3

Network wide Queuing Penalty, Interval #2: 1

Network wide Queuing Penalty, All Intervals: 1

Intersection: 3: Marion St SE & 34th Ave SE, Interval #1

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	28	21	15	59	248	56	22	66	74	
Average Queue (ft)	10	6	8	18	124	26	11	27	43	
95th Queue (ft)	30	23	19	67	275	57	28	69	78	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					5			2	1	
Queuing Penalty (veh)					4			1	0	

Intersection: 3: Marion St SE & 34th Ave SE, Interval #2

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	24	25	29	58	179	52	22	72	86	
Average Queue (ft)	7	2	5	10	79	22	13	23	37	
95th Queue (ft)	24	14	20	41	150	50	29	58	67	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					1			1	1	
Queuing Penalty (veh)					0			0	0	

Intersection: 3: Marion St SE & 34th Ave SE, All Intervals

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	28	25	29	88	258	56	22	80	87	
Average Queue (ft)	8	3	6	12	90	23	12	24	38	
95th Queue (ft)	25	17	20	49	192	52	29	61	70	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					2			1	1	
Queuing Penalty (veh)					1			1	0	

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #1

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	15	24
Average Queue (ft)	10	6
95th Queue (ft)	18	32
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #2

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	14	12
Average Queue (ft)	6	1
95th Queue (ft)	15	8
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	15	24
Average Queue (ft)	7	2
95th Queue (ft)	16	17
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 10: Lochner Rd SE & N Site Access, Interval #1

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	30
Average Queue (ft)	8
95th Queue (ft)	29
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 10: Lochner Rd SE & N Site Access, Interval #2

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	25
Average Queue (ft)	2
95th Queue (ft)	14
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	31
Average Queue (ft)	3
95th Queue (ft)	19
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 12: S Site Access & Lochner Rd SE, Interval #1

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, Interval #2

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, All Intervals

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Network Summary

Network wide Queuing Penalty, Interval #1: 5

Network wide Queuing Penalty, Interval #2: 1

Network wide Queuing Penalty, All Intervals: 2

Intersection: 3: Marion St SE & 34th Ave SE, Interval #1

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	R	L	TR	LT	R	LT	R
Maximum Queue (ft)	36	21	23	122	239	81	39	66	61
Average Queue (ft)	10	6	8	38	139	48	24	27	36
95th Queue (ft)	35	21	24	111	253	81	38	64	69
Link Distance (ft)		734			671	917		546	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	170		200	150			150		70
Storage Blk Time (%)					5			1	1
Queuing Penalty (veh)					4			1	1

Intersection: 3: Marion St SE & 34th Ave SE, Interval #2

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	24	19	17	42	172	89	58	57	80	
Average Queue (ft)	7	2	6	15	88	37	20	25	36	
95th Queue (ft)	24	13	18	40	153	72	43	54	75	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					1			0	1	
Queuing Penalty (veh)					0			0	0	

Intersection: 3: Marion St SE & 34th Ave SE, All Intervals

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	_
Maximum Queue (ft)	37	21	25	127	251	93	58	70	84	
Average Queue (ft)	8	3	7	20	101	40	21	26	36	
95th Queue (ft)	27	15	20	65	188	75	43	57	74	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					2			1	1	
Queuing Penalty (veh)					1			0	0	

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #1

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	38	34
Average Queue (ft)	19	2
95th Queue (ft)	35	13
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #2

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	30	18
Average Queue (ft)	14	2
95th Queue (ft)	24	14
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	39	40
Average Queue (ft)	15	2
95th Queue (ft)	28	14
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 10: Lochner Rd SE & N Site Access, Interval #1

Movement	EB	WB	SB
Directions Served	LTR	LTR	L
Maximum Queue (ft)	24	38	26
Average Queue (ft)	7	28	4
95th Queue (ft)	28	45	27
Link Distance (ft)	604	558	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			140
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 10: Lochner Rd SE & N Site Access, Interval #2

Movement	EB	WB	SB
Directions Served	LTR	LTR	L
Maximum Queue (ft)	31	42	24
Average Queue (ft)	4	24	1
95th Queue (ft)	21	42	12
Link Distance (ft)	604	558	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			140
Storage Blk Time (%)			
Queuing Penalty (veh)			

Movement	EB	WB	SB
Directions Served	LTR	LTR	L
Maximum Queue (ft)	31	47	40
Average Queue (ft)	5	25	2
95th Queue (ft)	23	43	17
Link Distance (ft)	604	558	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			140
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 12: S Site Access & Lochner Rd SE, Interval #1

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	50	6
Average Queue (ft)	23	1
95th Queue (ft)	52	9
Link Distance (ft)	442	645
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 12: S Site Access & Lochner Rd SE, Interval #2

Movement	WB
Directions Served	LR
Maximum Queue (ft)	42
Average Queue (ft)	21
95th Queue (ft)	46
Link Distance (ft)	442
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 12: S Site Access & Lochner Rd SE, All Intervals

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	50	6
Average Queue (ft)	22	0
95th Queue (ft)	48	4
Link Distance (ft)	442	645
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty, Interval #1: 5	
Network wide Queuing Penalty, Interval #2: 1	
Network wide Queuing Penalty, All Intervals: 2	

Intersection: 3: Marion St SE & 34th Ave SE, Interval #1

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	18	9	20	92	294	56	30	81	76	
Average Queue (ft)	7	2	8	29	166	32	16	40	45	
95th Queue (ft)	22	13	21	106	307	57	36	81	81	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					9			3	2	
Queuing Penalty (veh)					7			2	1	

Intersection: 3: Marion St SE & 34th Ave SE, Interval #2

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	24	22	16	39	184	73	31	95	74	
Average Queue (ft)	6	3	4	10	85	26	14	29	35	
95th Queue (ft)	22	14	15	32	163	63	33	71	68	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					1			1	0	
Queuing Penalty (veh)					1			1	0	

Intersection: 3: Marion St SE & 34th Ave SE, All Intervals

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	24	22	21	98	294	76	35	109	83	
Average Queue (ft)	6	3	5	14	104	27	15	31	38	
95th Queue (ft)	22	14	17	59	217	62	34	74	72	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					3			1	1	
Queuing Penalty (veh)					2			1	0	

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #1

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	14	23
Average Queue (ft)	11	7
95th Queue (ft)	16	29
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #2

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	19	23
Average Queue (ft)	8	1
95th Queue (ft)	18	10
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	19	35
Average Queue (ft)	8	2
95th Queue (ft)	18	17
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 10: Lochner Rd SE & N Site Access, Interval #1

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	34
Average Queue (ft)	7
95th Queue (ft)	29
Link Distance (ft)	610
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 10: Lochner Rd SE & N Site Access, Interval #2

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	30
Average Queue (ft)	2
95th Queue (ft)	16
Link Distance (ft)	610
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	34
Average Queue (ft)	3
95th Queue (ft)	20
Link Distance (ft)	610
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

07/13/2023

Intersection: 12: S Site Access & Lochner Rd SE, Interval #1

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, Interval #2

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, All Intervals

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Network Summary

Network wide Queuing Penalty, Interval #1: 9

Network wide Queuing Penalty, Interval #2: 1

Network wide Queuing Penalty, All Intervals: 3

Intersection: 3: Marion St SE & 34th Ave SE, Interval #1

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	26	13	15	64	217	55	35	61	80	
Average Queue (ft)	10	3	4	20	139	27	19	35	43	
95th Queue (ft)	30	17	15	70	230	59	39	71	80	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					5			1	3	
Queuing Penalty (veh)					4			1	1	

Intersection: 3: Marion St SE & 34th Ave SE, Interval #2

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	24	25	24	97	185	64	34	70	82	
Average Queue (ft)	8	3	6	16	87	28	13	23	33	
95th Queue (ft)	26	16	20	59	155	56	32	58	66	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					1			0	1	
Queuing Penalty (veh)					0			0	0	

Intersection: 3: Marion St SE & 34th Ave SE, All Intervals

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	28	26	24	97	230	72	44	76	84	
Average Queue (ft)	9	3	5	17	99	28	15	26	36	
95th Queue (ft)	27	17	19	62	182	57	34	62	70	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					2			1	1	
Queuing Penalty (veh)					1			0	1	

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #1

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	15	24
Average Queue (ft)	9	3
95th Queue (ft)	18	19
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #2

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	16	30
Average Queue (ft)	7	2
95th Queue (ft)	16	14
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	16	30
Average Queue (ft)	7	2
95th Queue (ft)	17	15
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 10: Lochner Rd SE & N Site Access, Interval #1

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	30
Average Queue (ft)	8
95th Queue (ft)	30
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 10: Lochner Rd SE & N Site Access, Interval #2

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	31
Average Queue (ft)	4
95th Queue (ft)	22
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	31
Average Queue (ft)	5
95th Queue (ft)	24
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 12: S Site Access & Lochner Rd SE, Interval #1

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, Interval #2

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, All Intervals

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Network Summary

Network wide Queuing Penalty, Interval #1: 6

Network wide Queuing Penalty, Interval #2: 1

Network wide Queuing Penalty, All Intervals: 2

Intersection: 3: Marion St SE & 34th Ave SE, Interval #1

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	R	L	TR	LT	R	LT	R
Maximum Queue (ft)	36	21	26	144	308	107	27	62	62
Average Queue (ft)	10	6	6	33	180	63	21	31	40
95th Queue (ft)	33	23	21	109	307	115	34	66	73
Link Distance (ft)		734			671	917		546	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	170		200	150			150		70
Storage Blk Time (%)					10	0		1	2
Queuing Penalty (veh)					9	0		1	1

Intersection: 3: Marion St SE & 34th Ave SE, Interval #2

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	28	22	28	127	216	81	45	64	59	
Average Queue (ft)	7	4	8	19	97	41	23	23	30	
95th Queue (ft)	24	18	23	68	182	73	45	55	56	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					2			1	0	
Queuing Penalty (veh)					1			0	0	

Intersection: 3: Marion St SE & 34th Ave SE, All Intervals

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	T	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	41	26	33	149	311	111	50	72	63	
Average Queue (ft)	8	5	7	23	117	46	23	25	33	
95th Queue (ft)	27	19	23	80	230	87	43	58	61	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)					4	0		1	1	
Queuing Penalty (veh)					3	0		0	0	

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #1

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	30	29
Average Queue (ft)	17	5
95th Queue (ft)	31	33
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #2

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	34	18
Average Queue (ft)	14	2
95th Queue (ft)	24	13
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	40	41
Average Queue (ft)	15	2
95th Queue (ft)	26	20
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 10: Lochner Rd SE & N Site Access, Interval #1

Movement	EB	WB	SB
Directions Served	LTR	LTR	L
Maximum Queue (ft)	31	46	18
Average Queue (ft)	6	29	3
95th Queue (ft)	26	47	22
Link Distance (ft)	604	558	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			140
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 10: Lochner Rd SE & N Site Access, Interval #2

Movement	EB	WB	NB	SB
Directions Served	LTR	LTR	L	L
Maximum Queue (ft)	31	43	6	16
Average Queue (ft)	4	23	0	1
95th Queue (ft)	21	43	5	9
Link Distance (ft)	604	558		
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)			125	140
Storage Blk Time (%)				
Queuing Penalty (veh)				

Movement	EB	WB	NB	SB	
Directions Served	LTR	LTR	L	L	
Maximum Queue (ft)	31	48	6	23	
Average Queue (ft)	5	25	0	1	
95th Queue (ft)	23	45	4	13	
Link Distance (ft)	604	558			
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)			125	140	
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 12: S Site Access & Lochner Rd SE, Interval #1

Movement	WB
Directions Served	LR
Maximum Queue (ft)	35
Average Queue (ft)	22
95th Queue (ft)	48
Link Distance (ft)	442
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 12: S Site Access & Lochner Rd SE, Interval #2

Movement	WB
Directions Served	LR
Maximum Queue (ft)	50
Average Queue (ft)	19
95th Queue (ft)	47
Link Distance (ft)	442
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 12: S Site Access & Lochner Rd SE, All Intervals

Movement	WB
Directions Served	LR
Maximum Queue (ft)	55
Average Queue (ft)	20
95th Queue (ft)	48
Link Distance (ft)	442
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Network Summary

Network wide Queuing Penalty, Interval #1: 11
Network wide Queuing Penalty, Interval #2: 2
Network wide Queuing Penalty, All Intervals: 4

Intersection: 3: Marion St SE & 34th Ave SE, Interval #1

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	T	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	34	137	17	24	117	60	68	46	39	
Average Queue (ft)	16	73	4	12	59	29	28	24	21	
95th Queue (ft)	40	135	15	30	118	62	72	56	47	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)		0						0	0	
Queuing Penalty (veh)		0						0	0	

Intersection: 3: Marion St SE & 34th Ave SE, Interval #2

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	76	152	14	37	150	78	44	52	48	
Average Queue (ft)	20	73	2	10	62	34	21	24	17	
95th Queue (ft)	56	135	11	30	117	64	42	53	44	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)		0			0			0	0	
Queuing Penalty (veh)		0			0			0	0	

Intersection: 3: Marion St SE & 34th Ave SE, All Intervals

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	81	160	18	37	150	78	69	56	52	
Average Queue (ft)	19	73	3	10	61	32	23	24	18	
95th Queue (ft)	53	135	12	30	117	64	52	54	45	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)		0			0			0	0	
Queuing Penalty (veh)		0			0			0	0	

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #1

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	16	12
Average Queue (ft)	12	3
95th Queue (ft)	18	16
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #2

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	16	21
Average Queue (ft)	10	1
95th Queue (ft)	18	13
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	16	21
Average Queue (ft)	11	2
95th Queue (ft)	18	14
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 10: Lochner Rd SE & N Site Access, Interval #1

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	24
Average Queue (ft)	9
95th Queue (ft)	31
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 10: Lochner Rd SE & N Site Access, Interval #2

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	31
Average Queue (ft)	8
95th Queue (ft)	30
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	31
Average Queue (ft)	8
95th Queue (ft)	30
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 12: S Site Access & Lochner Rd SE, Interval #1

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, Interval #2

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, All Intervals

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Network Summary

Network wide Queuing Penalty, Interval #1: 0

Network wide Queuing Penalty, Interval #2: 0

Network wide Queuing Penalty, All Intervals: 0

Intersection: 3: Marion St SE & 34th Ave SE, Interval #1

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	T	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	43	173	3	24	106	64	37	52	50	
Average Queue (ft)	22	88	1	11	61	27	21	30	26	
95th Queue (ft)	46	160	8	30	112	65	44	59	54	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)		1			0			0	0	
Queuing Penalty (veh)		1			0			0	0	

Intersection: 3: Marion St SE & 34th Ave SE, Interval #2

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	R	L	TR	LT	R	LT	R
Maximum Queue (ft)	52	156	18	28	153	70	63	61	40
Average Queue (ft)	18	75	2	9	64	29	23	26	16
95th Queue (ft)	43	134	12	28	125	59	48	55	43
Link Distance (ft)		734			671	917		546	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	170		200	150			150		70
Storage Blk Time (%)		0			0			0	0
Queuing Penalty (veh)		0			0			0	0

Intersection: 3: Marion St SE & 34th Ave SE, All Intervals

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	52	185	18	28	153	74	63	62	50	
Average Queue (ft)	19	78	2	9	64	29	23	27	19	
95th Queue (ft)	44	141	11	28	122	61	47	56	47	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)		0			0			0	0	
Queuing Penalty (veh)		0			0			0	0	

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #1

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	15	12
Average Queue (ft)	12	2
95th Queue (ft)	19	13
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #2

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	16	32
Average Queue (ft)	10	2
95th Queue (ft)	18	17
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	16	38
Average Queue (ft)	10	2
95th Queue (ft)	18	16
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 10: Lochner Rd SE & N Site Access, Interval #1

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	31
Average Queue (ft)	15
95th Queue (ft)	40
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 10: Lochner Rd SE & N Site Access, Interval #2

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	31
Average Queue (ft)	5
95th Queue (ft)	25
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	31
Average Queue (ft)	8
95th Queue (ft)	29
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 12: S Site Access & Lochner Rd SE, Interval #1

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, Interval #2

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, All Intervals

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Network Summary

Network wide Queuing Penalty, Interval #1: 1

Network wide Queuing Penalty, Interval #2: 0

Network wide Queuing Penalty, All Intervals: 0

Intersection: 3: Marion St SE & 34th Ave SE, Interval #1

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	Т	R	L	TR	LT	R	LT	R
Maximum Queue (ft)	38	165	19	32	127	76	48	56	31
Average Queue (ft)	19	98	7	19	76	42	23	31	16
95th Queue (ft)	41	162	23	38	136	71	47	58	41
Link Distance (ft)		734			671	917		546	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	170		200	150			150		70
Storage Blk Time (%)		0			0			1	
Queuing Penalty (veh)		0			0			0	

Intersection: 3: Marion St SE & 34th Ave SE, Interval #2

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	R	L	TR	LT	R	LT	R
Maximum Queue (ft)	52	177	18	54	147	98	64	72	52
Average Queue (ft)	19	87	5	19	62	41	25	28	19
95th Queue (ft)	45	147	17	43	116	78	52	61	49
Link Distance (ft)		734			671	917		546	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	170		200	150			150		70
Storage Blk Time (%)		0			0			0	0
Queuing Penalty (veh)		0			0			0	0

Intersection: 3: Marion St SE & 34th Ave SE, All Intervals

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	52	188	23	55	151	102	64	72	52	
Average Queue (ft)	19	90	5	19	65	41	24	28	18	
95th Queue (ft)	44	151	18	42	122	77	50	60	47	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)		0			0			1	0	
Queuing Penalty (veh)		0			0			0	0	

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #1

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	25	37
Average Queue (ft)	15	10
95th Queue (ft)	25	38
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #2

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	29	52
Average Queue (ft)	12	7
95th Queue (ft)	22	33
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	33	57
Average Queue (ft)	13	8
95th Queue (ft)	23	35
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 10: Lochner Rd SE & N Site Access, Interval #1

Movement	EB	WB	SB
Directions Served	LTR	LTR	L
Maximum Queue (ft)	24	28	38
Average Queue (ft)	9	17	8
95th Queue (ft)	31	39	34
Link Distance (ft)	604	558	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			140
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 10: Lochner Rd SE & N Site Access, Interval #2

Movement	EB	WB	SB
Directions Served	LTR	LTR	L
Maximum Queue (ft)	31	28	35
Average Queue (ft)	7	10	3
95th Queue (ft)	28	32	21
Link Distance (ft)	604	558	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			140
Storage Blk Time (%)			
Queuing Penalty (veh)			

Movement	EB	WB	SB
Directions Served	LTR	LTR	L
Maximum Queue (ft)	31	28	48
Average Queue (ft)	7	12	4
95th Queue (ft)	29	34	25
Link Distance (ft)	604	558	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			140
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 12: S Site Access & Lochner Rd SE, Interval #1

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	31	6
Average Queue (ft)	14	1
95th Queue (ft)	38	9
Link Distance (ft)	442	645
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 12: S Site Access & Lochner Rd SE, Interval #2

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	31	6
Average Queue (ft)	8	0
95th Queue (ft)	30	5
Link Distance (ft)	442	645
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 12: S Site Access & Lochner Rd SE, All Intervals

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	31	12
Average Queue (ft)	9	0
95th Queue (ft)	32	6
Link Distance (ft)	442	645
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty, Interval #1: 1
Network wide Queuing Penalty, Interval #2: 1
Network wide Queuing Penalty, All Intervals: 1

Intersection: 3: Marion St SE & 34th Ave SE, Interval #1

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	Т	R	L	TR	LT	R	LT	R
Maximum Queue (ft)	30	149	13	28	104	48	43	52	39
Average Queue (ft)	19	89	5	10	61	27	23	29	15
95th Queue (ft)	42	165	16	31	112	54	46	61	42
Link Distance (ft)		734			671	917		546	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	170		200	150			150		70
Storage Blk Time (%)		0			0			0	0
Queuing Penalty (veh)		0			0			0	0

Intersection: 3: Marion St SE & 34th Ave SE, Interval #2

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	Т	R	L	TR	LT	R	LT	R
Maximum Queue (ft)	46	193	18	29	133	77	61	69	52
Average Queue (ft)	18	83	3	8	63	33	25	28	18
95th Queue (ft)	41	155	14	26	116	64	51	58	46
Link Distance (ft)		734			671	917		546	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	170		200	150			150		70
Storage Blk Time (%)		0			0			1	0
Queuing Penalty (veh)		0			0			0	0

Intersection: 3: Marion St SE & 34th Ave SE, All Intervals

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	46	200	18	32	141	77	65	69	56	
Average Queue (ft)	18	84	4	8	62	32	25	28	17	
95th Queue (ft)	42	157	15	28	115	62	50	59	45	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)		0			0			1	0	
Queuing Penalty (veh)		0			0			0	0	

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #1

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	19	18
Average Queue (ft)	12	3
95th Queue (ft)	21	17
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #2

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	20	27
Average Queue (ft)	11	3
95th Queue (ft)	19	19
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	24	33
Average Queue (ft)	11	3
95th Queue (ft)	20	18
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 10: Lochner Rd SE & N Site Access, Interval #1

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	31
Average Queue (ft)	17
95th Queue (ft)	42
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 10: Lochner Rd SE & N Site Access, Interval #2

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	31
Average Queue (ft)	8
95th Queue (ft)	29
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	31
Average Queue (ft)	10
95th Queue (ft)	33
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 12: S Site Access & Lochner Rd SE, Interval #1

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, Interval #2

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, All Intervals

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Network Summary

Network wide Queuing Penalty, Interval #1: 0

Network wide Queuing Penalty, Interval #2: 1

Network wide Queuing Penalty, All Intervals: 0

Intersection: 3: Marion St SE & 34th Ave SE, Interval #1

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	T	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	105	207	59	58	132	86	61	76	65	
Average Queue (ft)	33	113	23	32	77	52	32	39	27	
95th Queue (ft)	104	218	107	61	133	89	65	83	63	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)		2			0			4	0	
Queuing Penalty (veh)		2			0			1	0	

Intersection: 3: Marion St SE & 34th Ave SE, Interval #2

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB
Directions Served	L	T	R	L	TR	LT	R	LT	R
Maximum Queue (ft)	46	219	66	47	170	99	70	76	40
Average Queue (ft)	17	100	10	22	70	44	29	36	20
95th Queue (ft)	38	175	47	46	135	80	58	68	45
Link Distance (ft)		734			671	917		546	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	170		200	150			150		70
Storage Blk Time (%)		1	0		0	0		1	0
Queuing Penalty (veh)		1	0		0	0		0	0

Intersection: 3: Marion St SE & 34th Ave SE, All Intervals

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	106	256	104	63	177	103	73	87	65	
Average Queue (ft)	21	103	13	24	72	46	29	36	22	
95th Queue (ft)	62	187	66	50	135	83	60	72	51	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)		1	0		0	0		2	0	
Queuing Penalty (veh)		1	0		0	0		1	0	

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #1

Movement	WB	NB	SB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	24	11	48
Average Queue (ft)	16	2	19
95th Queue (ft)	27	13	54
Link Distance (ft)	1402	544	917
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #2

Movement	WB	NB	SB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	29	8	43
Average Queue (ft)	13	0	7
95th Queue (ft)	22	6	30
Link Distance (ft)	1402	544	917
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Movement	WB	NB	SB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	33	18	48
Average Queue (ft)	14	1	10
95th Queue (ft)	23	8	38
Link Distance (ft)	1402	544	917
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 10: Lochner Rd SE & N Site Access, Interval #1

Movement	EB	WB	SB
Directions Served	LTR	LTR	L
Maximum Queue (ft)	29	42	53
Average Queue (ft)	12	26	14
95th Queue (ft)	37	47	47
Link Distance (ft)	604	558	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			140
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 10: Lochner Rd SE & N Site Access, Interval #2

Movement	EB	WB	SB
Directions Served	LTR	LTR	L
Maximum Queue (ft)	31	32	42
Average Queue (ft)	9	18	4
95th Queue (ft)	31	40	23
Link Distance (ft)	604	558	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			140
Storage Blk Time (%)			
Queuing Penalty (veh)			

Movement	EB	WB	SB
Directions Served	LTR	LTR	L
Maximum Queue (ft)	35	46	54
Average Queue (ft)	9	20	6
95th Queue (ft)	33	43	31
Link Distance (ft)	604	558	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			140
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 12: S Site Access & Lochner Rd SE, Interval #1

Movement	WB
Directions Served	LR
Maximum Queue (ft)	31
Average Queue (ft)	17
95th Queue (ft)	42
Link Distance (ft)	442
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 12: S Site Access & Lochner Rd SE, Interval #2

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	31	17
Average Queue (ft)	14	1
95th Queue (ft)	39	10
Link Distance (ft)	442	645
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 12: S Site Access & Lochner Rd SE, All Intervals

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	31	17
Average Queue (ft)	15	1
95th Queue (ft)	40	8
Link Distance (ft)	442	645
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty, Interval #1: 4	
Network wide Queuing Penalty, Interval #2: 2	
Network wide Queuing Penalty, All Intervals: 2	

Intersection: 3: Marion St SE & 34th Ave SE, Interval #1

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	T	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	30	172	14	24	143	69	53	54	39	
Average Queue (ft)	17	95	3	10	79	40	25	28	20	
95th Queue (ft)	36	178	12	29	149	71	51	62	47	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)		1			0			1	0	
Queuing Penalty (veh)		1			0			0	0	

Intersection: 3: Marion St SE & 34th Ave SE, Interval #2

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	51	157	18	37	153	77	61	64	43	
Average Queue (ft)	20	86	4	10	67	34	25	27	19	
95th Queue (ft)	42	144	16	31	133	70	49	58	44	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)		0			0			0	0	
Queuing Penalty (veh)		0			0			0	0	

Intersection: 3: Marion St SE & 34th Ave SE, All Intervals

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	51	192	18	37	167	86	66	64	48	
Average Queue (ft)	19	88	4	10	70	35	25	28	19	
95th Queue (ft)	41	153	15	30	137	70	50	59	45	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)		0			0			0	0	
Queuing Penalty (veh)		0			0			0	0	

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #1

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	19	16
Average Queue (ft)	13	2
95th Queue (ft)	20	18
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #2

Movement	WB	NB	SB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	20	4	20
Average Queue (ft)	11	0	2
95th Queue (ft)	21	3	15
Link Distance (ft)	1402	544	917
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Movement	WB	NB	SB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	24	4	30
Average Queue (ft)	12	0	2
95th Queue (ft)	21	3	16
Link Distance (ft)	1402	544	917
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 10: Lochner Rd SE & N Site Access, Interval #1

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	31
Average Queue (ft)	15
95th Queue (ft)	40
Link Distance (ft)	610
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 10: Lochner Rd SE & N Site Access, Interval #2

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	36
Average Queue (ft)	8
95th Queue (ft)	32
Link Distance (ft)	610
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	36
Average Queue (ft)	10
95th Queue (ft)	34
Link Distance (ft)	610
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

07/13/2023

Intersection: 12: S Site Access & Lochner Rd SE, Interval #1

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, Interval #2

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, All Intervals

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Network Summary

Network wide Queuing Penalty, Interval #1: 1

Network wide Queuing Penalty, Interval #2: 0

Network wide Queuing Penalty, All Intervals: 0

Intersection: 3: Marion St SE & 34th Ave SE, Interval #1

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	T	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	51	182	14	24	156	55	57	70	56	
Average Queue (ft)	25	97	3	9	78	34	26	31	25	
95th Queue (ft)	54	184	14	27	151	64	55	69	61	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)		1			1			3	0	
Queuing Penalty (veh)		1			0			1	0	

Intersection: 3: Marion St SE & 34th Ave SE, Interval #2

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	76	183	22	42	173	81	58	64	55	
Average Queue (ft)	22	91	4	10	74	38	23	26	22	
95th Queue (ft)	57	159	18	33	139	70	48	56	50	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)		0			1			0	0	
Queuing Penalty (veh)		0			0			0	0	

Intersection: 3: Marion St SE & 34th Ave SE, All Intervals

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	T	R	L	TR	LT	R	LT	R	_
Maximum Queue (ft)	88	195	23	42	182	81	64	77	64	
Average Queue (ft)	23	92	4	10	75	37	24	27	23	
95th Queue (ft)	57	166	17	31	142	69	50	60	53	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)		1			1			1	0	
Queuing Penalty (veh)		1			0			0	0	

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #1

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	30	12
Average Queue (ft)	16	1
95th Queue (ft)	30	9
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #2

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	20	12
Average Queue (ft)	11	1
95th Queue (ft)	19	7
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	30	24
Average Queue (ft)	12	1
95th Queue (ft)	23	8
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 10: Lochner Rd SE & N Site Access, Interval #1

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	25
Average Queue (ft)	12
95th Queue (ft)	37
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 10: Lochner Rd SE & N Site Access, Interval #2

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	31
Average Queue (ft)	10
95th Queue (ft)	33
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Movement	EB
Directions Served	LTR
Maximum Queue (ft)	31
Average Queue (ft)	10
95th Queue (ft)	34
Link Distance (ft)	604
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 12: S Site Access & Lochner Rd SE, Interval #1

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, Interval #2

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 12: S Site Access & Lochner Rd SE, All Intervals

Movement

Directions Served

Maximum Queue (ft)

Average Queue (ft)

95th Queue (ft)

Link Distance (ft)

Upstream Blk Time (%)

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Network Summary

Network wide Queuing Penalty, Interval #1: 2

Network wide Queuing Penalty, Interval #2: 1

Network wide Queuing Penalty, All Intervals: 1

Intersection: 3: Marion St SE & 34th Ave SE, Interval #1

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	T	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	105	232	17	59	164	85	68	99	69	
Average Queue (ft)	29	140	6	28	93	51	33	44	26	
95th Queue (ft)	83	231	18	59	161	94	66	102	65	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)		3			1	0		4	0	
Queuing Penalty (veh)		4			1	0		1	0	

Intersection: 3: Marion St SE & 34th Ave SE, Interval #2

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	52	207	68	73	142	85	75	74	51	
Average Queue (ft)	21	111	11	28	75	44	32	36	20	
95th Queue (ft)	47	185	48	58	128	76	62	70	48	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)		1			0			1	0	
Queuing Penalty (veh)		1			0			0	0	

Intersection: 3: Marion St SE & 34th Ave SE, All Intervals

Movement	EB	EB	EB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	LT	R	LT	R	
Maximum Queue (ft)	106	237	68	73	169	98	81	104	76	
Average Queue (ft)	23	118	10	28	79	46	32	38	22	
95th Queue (ft)	59	199	43	58	138	81	63	79	52	
Link Distance (ft)		734			671	917		546		
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	170		200	150			150		70	
Storage Blk Time (%)		2			0	0		2	0	
Queuing Penalty (veh)		2			0	0		1	0	

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #1

Movement	WB	SB
Directions Served	LTR	LTR
Maximum Queue (ft)	25	43
Average Queue (ft)	18	15
95th Queue (ft)	32	45
Link Distance (ft)	1402	917
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 6: Marion St SE & Lochner Rd SE, Interval #2

Movement	WB	NB	SB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	30	7	48
Average Queue (ft)	15	0	7
95th Queue (ft)	27	4	34
Link Distance (ft)	1402	544	917
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Movement	WB	NB	SB
Directions Served	LTR	LTR	LTR
Maximum Queue (ft)	35	7	58
Average Queue (ft)	16	0	9
95th Queue (ft)	28	4	38
Link Distance (ft)	1402	544	917
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 10: Lochner Rd SE & N Site Access, Interval #1

Movement	EB	WB	SB
Directions Served	LTR	LTR	L
Maximum Queue (ft)	39	42	40
Average Queue (ft)	19	27	13
95th Queue (ft)	46	45	41
Link Distance (ft)	604	558	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			140
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 10: Lochner Rd SE & N Site Access, Interval #2

Movement	EB	WB	SB
Directions Served	LTR	LTR	L
Maximum Queue (ft)	31	38	40
Average Queue (ft)	8	17	5
95th Queue (ft)	30	40	25
Link Distance (ft)	604	558	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			140
Storage Blk Time (%)			
Queuing Penalty (veh)			

Movement	EB	WB	SB
Directions Served	LTR	LTR	L
Maximum Queue (ft)	39	42	44
Average Queue (ft)	11	19	7
95th Queue (ft)	35	43	30
Link Distance (ft)	604	558	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			140
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 12: S Site Access & Lochner Rd SE, Interval #1

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	31	6
Average Queue (ft)	15	1
95th Queue (ft)	40	9
Link Distance (ft)	442	645
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 12: S Site Access & Lochner Rd SE, Interval #2

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	36	22
Average Queue (ft)	19	2
95th Queue (ft)	43	14
Link Distance (ft)	442	645
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 12: S Site Access & Lochner Rd SE, All Intervals

Movement	WB	SB
Directions Served	LR	LT
Maximum Queue (ft)	36	22
Average Queue (ft)	18	2
95th Queue (ft)	43	13
Link Distance (ft)	442	645
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty, Interval #1: 7
Network wide Queuing Penalty, Interval #2: 2
Network wide Queuing Penalty, All Intervals: 3

SANDOW ENGINEERING

160 Madison Street, Suite A Eugene, Oregon 97402 541.513.3376 sandowengineering.com 380 Q Street, Ste 200 Springfield, Oregon 97477 (541) 302-9790 dylanmciver@ao-engr.com

Stormwater Report

Project

Meadowlark Estates Subdivision

Location:

Lochner Road SE, Albany, OR

Prepared By:

Dylan McIver, EIT

Reviewed by:

Kyle Morris, PE

Date:

9/7/2023

Type of Project:

Residential Subdivision

12/24

Project Overview

Meadowlark Estates is a proposed single family residential subdivision with 176 lots on a 35.32-acre parcel. The property is located at 3795 Lochner Road SE and has a large BPA transmission main running east-west on the north side of the property. There is an existing 42" stormwater trunk line within Lochner Road SE right of way flowing to the south and discharging into Oak Creek. Stormwater runoff from the subdivision is proposed to discharge treated stormwater into the existing 42" trunk line in Lochner Road SE at pre-construction peak flow rates.

To meet City of Albany detention and treatment requirements for stormwater runoff in the subdivision it is proposed to construct one stormwater quality pond and two streetside stormwater swales. Stormwater runoff from roofs and roadways will be routed to the pond via underground piping within the subdivision and roadway runoff into the swales will be done via sheet drainage through curb notches. All roof runoff is proposed to discharge into the adjacent streets through weepholes in the curb.

Existing Conditions

The property currently is an open grass field with a private gravel driveway running through to provide access to an existing house south of the property. Web Soil Survey lists the following soil types as present on the site:

#3	Amity Silt Loam	HSG C/D
#27	Concord Silt Loam	HSG C/D
#33	Dayton Silt Loam	HSG D
#100	Whiteson Silt Loam	HSG D
#106A	Woodburn Silt Loam, 0 to 3 percent slopes	HSG D
#106C	Woodburn Silt Loam, 3 to 12 percent slopes	HSG C

The total parcel area is 35.32 acres; however, the new development area is approximately 23.206 acres, and this will be used for existing conditions analysis. The existing site within the development area slopes toward the southwest where runoff leaves the site. The eventual discharge flows down to Oak Creek. Below are tables summarizing the physical characteristics of the existing site:

Table 1: Existing site physical characteristics.

Land Type & Description	Total Acreage	Curve Number
Pasture/grassland/range, Poor, HSG D	23.206	89

Table 2: Pre-Construction Peak Flowrates

Storm Event	Existing Peak Flowrate (cfs)	
2-Year	3.80	
5-Year	4.87	
10-Year	6.32	
25-Year	7.98	

Infiltration

Infiltration testing was performed by F.E.I. Testing & Inspection, Inc. and a geotechnical report was prepared on October 29th, 2020 which includes the results from the testing. In summary, five infiltration tests were performed throughout the site and the following results were measured:

Table 3: Summary of geotechnical soil tests.

Test Number	Test Depth (Inches)	Soil Type	Measured Infiltration Rate (In./hr.)
P-1	47	Clayey Silt with sand	2.0
P-2	42	Clayey Silt with sand	1.0
P-3	42	Silty Clay with sand	0.2
P-4	49	Clayey Silt with sand	2.0
P-5	25	Silty Clay	0.1

Tests 1 through 5 was conducted on the northwest, central, northeast, southeast, and southwest portions of the site respectively. F.E.I.'s full report is attached in the appendix with this report. Infiltration to existing soils was not considered for the proposed ponds due to their proximity to the ground slope to the south. Due to this and groundwater concerns listed below, the pond will be lined and perforated pipes installed within the rock chambers. For imported soil mediums within the pond and planters an exfiltration rate of 2.0 in/hr was used for the infiltration rate into rock chambers.

Groundwater elevations were measured 12/22/21 by A & O Engineering and the following table shows the results:

Table 4: Summary of groundwater elevations during the winter.

Pond	Groundwater	Pond Flowline EL	Rock Chamber El
	EL (ft)	(ft)	(ft)
SW Pond	219.06	221.50	219.00

Proposed Destination

Treated and detained on-site stormwater runoff is proposed to be routed offsite into an existing 42" stormwater line in Lochner Road SE ROW to the west. The post-construction peak flowrate will be controlled by detention facilities to be at or below the pre-development peak flow rates.

Post Construction

To work with the proposed layout and the existing site contours it is proposed to split the stormwater drainage from the site into two separate systems: the southwest site entrance will be routed into a pair of roadside stormwater swales, and the remainder of the site will be routed to the water quality detention pond.

The full buildout of this subdivision will include 176 single family lots. Also included was 1.47 acres of potential future development located south of Phase 6. A basin map summarizing drainage basin details for the finished subdivision and potential future development is included in the appendix of this report.

The detention pond uses 4:1 slopes along the north side of the pond and transitions into 4-foot vertical poured-in-place concrete wall along the south side of the pond. This wall is required due to space constraints and existing grade changes in the southwest corner of the site.

The tables below summarize the physical characteristics of the pond and planters:

Table 5: Pond Open Storage Area.

Pond:	Bottom of Pond EL (ft)	Bottom of Pond Area (sf)	Top of Pond EL (ft)	Top of Pond Area (sf)	Side Slopes (H:V)
Detention Pond	221.50	16,108	225.50	21,919	4:1

Table 6: Stormwater Planter Storage Area.

Pond:	Planter	Top of	Bottom	Imported	Bottom of	Rock	Bottom
	Open	Open	of Open	Soil	Imported	Chamber	of Rock
	Storage	Storage	Storage	Section	Soil Section	Storage	Chamber
	Area (sf)	EL (ft)	EL (ft)	Area (sf)	EL (ft)	Area	EL (ft)
Swale 1	72.00	222.95	221.95	72.00	220.45	60.00	219.70
Swale 2	67.00	223.30	222.30	67.00	220.80	58.00	220.05

In addition to the open pond area provided above, the pond is proposed to have 18" of imported soil and a 12" rock chamber with 4" perforated discharge pipes due to infiltration not being utilized. The stormwater planters are proposed to have 18" of growing medium and 9" of rock per City of Albany Standard Drawing 604B. The following table summarizes storage capacities for the stormwater ponds and planters:

Table 7: Storage capacities for each pond and planter. (Soil media & rock chamber)

Pond:	Open Storage Capacity (cf)	Growing Media Storage Capacity-10% void space (cf)	Rock Chamber Capacity- 35% Void Space (cf)	Total Storage (cf)
Detention Pond	75,859	3,288	1,750	80,897
Swale 1	67	11	16	93
Swale 2	63	10	15	88

Hydraulic Calculations

HydroCAD software was utilized to calculate existing condition peak flows leaving the site from the development area. Assumed individual lot impervious area was 70% impervious and 30% grass cover. Below are some important parameters utilized in calculating the existing conditions peak flowrates leaving the site from the development area:

Runoff Method: Santa Barbara Urban Hydrograph (SBUH)

Area: 23.206 acres

Curve Number: 93 70% Lot Coverage Weighted (70% CN 98 for impervious lot area,

30% CN 80 for grass, HSG D)

98 Paved roads w/curbs & sewers, HSG D

80 >75% Grass cover, Fair, HSG D Pasture/grassland/range, HSG D

Land Description: Pasture/grassland/range, HSG D
Time of Concentration: 73.0 minutes for inflow into the Single Pond Existing Conditions

7.7 minutes for inflow into Swale Existing Conditions (Details for this included with HydroCAD node report)

Storm Type: Type IA 24-hr

Storm Events: Water Quality – 1 inch

2-Year Storm – 2.47 inches 5-Year Storm – 2.86 inches 10-Year Storm – 3.37 inches 25-Year Storm – 3.94 inches 100-Year Storm – 4.50 inches

To ensure stormwater structures will not cause flooding, the following hydraulic elevations were calculated for a post-construction site:

Table 8: Hydraulic elevations within ponds and planters during each storm event.

Pond:	Lowest Orifice EL. (ft)	Water Quality Peak EL. (ft)	2-Year Peak EL. (ft)	5-Year Peak EL. (ft)	10- Year Peak EL. (ft)	25- Year Peak EL. (ft)	25-Year Freeboard Available (ft)	100- Year Peak El. (ft)	Facility Top EL. (ft)
Detention Pond	221.85	221.50	222.87	223.25	223.70	224.18	1.32	224.51	225.50
Swale 1	222.70	221.97	222.05	222.06	222.07	222.08	N/A	222.09	222.95
Swale 2	223.05	222.33	222.39	222.40	222.42	222.43	N/A	222.44	223.30

Curve numbers used in the model include 93 for impervious lot area, HSG D, 98 for impervious ROW, HSG D, 80 for >75% grass cover, fair, HSG D, and 89 for Pasture/grassland/range, HSG D was used for the pre-construction existing conditions. The city of Albany requires a type IA 24-hr design storm for each of 2-, 5-, 10-, and 25-year rainfall events. As shown, the pond completely contains stormwater runoff from the site during each storm event with the required 1-foot of freeboard per city of Albany stormwater design standards and thus is adequate to protect the subdivision from flooding. The stormwater swales are designed using sizing factors within the City of Albany Engineering Standards, Division E. Excess flow for the 100-year storm is designed to be handled by the 48" angled overflow grates atop the pond outflow structure without the water level rising above the top of pond elevations. In the table above it is shown that the overflows operate effectively to keep stormwater contained within the facilities during the 100-year event.

The following table list both the pre-construction and post-construction peak flowrates for each design storm:

Table 9: Pre-Construction Peak Flowrates

Storm Event	Existing Peak Flowrate (cfs)	Proposed Peak Flowrate (cfs)		
2-Year	3.80	3.79		
5-Year	4.87	4.86		
10-Year	6.32	6.31		
25-Year	7.98	7.97		

As shown in the above table, the proposed peak flow rates are lower than the peak flows for existing conditions. The existing peak flowrate was calculated using the Santa Barbara Urban Hydrograph method. Using existing soil surface conditions, travel distance and depth of surface runoff, along with the storm type and intensities detailed on page 5 of this report, a hydrograph showing the peak flows for each storm event was produced. Similar methodology is used to produce the post construction peak flow rates with the addition of outflow controls of various sizes and elevations. These outflow controls were adjusted until the peak flowrate from the proposed development is at or below the pre-construction peak flowrates. All calculation details can be found in the attached HydroCAD report in nodes 42R named Pre-Construction Peak Flow, and 39R named Post-Construction Peak Flow.

Pollution Control

The stormwater from the pollution control event will be 100% treated prior to discharging into the existing stormwater pipe in Lochner Road. The detention pond allows for filtration through imported soil medium into a rock chamber with perforated piping. The streetside planters allow filtration through soil media into rock chambers with perforated piping.

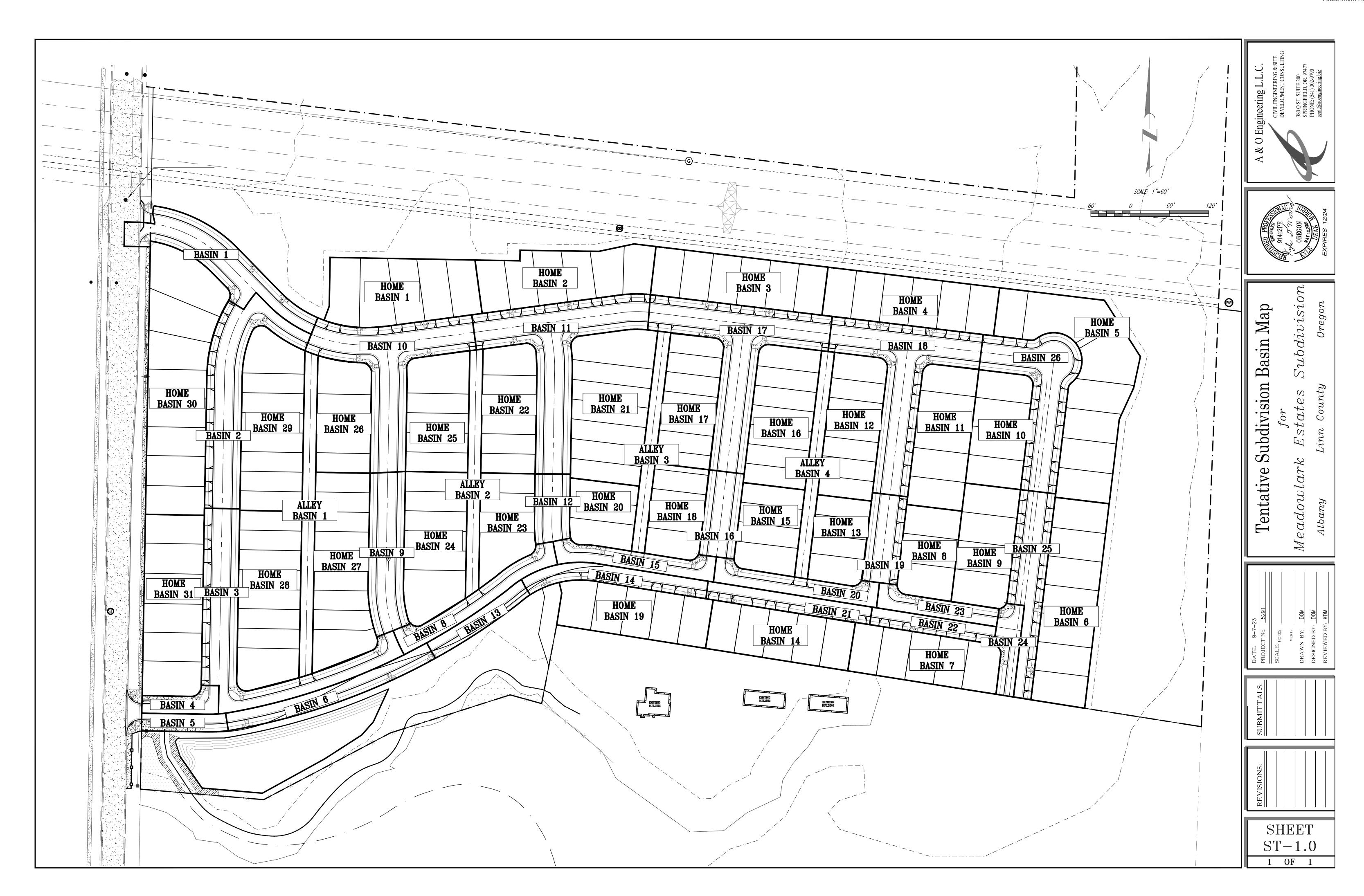
The storm facilities will be vegetated to assist in treatment of stormwater runoff. This growing medium treats stormwater runoff as filtration occurs. The detention pond rock chamber, as well as all the proposed planters will drain into perforated piping to discharge treated stormwater into the designated location under Lochner Road SE.

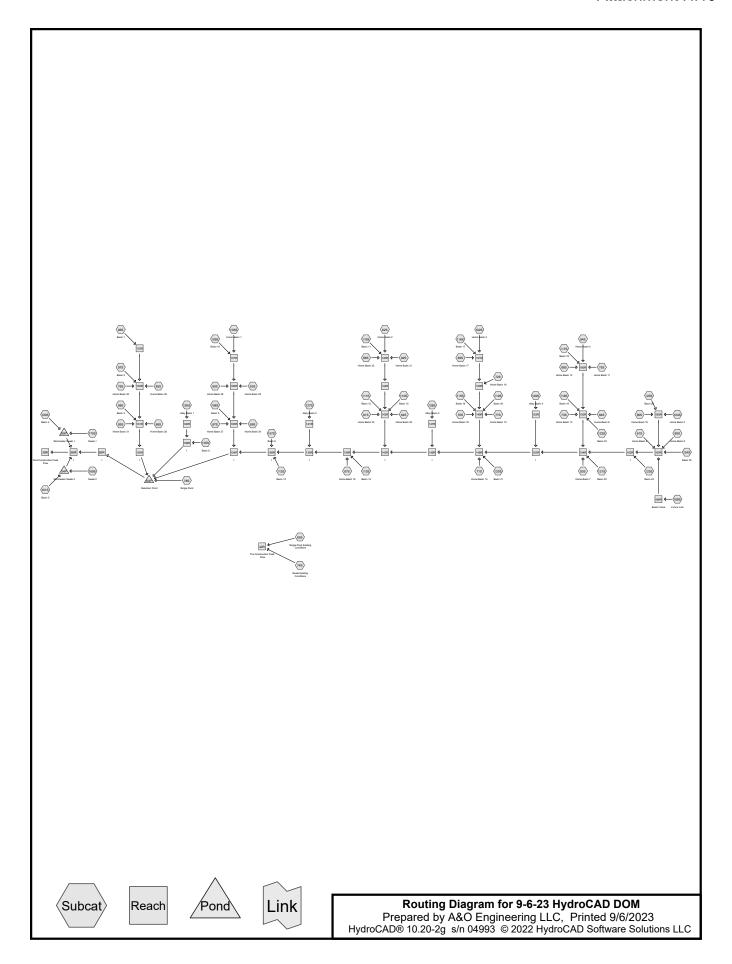
As shown in table 8, all stormwater filtrates through the soil medium while the peak water elevation remains below the lowest outflow structure orifice. Thus, stormwater from the site will be adequately treated.

Conclusion

The proposed stormwater system will adequately serve the new development. Post construction peak flows will be lower than the peak flow rates from the existing condition. Therefore, the storm management system meets detention requirements.

Peak water elevations during water quality storm events do not rise above the lowest orifices. This means the ponds have enough capacity to allow the runoff to 100% filtrate through soil media and thus the storm management system meets pollution control requirements.


The system models to contain runoff within the storm system thereby protecting public safety and removing the potential for property damage.


Appendix

- FlowMaster Pipe Sizing
- Drainage Basin Map
- HydroCAD Report
- Geotech report prepared by FEI, October 29, 2020

PipeSizing.fm8 Report

3.49 4.05
3. 18 3. 18 3. 28 3. 42 3. 49

Prepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Printed 9/6/2023

Page 2

Project Notes

Albany code requires assuming 2,700 SF of impervious area per single family residence. The remainder of each private lot area is assumed to be grass cover with an HSG rating of C.

REDESIGN:

Weighting 70% lot coverage (CN 98) and 30% grass (CN 80), the weighted CN comes out to 93.

Albany code requires:

Pre-post matching for 2 through 25-year.

Water quality storm (DEQ's is more stringent, higher intensity)

Max 4' deep pond with 1' of freeboard included.

Overflow system for the 100-year.

Storm pipe capacities for the 25-year storm

Minimum velocity @ full capacity is 3 ft/s

Minimum manning n of 0.01 or manufacturer's specs, whatever is higher

See flowmaster calcs, sizes are based on absolute minimum slope that meets requirements plus 0.05% as a safety factor for all pipes.

Printed 9/6/2023

Page 3

Rainfall Events Listing (selected events)

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	01-Water Quality	Type IA 24-hr		Default	24.00	1	1.00	2
2	02-2 Year	Type IA 24-hr		Default	24.00	1	2.47	2
3	05-5 Year	Type IA 24-hr		Default	24.00	1	2.86	2
4	10-10 Year	Type IA 24-hr		Default	24.00	1	3.37	2
5	25-25 Year	Type IA 24-hr		Default	24.00	1	3.94	2
6	50-50 Year	Type IA 24-hr		Default	24.00	1	4.38	2
7	100-Year	Type IA 24-hr		Default	24.00	1	4.50	2

Printed 9/6/2023 Page 4

Area Listing (selected nodes)

,	Area CN	Description
(ac	cres)	(subcatchment-numbers)
14	.657 93	70% Lot Coverage Weighted (64S, 67S, 68S, 69S, 70S, 71S, 72S, 73S, 75S, 77S,
		79S, 80S, 81S, 82S, 83S, 84S, 85S, 86S, 87S, 88S, 89S, 90S, 91S, 92S, 93S, 94S,
		95S, 99S, 102S, 103S, 104S, 168S)
23	.206 89	Pasture/grassland/range, Poor, HSG D (65S, 74S)
8	.043 98	Paved roads w/curbs & sewers, HSG D (96S, 97S, 98S, 100S, 101S, 105S, 107S,
		108S, 109S, 110S, 111S, 112S, 113S, 114S, 115S, 116S, 117S, 118S, 119S,
		120S, 121S, 122S, 123S, 124S, 125S, 126S, 127S, 128S, 129S, 168S)
0	.506 98	Water Surface, HSG D (78S, 169S, 170S)
46	5.412 92	TOTAL AREA

Printed 9/6/2023 Page 5

Soil Listing (selected nodes)

	Area	Soil	Subcatchment
(acres)	Group	Numbers
	0.000	HSG A	
	0.000	HSG B	
	0.000	HSG C	
3	31.755	HSG D	65S, 74S, 78S, 96S, 97S, 98S, 100S, 101S, 105S, 107S, 108S, 109S, 110S,
			111S, 112S, 113S, 114S, 115S, 116S, 117S, 118S, 119S, 120S, 121S, 122S,
			123S, 124S, 125S, 126S, 127S, 128S, 129S, 168S, 169S, 170S
•	14.657	Other	64S, 67S, 68S, 69S, 70S, 71S, 72S, 73S, 75S, 77S, 79S, 80S, 81S, 82S, 83S,
			84S, 85S, 86S, 87S, 88S, 89S, 90S, 91S, 92S, 93S, 94S, 95S, 99S, 102S,
			103S, 104S, 168S
•	46.412		TOTAL AREA

Printed 9/6/2023

Page 6

Ground Covers (selected nodes)

Ground Covers (selected nodes)									
HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers		
0.000	0.000	0.000	0.000	14.657	14.657	70% Lot Coverage Weighted	64		
						3 3	S,		
							67		
							S,		
							68		
							S,		
							69		
							S,		
							70		
							S,		
							71		
							S,		
							72		
							S,		
							73		
							S,		
							75		
							S,		
							77		
							S,		
							79		
							S,		
							80		
							S,		
							81		
							S,		
							82		
							S,		
							83		
							S,		
							84		
							S,		
							85		
							S,		
							86		
							S,		
							87		
							S,		
							88		
							S,		
							89		
							S,		
							90		
							S,		
							91		

Printed 9/6/2023

Page 7

Ground Covers (selected nodes) (continued)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.000	0.000	23.206	0.000	23.206	Pasture/grassland/range, Poor	65
							S,
							74
0.000	0.000	0.000	8.043	0.000	8.043	Paved roads w/curbs & sewers	S 96
0.000	0.000	0.000	0.043	0.000	0.043	raved loads wichibs & sewers	90 S,
							97
							S,
							98
							S,
							10
							0S,
							10
							1S,
							,
							10
							5S,
							4.0
							10
							7S,
							10
							8S,
							10
							9S,
							11
							0S,
							00,
							11
							1S,
							11
							2S,
							11
							3S,
							11
							4S,
							4.4
							11
							5S,

Printed 9/6/2023

Page 8

Ground Covers (selected nodes) (continued)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	0.000	0.506	0.000	0.506	Water Surface	78 S, 16 9S,
0.000	0.000	0.000	31.755	14.657	46.412	TOTAL AREA	17 0S

Printed 9/6/2023

9-6-23 HydroCAD DOM
Prepared by A&O Engineering LLC
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 9

Pipe Listing (selected nodes)

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Width	Diam/Height	Inside-Fill
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
1	63P	219.00	218.80	100.0	0.0020	0.010	0.0	24.0	0.0

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 10

Time span=0.00-32.00 hrs, dt=0.05 hrs, 641 points
Runoff by SBUH method, Split Pervious/Imperv.
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

reach routing by Dyn-Gto	in the method - I one routing by by in-otor-ind method
Subcatchment64S: Home Basin 20	Runoff Area=9,940 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.02 cfs 0.009 af
Subcatchment65S: Single Pond Exist Flow Length=1,526	ing Runoff Area=23.038 ac 0.00% Impervious Runoff Depth>0.28" 6' Slope=0.0076 '/' Tc=73.0 min CN=89/0 Runoff=0.49 cfs 0.547 af
Subcatchment67S: Home Basin 19	Runoff Area=17,197 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.04 cfs 0.015 af
Subcatchment68S: Home Basin 12	Runoff Area=18,133 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.04 cfs 0.016 af
Subcatchment69S: Home Basin 17	Runoff Area=16,661 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.04 cfs 0.014 af
Subcatchment70S: Home Basin 18	Runoff Area=11,596 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.03 cfs 0.010 af
Subcatchment71S: Home Basin 14	Runoff Area=16,444 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.04 cfs 0.014 af
Subcatchment72S: Home Basin 16	Runoff Area=20,310 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.04 cfs 0.017 af
Subcatchment73S: Home Basin 13	Runoff Area=10,807 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.02 cfs 0.009 af
Subcatchment74S: Swale Existing Flow Length=105	Runoff Area=0.168 ac 0.00% Impervious Runoff Depth=0.28" 5' Slope=0.0565 '/' Tc=10.0 min CN=89/0 Runoff=0.01 cfs 0.004 af
Subcatchment75S: Home Basin 11	Runoff Area=18,483 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.04 cfs 0.016 af
Subcatchment77S: Home Basin 15	Runoff Area=12,503 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.03 cfs 0.011 af
Subcatchment78S: Single Pond	Runoff Area=21,919 sf 100.00% Impervious Runoff Depth=0.79" Tc=0.0 min CN=0/98 Runoff=0.10 cfs 0.033 af
Subcatchment79S: Home Basin 30	Runoff Area=38,416 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.08 cfs 0.033 af
Subcatchment80S: Home Basin 10	Runoff Area=14,789 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.03 cfs 0.013 af
Subcatchment81S: Home Basin 9	Runoff Area=15,575 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.03 cfs 0.013 af

9-6-23 HydroCAD DOM
Prepared by A&O Engineering LLC

Type IA 24-hr 01-Water Quality Rainfall=1.00" Printed 9/6/2023

Tc=10.0 min CN=0/98 Runoff=0.10 cfs 0.035 af

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD®	droCAD Software Solutions LLC Page 11
Subcatchment82S: Home Basin 2	Runoff Area=20,667 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.04 cfs 0.018 af
Subcatchment83S: Home Basin 7	Runoff Area=17,032 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.04 cfs 0.015 af
Subcatchment84S: Home Basin 8	Runoff Area=11,668 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.03 cfs 0.010 af
Subcatchment85S: Home Basin 29	Runoff Area=25,118 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.05 cfs 0.022 af
Subcatchment86S: Home Basin 22	Runoff Area=16,159 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.03 cfs 0.014 af
Subcatchment87S: Home Basin 27	Runoff Area=24,839 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.05 cfs 0.021 af
Subcatchment88S: Home Basin 28	Runoff Area=25,318 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.05 cfs 0.022 af
Subcatchment89S: Home Basin 24	Runoff Area=20,676 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.04 cfs 0.018 af
Subcatchment90S: Home Basin 26	Runoff Area=14,135 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.03 cfs 0.012 af
Subcatchment91S: Home Basin 23	Runoff Area=12,271 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.03 cfs 0.011 af
Subcatchment92S: Home Basin 21	Runoff Area=27,019 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.06 cfs 0.023 af
Subcatchment93S: Home Basin 25	Runoff Area=17,012 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.04 cfs 0.015 af
Subcatchment94S: Home Basin 4	Runoff Area=19,535 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.04 cfs 0.017 af
Subcatchment95S: Home Basin 31	Runoff Area=24,883 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.05 cfs 0.021 af
Subcatchment96S: Basin 1	Runoff Area=15,045 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.07 cfs 0.023 af
Subcatchment97S: Basin 2	Runoff Area=19,824 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.09 cfs 0.030 af
Subcatchment98S: Basin 3	Runoff Area=23,416 sf 100.00% Impervious Runoff Depth=0.79"

9-6-23 HydroCAD DOM	
Prenared by A&O Engineering LLC	

Subcatchment116S: Basin 17

Type IA 24-hr 01-Water Quality Rainfall=1.00" Printed 9/6/2023

Runoff Area=26,003 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.12 cfs 0.039 af

Prepared by A&O Engineering LLC	Printed 9/6/2023
HydroCAD® 10.20-2g s/n 04993 © 2022 Hyd	droCAD Software Solutions LLC Page 12
Subcatchment99S: Home Basin 6	Runoff Area=25,997 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.06 cfs 0.022 af
Subcatchment100S: Basin 4	Runoff Area=3,650 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.02 cfs 0.006 af
Subcatchment101S: Basin 5	Runoff Area=3,523 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.02 cfs 0.005 af
Subcatchment102S: Home Basin 3	Runoff Area=19,559 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.04 cfs 0.017 af
Subcatchment103S: Home Basin 1	Runoff Area=22,288 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.05 cfs 0.019 af
Subcatchment104S: Home Basin 5	Runoff Area=33,512 sf 0.00% Impervious Runoff Depth=0.45" Tc=10.0 min CN=93/0 Runoff=0.07 cfs 0.029 af
Subcatchment105S: Basin 6	Runoff Area=8,965 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.04 cfs 0.014 af
Subcatchment107S: Basin 8	Runoff Area=8,177 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.04 cfs 0.012 af
Subcatchment108S: Basin 9	Runoff Area=13,130 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.06 cfs 0.020 af
Subcatchment109S: Basin 10	Runoff Area=22,902 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.10 cfs 0.035 af
Subcatchment110S: Basin 11	Runoff Area=25,748 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.12 cfs 0.039 af
Subcatchment111S: Basin 12	Runoff Area=5,562 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.02 cfs 0.008 af
Subcatchment112S: Basin 13	Runoff Area=4,702 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.02 cfs 0.007 af
Subcatchment113S: Basin 14	Runoff Area=7,669 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.03 cfs 0.012 af
Subcatchment114S: Basin 15	Runoff Area=7,261 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.03 cfs 0.011 af
Subcatchment115S: Basin 16	Runoff Area=7,066 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.03 cfs 0.011 af

9-6-23 HydroCAD DOM				
Prepared by A&O Engineering LLC				
HydroCAD® 10.20-2g s/n 04993 © 2022				

Type IA 24-hr 01-Water Quality Rainfall=1.00"

	. , , ,	-,
eering LLC		Printed 9/6/2023
4993 © 2022 HydroCAD Softwa	re Solutions LLC	Page 13

Runoff Area=23,761 sf	100.00% Impervious	Runoff Depth=0.79"

Subcatchment117S: Basin 18	Runoff Area=23,761 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.11 cfs 0.036 af
Subcatchment118S: Basin 19	Runoff Area=7,309 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.03 cfs 0.011 af
Subcatchment119S: Basin 20	Runoff Area=7,535 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.03 cfs 0.011 af
Subcatchment120S: Basin 21	Runoff Area=6,846 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.03 cfs 0.010 af
Subcatchment121S: Basin 22	Runoff Area=5,182 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.02 cfs 0.008 af
Subcatchment122S: Basin 23	Runoff Area=5,456 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.02 cfs 0.008 af
Subcatchment123S: Basin 24	Runoff Area=4,510 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.02 cfs 0.007 af
Subcatchment124S: Basin 25	Runoff Area=13,271 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.06 cfs 0.020 af
Subcatchment125S: Basin 26	Runoff Area=18,452 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.08 cfs 0.028 af
Subcatchment126S: Alley Basin 1	Runoff Area=9,860 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.04 cfs 0.015 af
Subcatchment127S: Alley Basin 2	Runoff Area=7,461 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.03 cfs 0.011 af
Subcatchment128S: Alley Basin 3	Runoff Area=6,782 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.03 cfs 0.010 af
Subcatchment129S: Alley Basin 4	Runoff Area=6,970 sf 100.00% Impervious Runoff Depth=0.79" Tc=10.0 min CN=0/98 Runoff=0.03 cfs 0.011 af
Subcatchment168S: Future Lots	Runoff Area=64,223 sf 37.85% Impervious Runoff Depth=0.58" Tc=10.0 min CN=93/98 Runoff=0.19 cfs 0.071 af
Subcatchment169S: Swale 2	Runoff Area=67 sf 100.00% Impervious Runoff Depth=0.79" Tc=0.0 min CN=0/98 Runoff=0.00 cfs 0.000 af
Subcatchment170S: Swale 1	Runoff Area=72 sf 100.00% Impervious Runoff Depth=0.79" Tc=0.0 min CN=0/98 Runoff=0.00 cfs 0.000 af

Reach 39R: Post-ConstructionPeak Flow Inflow=2.01 cfs 1.113 af Outflow=2.01 cfs 1.113 af

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LL	Printed 9/6/2023 <u>C Page 14</u>
Reach 42R: Pre-ConstructionPeak Flow	Inflow=0.50 cfs 0.551 af
	Outflow=0.50 cfs 0.551 af
Reach 58R: 1	Inflow=2.01 cfs 1.113 af Outflow=2.01 cfs 1.113 af
Reach 85R: 1	Inflow=1.99 cfs 1.102 af Outflow=1.99 cfs 1.102 af
Reach 130R: 1	Inflow=0.51 cfs 0.186 af
Reach 130K. 1	Outflow=0.51 cfs 0.186 af
Reach 131R: 1	Inflow=0.51 cfs 0.186 af Outflow=0.51 cfs 0.186 af
Reach 132R: 1	Inflow=0.29 cfs 0.108 af
10001110211111	Outflow=0.29 cfs 0.108 af
Reach 133R: 1	Inflow=0.07 cfs 0.023 af Outflow=0.07 cfs 0.023 af
Reach 134R: 1	Inflow=2.32 cfs 0.855 af
	Outflow=2.32 cfs 0.855 af
Reach 135R: 1	Inflow=0.37 cfs 0.140 af Outflow=0.37 cfs 0.140 af
Reach 136R: 1	Inflow=0.22 cfs 0.081 af
	Outflow=0.22 cfs 0.081 af
Reach 137R: 1	Inflow=0.15 cfs 0.054 af Outflow=0.15 cfs 0.054 af
Reach 138R: 1	Inflow=0.08 cfs 0.028 af
Decel 420D: 4	Outflow=0.08 cfs 0.028 af
Reach 139R: 1	Inflow=1.89 cfs 0.695 af Outflow=1.89 cfs 0.695 af
Reach 140R: 1	Inflow=0.04 cfs 0.015 af Outflow=0.04 cfs 0.015 af
Reach 141R: 1	Inflow=0.03 cfs 0.011 af
	Outflow=0.03 cfs 0.011 af
Reach 142R: 1	Inflow=1.79 cfs 0.658 af Outflow=1.79 cfs 0.658 af
Reach 143R: 1	Inflow=0.36 cfs 0.133 af
1.55.5 1.51 1	Outflow=0.36 cfs 0.133 af

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC	Printed 9/6/2023 Page 15
Reach 144R: 1	Inflow=0.25 cfs 0.094 af Outflow=0.25 cfs 0.094 af
Reach 145R: 1	Inflow=0.25 cfs 0.094 af Outflow=0.25 cfs 0.094 af
Reach 146R: 1	Inflow=1.43 cfs 0.525 af Outflow=1.43 cfs 0.525 af
Reach 147R: 1	Inflow=0.03 cfs 0.010 af Outflow=0.03 cfs 0.010 af
Reach 148R: 1	Inflow=1.40 cfs 0.515 af Outflow=1.40 cfs 0.515 af
Reach 149R: 1	Inflow=0.36 cfs 0.131 af Outflow=0.36 cfs 0.131 af
Reach 150R: 1	Inflow=0.24 cfs 0.088 af Outflow=0.24 cfs 0.088 af
Reach 151R: 1	Inflow=0.19 cfs 0.071 af Outflow=0.19 cfs 0.071 af
Reach 152R: 1	Inflow=0.98 cfs 0.360 af Outflow=0.98 cfs 0.360 af
Reach 153R: 1	Inflow=0.03 cfs 0.011 af Outflow=0.03 cfs 0.011 af
Reach 154R: 1	Inflow=0.94 cfs 0.349 af Outflow=0.94 cfs 0.349 af
Reach 155R: 1	Inflow=0.33 cfs 0.123 af Outflow=0.33 cfs 0.123 af
Reach 158R: 1	Inflow=1.95 cfs 0.715 af Outflow=1.95 cfs 0.715 af
Reach 159R: 1	Inflow=1.86 cfs 0.684 af Outflow=1.86 cfs 0.684 af
Reach 160R: 1	Inflow=0.23 cfs 0.084 af Outflow=0.23 cfs 0.084 af
Reach 162R: 1	Inflow=0.55 cfs 0.203 af Outflow=0.55 cfs 0.203 af
Reach 163R: 1	Inflow=0.53 cfs 0.197 af Outflow=0.53 cfs 0.197 af

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 16

Reach 165R: 1 Inflow=0.19 cfs 0.070 af

Outflow=0.19 cfs 0.070 af

Reach 166R: Basin Future Inflow=0.19 cfs 0.071 af

Outflow=0.19 cfs 0.071 af

Pond 54P: Stormwater Swale 2 Peak Elev=222.33' Storage=27 cf Inflow=0.02 cfs 0.005 af

Outflow=0.01 cfs 0.005 af

Pond 60P: Stormwater Swale 1 Peak Elev=221.97' Storage=28 cf Inflow=0.02 cfs 0.006 af

Outflow=0.01 cfs 0.006 af

Pond 63P: Detention Pond Peak Elev=221.50' Storage=5,053 cf Inflow=3.01 cfs 1.103 af

Outflow=1.99 cfs 1.102 af

Total Runoff Area = 46.412 ac Runoff Volume = 1.665 af Average Runoff Depth = 0.43" 81.58% Pervious = 37.863 ac 18.42% Impervious = 8.549 ac

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 17

Summary for Subcatchment 64S: Home Basin 20


Runoff = 0.02 cfs @ 8.00 hrs, Volume= 0.009 af, Depth= 0.45"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description						
*		9,940	93	70% Lot Coverage Weighted						
_		9,940	93	100.00% Pervious Area						
	Tc	9	Slope	,	. ,	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 64S: Home Basin 20

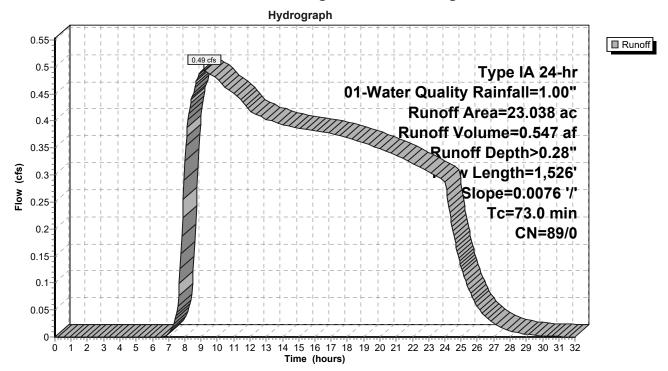
Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 18


Summary for Subcatchment 65S: Single Pond Existing Conditions

Runoff = 0.49 cfs @ 9.15 hrs, Volume= 0.547 af, Depth> 0.28" Routed to Reach 42R : Pre-Construction Peak Flow

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

	Area	(ac) C	N Des	cription				
23.038 89 Pasture/grassland/range, Poor, HSG D								
23.038 89 100.00% Pervious Area								
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
-	39.5	300	0.0076	0.13	, ,	Sheet Flow,		
	33.5	1,226	0.0076	0.61		Grass: Short n= 0.150 P2= 2.47" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps		
-	73.0	1,526	Total					

Subcatchment 65S: Single Pond Existing Conditions

Type IA 24-hr 01-Water Quality Rainfall=1.00"

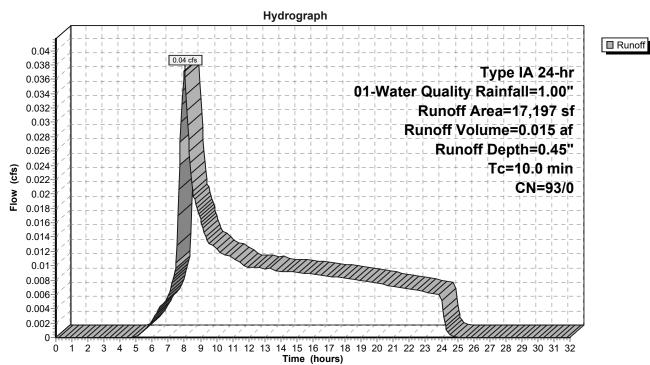
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 19

Summary for Subcatchment 67S: Home Basin 19


Runoff = 0.04 cfs @ 8.00 hrs, Volume= 0.015 af, Depth= 0.45"

Routed to Reach 159R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Ar	rea (sf)	CN	Description						
*		17,197	93	70% Lot Coverage Weighted						
		17,197	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	10.0	(100t)	(1011)	(14000)	(010)	Direct Entry				

Subcatchment 67S: Home Basin 19

Type IA 24-hr 01-Water Quality Rainfall=1.00"

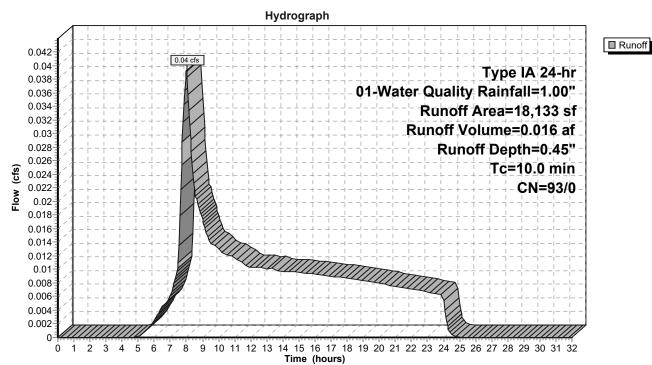
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 20

Summary for Subcatchment 68S: Home Basin 12


Runoff = 0.04 cfs @ 8.00 hrs, Volume= 0.016 af, Depth= 0.45"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

	Α	rea (sf)	CN I	Description						
*		18,133	93	70% Lot Coverage Weighted						
		18,133	93 100.00% Pervious Area							
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 68S: Home Basin 12

Type IA 24-hr 01-Water Quality Rainfall=1.00"

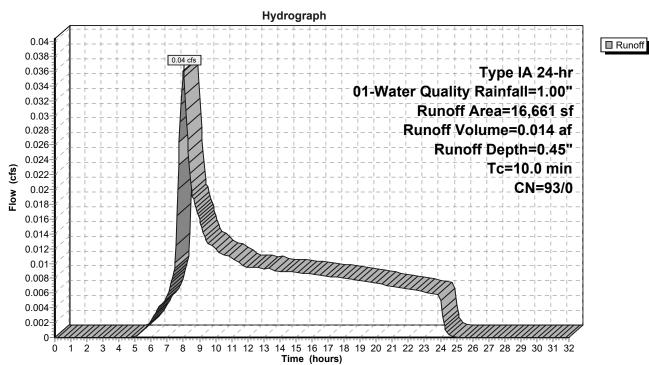
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 21

Summary for Subcatchment 69S: Home Basin 17


Runoff = 0.04 cfs @ 8.00 hrs, Volume= 0.014 af, Depth= 0.45"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

	Α	rea (sf)	CN	Description					
*		16,661	93	70% Lot Coverage Weighted					
		16,661	93	100.00% Pervious Area					
	Тс	9	Slope	,	. ,	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 69S: Home Basin 17

Type IA 24-hr 01-Water Quality Rainfall=1.00"

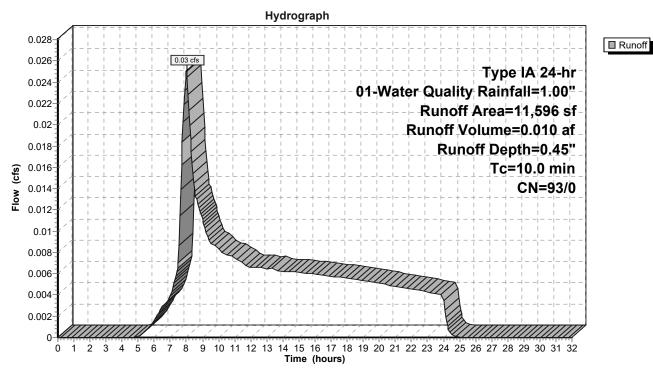
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 22

Summary for Subcatchment 70S: Home Basin 18


Runoff = 0.03 cfs @ 8.00 hrs, Volume= 0.010 af, Depth= 0.45"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description						
*		11,596	93	70% Lot Coverage Weighted						
		11,596	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0					Direct Entry,				

Subcatchment 70S: Home Basin 18

Type IA 24-hr 01-Water Quality Rainfall=1.00"

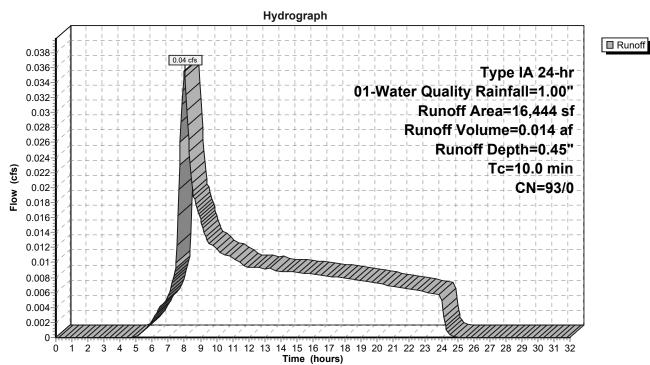
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 23

Summary for Subcatchment 71S: Home Basin 14


Runoff = 0.04 cfs @ 8.00 hrs, Volume= 0.014 af, Depth= 0.45"

Routed to Reach 148R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description						
*		16,444	93	70% Lot Coverage Weighted						
		16,444	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0					Direct Entry,				

Subcatchment 71S: Home Basin 14

Type IA 24-hr 01-Water Quality Rainfall=1.00"

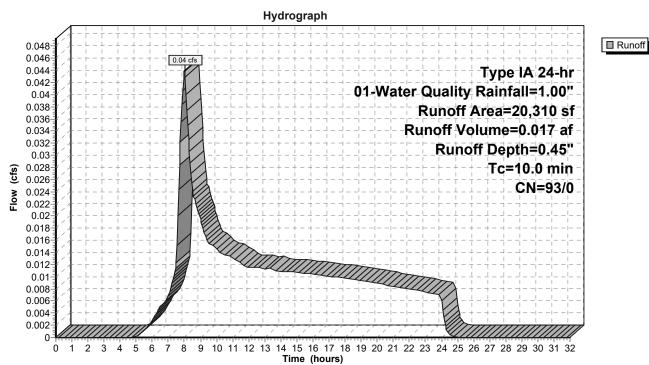
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 24

Summary for Subcatchment 72S: Home Basin 16


Runoff = 0.04 cfs @ 8.00 hrs, Volume= 0.017 af, Depth= 0.45"

Routed to Reach 150R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description						
*		20,310	93	70% Lot Coverage Weighted						
_		20,310	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
_	10.0	•	•			Direct Entry,				

Subcatchment 72S: Home Basin 16

Type IA 24-hr 01-Water Quality Rainfall=1.00"

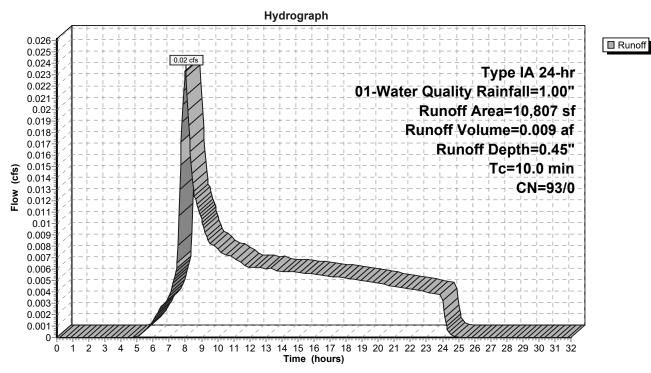
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 25

Summary for Subcatchment 73S: Home Basin 13


Runoff = 0.02 cfs @ 8.00 hrs, Volume= 0.009 af, Depth= 0.45"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

	Α	rea (sf)	CN	Description						
3	k	10,807	93	70% Lot Coverage Weighted						
-		10,807	93	100.00% Pervious Area						
	Tc	Length	Slone	Velocity	Canacity	Description				
	(min)	(feet)	(ft/ft)	,	(cfs)	Description				
	10.0					Direct Entry				

Subcatchment 73S: Home Basin 13

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

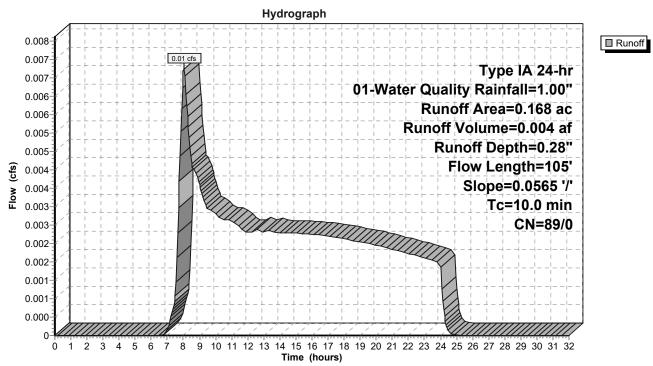
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 26

Summary for Subcatchment 74S: Swale Existing Conditions

Runoff = 0.01 cfs @ 8.03 hrs, Volume= 0.004 af, Depth= 0.28"


Routed to Reach 42R: Pre-Construction Peak Flow

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

Area	(ac) C	N Desc	cription					
0.	168 8	9 Past	ure/grassla	and/range,	Poor, HSG D			
0.168 89 100.00% Pervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
7.7	105	0.0565	0.23		Sheet Flow, Grass: Short	n= 0.150	P2= 2.47"	

7.7 105 Total, Increased to minimum Tc = 10.0 min

Subcatchment 74S: Swale Existing Conditions

Type IA 24-hr 01-Water Quality Rainfall=1.00"

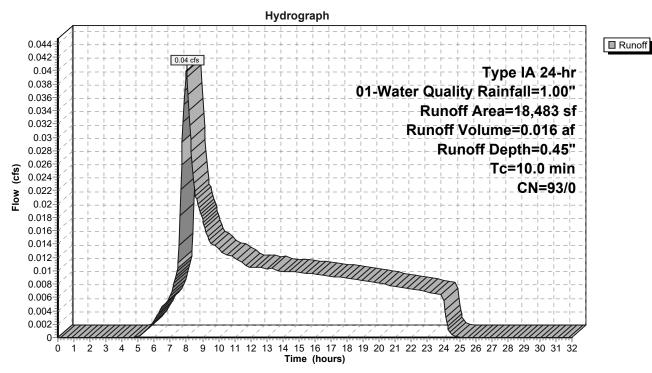
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 27

Summary for Subcatchment 75S: Home Basin 11


Runoff = 0.04 cfs @ 8.00 hrs, Volume= 0.016 af, Depth= 0.45"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description						
*		18,483	93	70% Lot Coverage Weighted						
		18,483	93	100.00% Pervious Area						
_	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0		•			Direct Entry,				

Subcatchment 75S: Home Basin 11

Type IA 24-hr 01-Water Quality Rainfall=1.00"

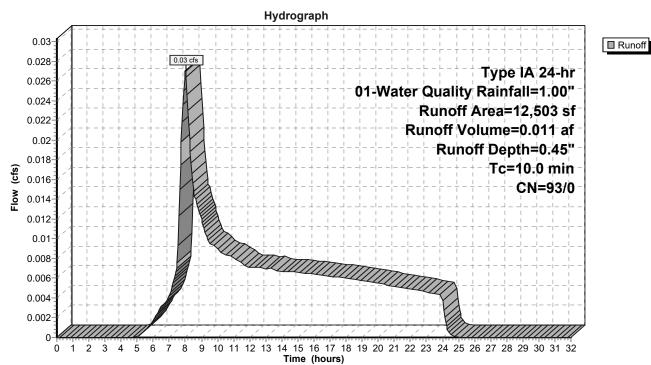
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 28

Summary for Subcatchment 77S: Home Basin 15


Runoff = 0.03 cfs @ 8.00 hrs, Volume= 0.011 af, Depth= 0.45"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

	Α	rea (sf)	CN [Description					
*		12,503	93 7	70% Lot Coverage Weighted					
'		12,503	93 ′	100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
_	10.0	, /	, ,	, ,	, ,	Direct Entry,			

Subcatchment 77S: Home Basin 15

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

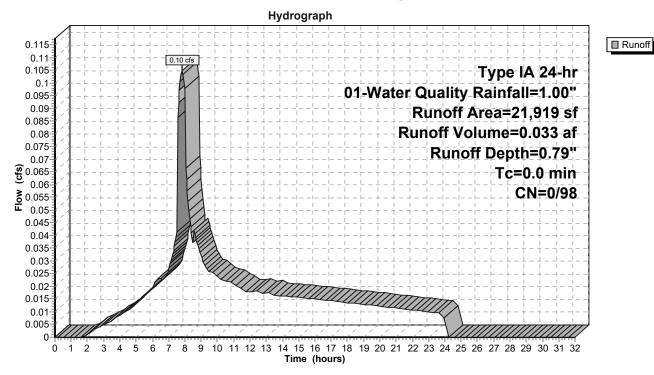
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 29

Summary for Subcatchment 78S: Single Pond

[46] Hint: Tc=0 (Instant runoff peak depends on dt)


Runoff = 0.10 cfs @ 7.83 hrs, Volume= 0.033 af, Depth= 0.79"

Routed to Pond 63P: Detention Pond

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

 Area (sf)	CN	Description	
21,919	98	Water Surface, HSG D	
21,919	98	100.00% Impervious Area	

Subcatchment 78S: Single Pond

Type IA 24-hr 01-Water Quality Rainfall=1.00"

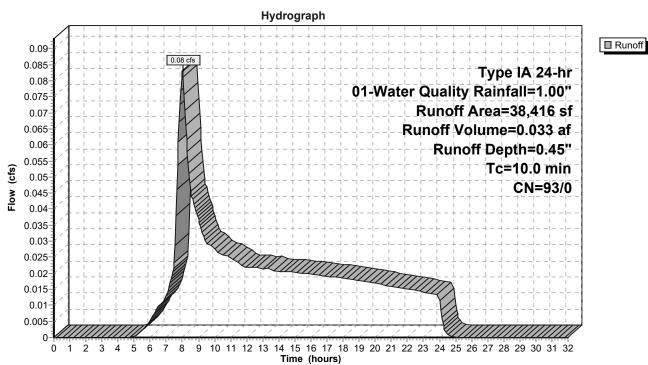
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 30

Summary for Subcatchment 79S: Home Basin 30


Runoff = 0.08 cfs @ 8.00 hrs, Volume= 0.033 af, Depth= 0.45"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description						
*		38,416	93	70% Lot Coverage Weighted						
		38,416	93	93 100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
-	10.0	\ /	(1211)	(/	(212)	Direct Entry				

Subcatchment 79S: Home Basin 30

Type IA 24-hr 01-Water Quality Rainfall=1.00"

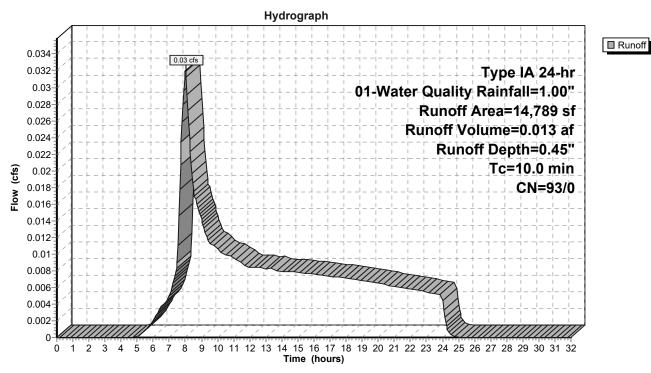
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 31

Summary for Subcatchment 80S: Home Basin 10


Runoff = 0.03 cfs @ 8.00 hrs, Volume= 0.013 af, Depth= 0.45"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN I	Description						
*		14,789	93	70% Lot Coverage Weighted						
_		14,789	93	100.00% Pervious Area						
		Length		,		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 80S: Home Basin 10

Type IA 24-hr 01-Water Quality Rainfall=1.00"

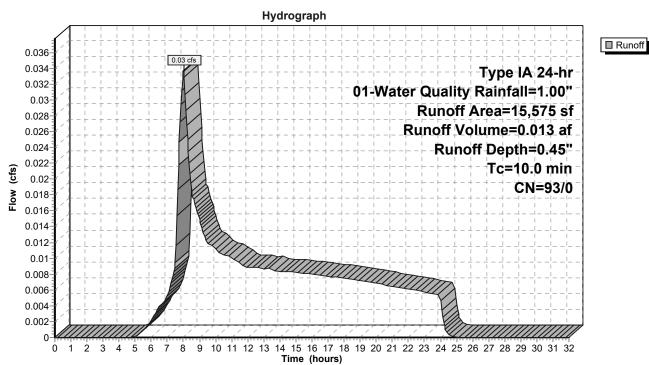
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 32

Summary for Subcatchment 81S: Home Basin 9


Runoff = 0.03 cfs @ 8.00 hrs, Volume= 0.013 af, Depth= 0.45"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description					
*		15,575	93	70% Lot Coverage Weighted					
		15,575	93	100.00% Pervious Area					
	Тс	3	Slope	•		Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 81S: Home Basin 9

Type IA 24-hr 01-Water Quality Rainfall=1.00"

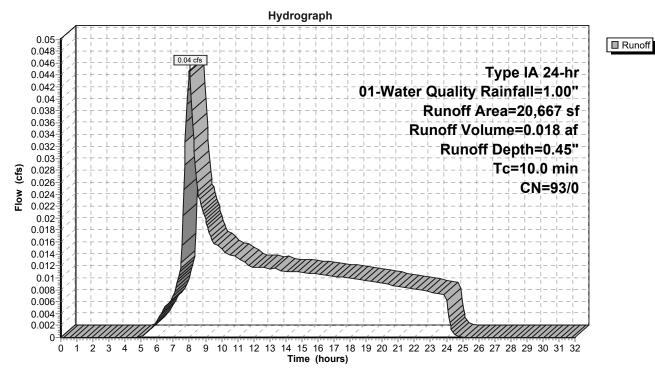
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 33

Summary for Subcatchment 82S: Home Basin 2


Runoff = 0.04 cfs @ 8.00 hrs, Volume= 0.018 af, Depth= 0.45"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description					
*		20,667	93	70% Lot Coverage Weighted					
		20,667	93	100.00% Pe	ervious Are	ea			
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 82S: Home Basin 2

Type IA 24-hr 01-Water Quality Rainfall=1.00"

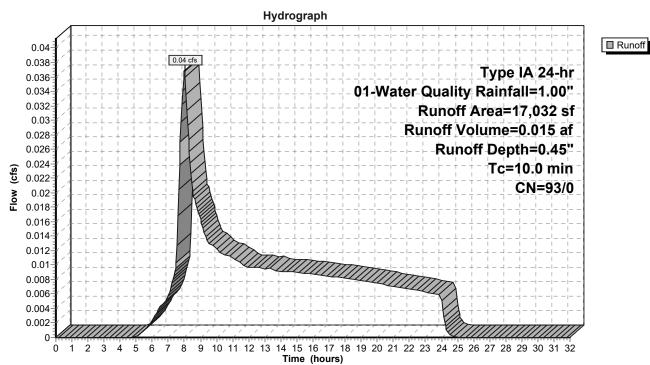
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

<u>Page 34</u>

Summary for Subcatchment 83S: Home Basin 7


Runoff = 0.04 cfs @ 8.00 hrs, Volume= 0.015 af, Depth= 0.45"

Routed to Reach 154R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description					
*		17,032	93	70% Lot Coverage Weighted					
_		17,032	93	100.00% Pervious Area					
		Length	Slope	,	. ,	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 83S: Home Basin 7

Type IA 24-hr 01-Water Quality Rainfall=1.00"

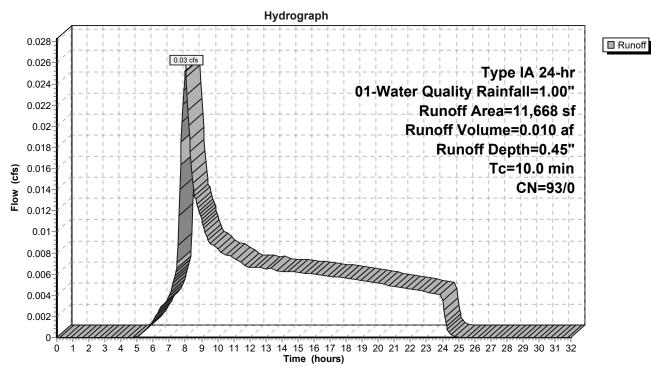
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 35

Summary for Subcatchment 84S: Home Basin 8


Runoff = 0.03 cfs @ 8.00 hrs, Volume= 0.010 af, Depth= 0.45"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description					
*		11,668	93	70% Lot Coverage Weighted					
		11,668	93	100.00% Pervious Area					
	Тс	Length	Slope	,	. ,	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 84S: Home Basin 8

Type IA 24-hr 01-Water Quality Rainfall=1.00"

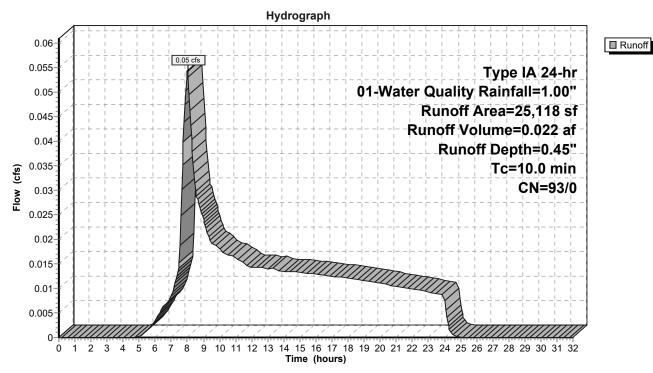
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 36

Summary for Subcatchment 85S: Home Basin 29


Runoff = 0.05 cfs @ 8.00 hrs, Volume= 0.022 af, Depth= 0.45"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

	Α	rea (sf)	CN I	Description					
*		25,118	93	70% Lot Coverage Weighted					
		25,118 93 100.00% Pervious Area							
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 85S: Home Basin 29

Type IA 24-hr 01-Water Quality Rainfall=1.00"

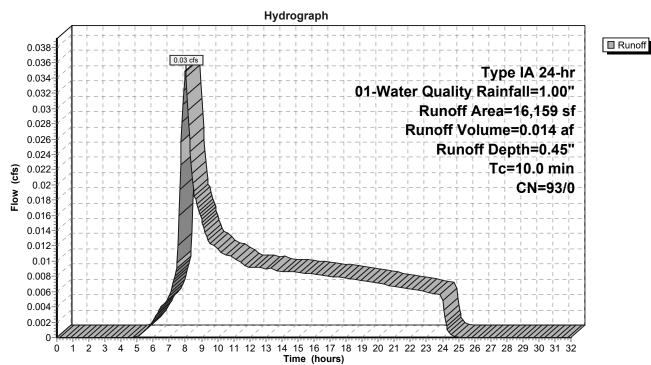
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 37

Summary for Subcatchment 86S: Home Basin 22


Runoff = 0.03 cfs @ 8.00 hrs, Volume= 0.014 af, Depth= 0.45"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN I	Description					
*		16,159	93	70% Lot Coverage Weighted					
		16,159	93	100.00% Pervious Area					
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 86S: Home Basin 22

Type IA 24-hr 01-Water Quality Rainfall=1.00"

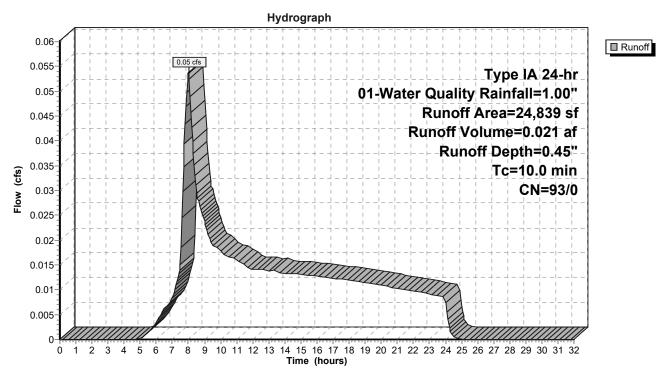
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 38

Summary for Subcatchment 87S: Home Basin 27


Runoff = 0.05 cfs @ 8.00 hrs, Volume= 0.021 af, Depth= 0.45"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description						
*		24,839	93	70% Lot Coverage Weighted						
		24,839	93	3 100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
-	10.0	(.551)	(10/10)	(12000)	(010)	Direct Entry				

Subcatchment 87S: Home Basin 27

Type IA 24-hr 01-Water Quality Rainfall=1.00"

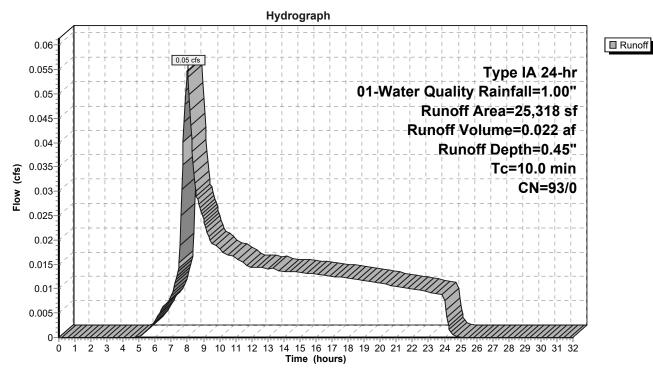
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 39

Summary for Subcatchment 88S: Home Basin 28


Runoff = 0.05 cfs @ 8.00 hrs, Volume= 0.022 af, Depth= 0.45"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description						
*		25,318	93	70% Lot Coverage Weighted						
		25,318	93 100.00% Pervious Area							
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	10.0	(1001)	(14/15)	(1200)	(3.5)	Direct Entry				

Subcatchment 88S: Home Basin 28

Type IA 24-hr 01-Water Quality Rainfall=1.00"

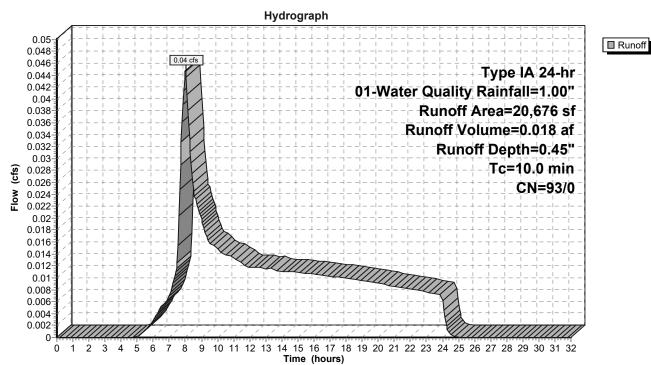
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 40

Summary for Subcatchment 89S: Home Basin 24


Runoff = 0.04 cfs @ 8.00 hrs, Volume= 0.018 af, Depth= 0.45"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description						
4	•	20,676	93	70% Lot Coverage Weighted						
_		20,676	93	100.00% Pervious Area						
_	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
_	10.0					Direct Entry,				

Subcatchment 89S: Home Basin 24

Type IA 24-hr 01-Water Quality Rainfall=1.00"

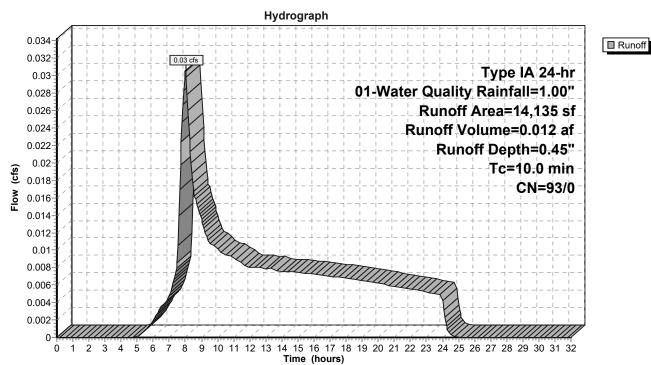
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 41

Summary for Subcatchment 90S: Home Basin 26


Runoff = 0.03 cfs @ 8.00 hrs, Volume= 0.012 af, Depth= 0.45"

Routed to Reach 136R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description						
*		14,135	93	70% Lot Coverage Weighted						
		14,135	93	100.00% Pervious Area						
_	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description				
	10.0					Direct Entry,				

Subcatchment 90S: Home Basin 26

Type IA 24-hr 01-Water Quality Rainfall=1.00"

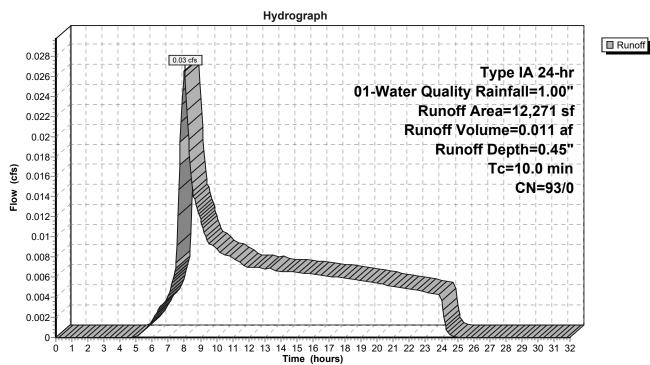
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 42

Summary for Subcatchment 91S: Home Basin 23


Runoff = 0.03 cfs @ 8.00 hrs, Volume= 0.011 af, Depth= 0.45"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

	Α	rea (sf)	CN [Description					
*		12,271	93 7	70% Lot Coverage Weighted					
_		12,271	93 1	100.00% Pe	ervious Are	ea			
	Тс	-	Slope	•		Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 91S: Home Basin 23

Type IA 24-hr 01-Water Quality Rainfall=1.00"

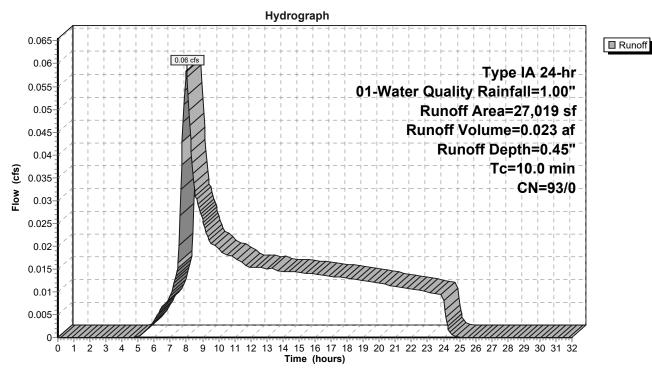
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 43

Summary for Subcatchment 92S: Home Basin 21


Runoff = 0.06 cfs @ 8.00 hrs, Volume= 0.023 af, Depth= 0.45"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description						
*		27,019	93	70% Lot Coverage Weighted						
	27,019 93 100.00% Pervious Area					ea				
	Tc	9	Slope	,	. ,	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 92S: Home Basin 21

Type IA 24-hr 01-Water Quality Rainfall=1.00"

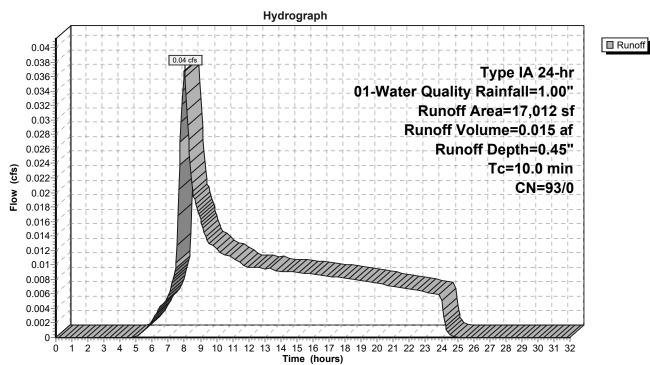
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 44

Summary for Subcatchment 93S: Home Basin 25


Runoff = 0.04 cfs @ 8.00 hrs, Volume= 0.015 af, Depth= 0.45"

Routed to Reach 136R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description						
*		17,012	93	70% Lot Coverage Weighted						
_		17,012	93	00.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description				
_	10.0					Direct Entry,				

Subcatchment 93S: Home Basin 25

Type IA 24-hr 01-Water Quality Rainfall=1.00"

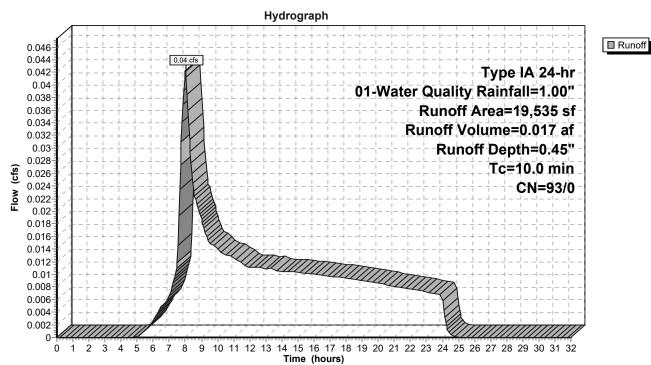
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 45

Summary for Subcatchment 94S: Home Basin 4


Runoff = 0.04 cfs @ 8.00 hrs, Volume= 0.017 af, Depth= 0.45"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

	Α	rea (sf)	CN	Description					
*		19,535	93	70% Lot Coverage Weighted					
		19,535	93	100.00% Pervious Area					
	Тс	Length	Slope	•		Description			
_	(min)	(feet)	(ft/ft)	ft) (ft/sec) (cfs)					
	10.0					Direct Entry,			

Subcatchment 94S: Home Basin 4

Type IA 24-hr 01-Water Quality Rainfall=1.00"

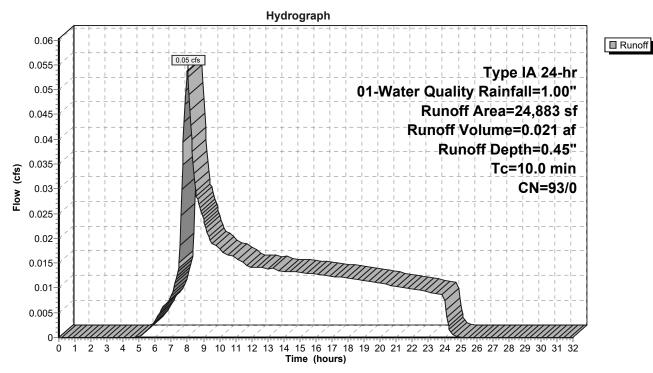
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 46

Summary for Subcatchment 95S: Home Basin 31


Runoff = 0.05 cfs @ 8.00 hrs, Volume= 0.021 af, Depth= 0.45"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

	Α	rea (sf)	CN	Description						
3	ŧ	24,883	93	70% Lot Coverage Weighted						
-		24,883	93	100.00% Pervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0	•		Direct Entry						

Subcatchment 95S: Home Basin 31

Type IA 24-hr 01-Water Quality Rainfall=1.00"

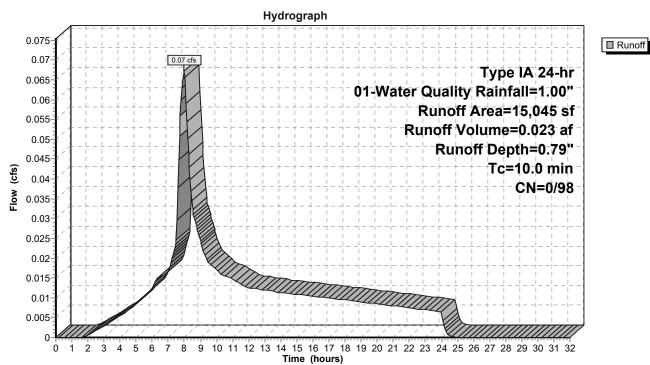
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 47

Summary for Subcatchment 96S: Basin 1


Runoff = 0.07 cfs @ 7.98 hrs, Volume= 0.023 af, Depth= 0.79"

Routed to Reach 133R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

	Α	rea (sf)	CN	Description						
		15,045	,045 98 Paved roads w/curbs & sewers, HSG D							
		15,045 98 100.00% Impervious Area								
Tc Length Slope Velocity Capacity Description					Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description				
-	10.0	, ,	Direct Entry.							

Subcatchment 96S: Basin 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

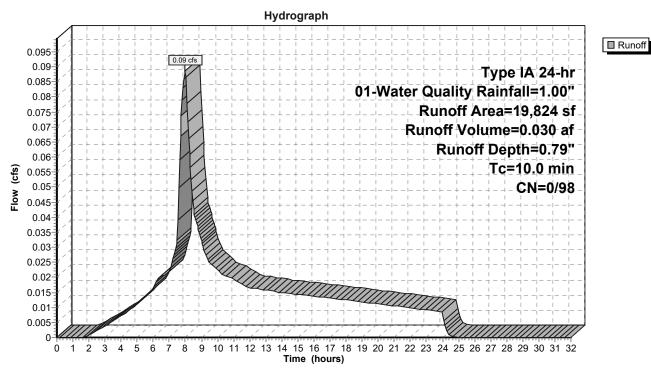
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 48

Summary for Subcatchment 97S: Basin 2


Runoff = 0.09 cfs @ 7.98 hrs, Volume= 0.030 af, Depth= 0.79"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	A	rea (sf)	CN	CN Description							
		19,824	98	98 Paved roads w/curbs & sewers, HSG D							
	19,824 98 100.00% Impervious Area										
	_		01		0 "	D					
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description					
-	10.0	(1861)	וטונ	(11/360)	(013)	Direct Entry.					

Subcatchment 97S: Basin 2

Type IA 24-hr 01-Water Quality Rainfall=1.00"

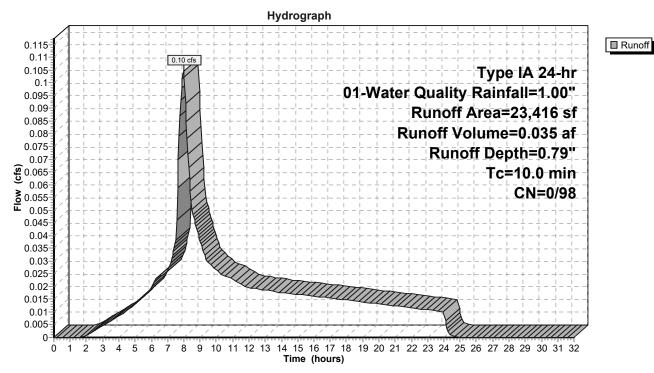
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 49

Summary for Subcatchment 98S: Basin 3


Runoff = 0.10 cfs @ 7.98 hrs, Volume= 0.035 af, Depth= 0.79"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

A	rea (sf)	CN [Description						
	23,416	98 F	Paved roads w/curbs & sewers, HSG D						
	23,416 98 100.00% Impervious Area								
Tc Length Slope Velocity Capacity De (min) (feet) (ft/ft) (ft/sec) (cfs)					Description				
10.0					Direct Entry,				

Subcatchment 98S: Basin 3

Type IA 24-hr 01-Water Quality Rainfall=1.00"

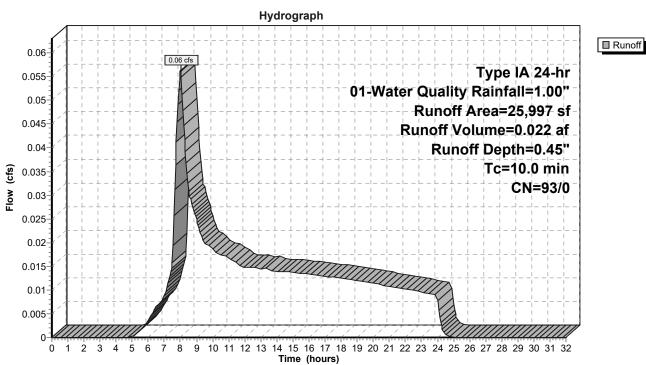
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 50

Summary for Subcatchment 99S: Home Basin 6


Runoff = 0.06 cfs @ 8.00 hrs, Volume= 0.022 af, Depth= 0.45"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN [Description						
*	,	25,997	93 7	70% Lot Coverage Weighted						
_		25,997	93 1	100.00% Pe	ervious Are	ea				
	Тс	Length	•	•	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 99S: Home Basin 6

Type IA 24-hr 01-Water Quality Rainfall=1.00"

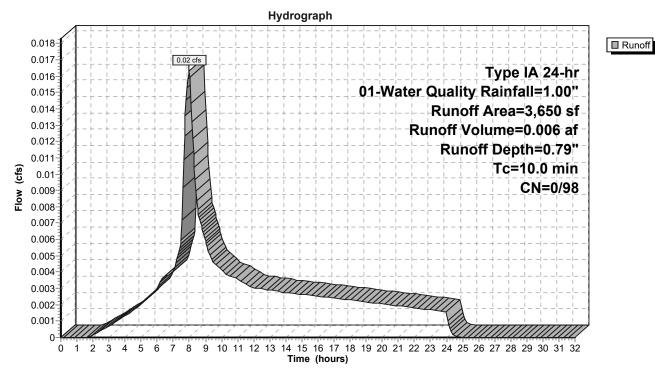
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 51

Summary for Subcatchment 100S: Basin 4


Runoff = 0.02 cfs @ 7.98 hrs, Volume= 0.006 af, Depth= 0.79"

Routed to Pond 60P: Stormwater Swale 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

A	rea (sf)	CN I	Description					
	3,650	& sewers, HSG D						
	3,650	98	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
10.0			Direct Entry,					

Subcatchment 100S: Basin 4

Type IA 24-hr 01-Water Quality Rainfall=1.00"

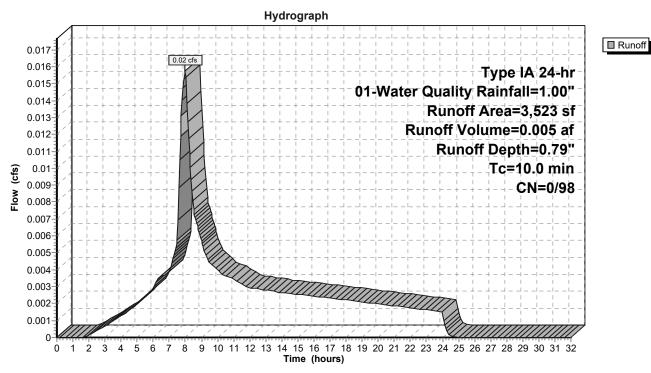
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 52

Summary for Subcatchment 101S: Basin 5


Runoff = 0.02 cfs @ 7.98 hrs, Volume= 0.005 af, Depth= 0.79"

Routed to Pond 54P: Stormwater Swale 2

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

A	rea (sf)	CN [Description					
	3,523	98 F	& sewers, HSG D					
	3,523	98 1	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
10.0			Direct Entry,					

Subcatchment 101S: Basin 5

Type IA 24-hr 01-Water Quality Rainfall=1.00"

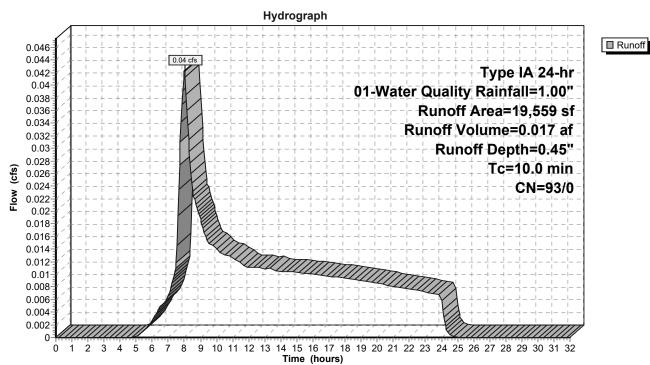
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 53

Summary for Subcatchment 102S: Home Basin 3


Runoff = 0.04 cfs @ 8.00 hrs, Volume= 0.017 af, Depth= 0.45"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description						
*		19,559	93	70% Lot Coverage Weighted						
		19,559	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
_	10.0	•	• •	,	, ,	Direct Entry,				

Subcatchment 102S: Home Basin 3

Type IA 24-hr 01-Water Quality Rainfall=1.00"

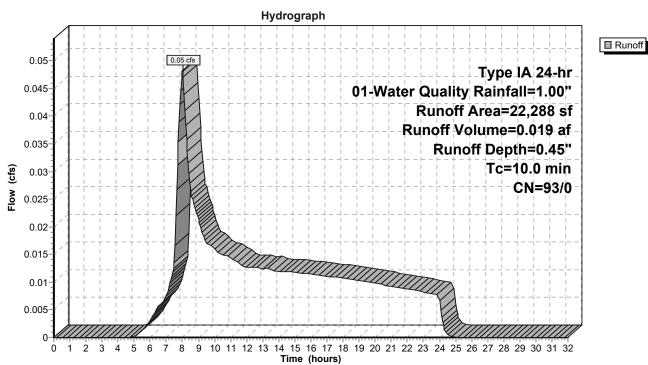
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 54

Summary for Subcatchment 103S: Home Basin 1


Runoff = 0.05 cfs @ 8.00 hrs, Volume= 0.019 af, Depth= 0.45"

Routed to Reach 137R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

	Α	rea (sf)	CN I	Description						
*		22,288	93	70% Lot Coverage Weighted						
		22,288	93	3 100.00% Pervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 103S: Home Basin 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

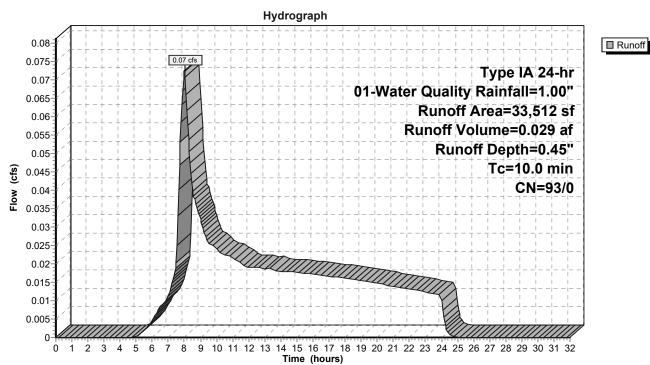
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 55

Summary for Subcatchment 104S: Home Basin 5


Runoff = 0.07 cfs @ 8.00 hrs, Volume= 0.029 af, Depth= 0.45"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN [Description							
*		33,512	93 7	70% Lot Coverage Weighted							
		33,512	93 ′	100.00% Pervious Area							
		Length		,		Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	10.0					Direct Entry					

Subcatchment 104S: Home Basin 5

Type IA 24-hr 01-Water Quality Rainfall=1.00"

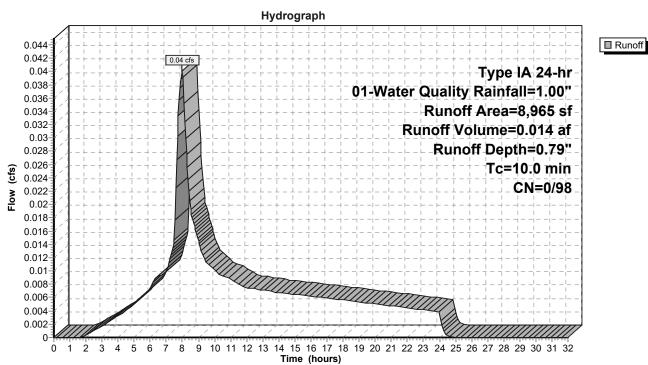
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 56

Summary for Subcatchment 105S: Basin 6


Runoff = 0.04 cfs @ 7.98 hrs, Volume= 0.014 af, Depth= 0.79"

Routed to Reach 138R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

A	rea (sf)	CN [Description							
	8,965	98 F	Paved roads w/curbs & sewers, HSG D							
	8,965	98 1	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 105S: Basin 6

Type IA 24-hr 01-Water Quality Rainfall=1.00"

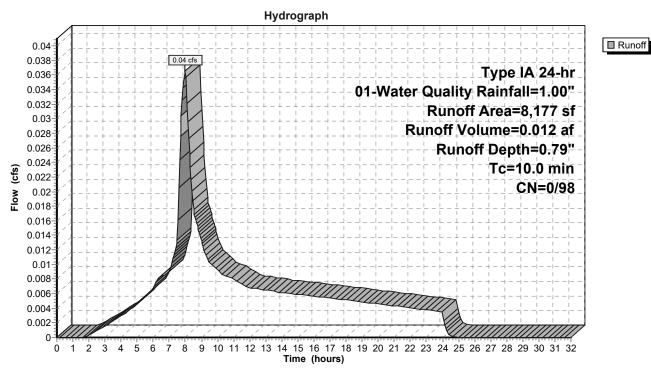
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 57

Summary for Subcatchment 107S: Basin 8


Runoff = 0.04 cfs @ 7.98 hrs, Volume= 0.012 af, Depth= 0.79"

Routed to Reach 158R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

A	rea (sf)	CN I	Description							
	8,177	98 F	Paved roads w/curbs & sewers, HSG D							
	8,177	98	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 107S: Basin 8

Type IA 24-hr 01-Water Quality Rainfall=1.00"

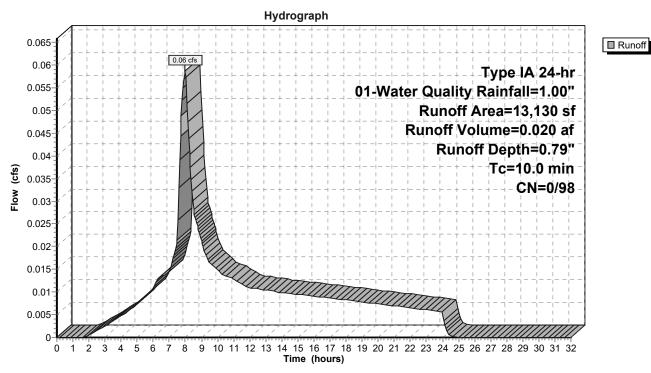
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 58

Summary for Subcatchment 108S: Basin 9


Runoff = 0.06 cfs @ 7.98 hrs, Volume= 0.020 af, Depth= 0.79"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description							
		13,130	98	Paved roads w/curbs & sewers, HSG D							
		13,130	98	100.00% Impervious Area							
	_					— 1.41					
	IC	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	10.0			Direct Entry.							

Subcatchment 108S: Basin 9

Type IA 24-hr 01-Water Quality Rainfall=1.00"

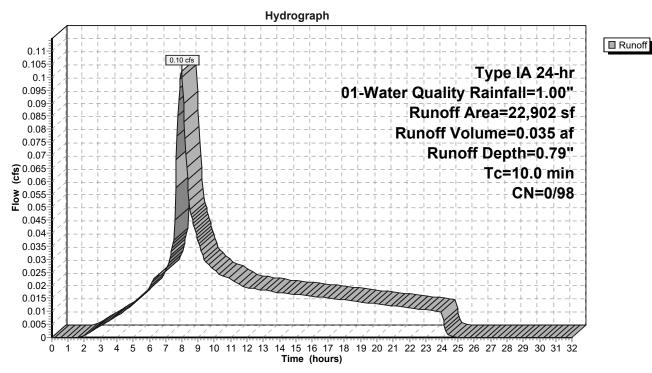
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 59

Summary for Subcatchment 109S: Basin 10


Runoff = 0.10 cfs @ 7.98 hrs, Volume= 0.035 af, Depth= 0.79"

Routed to Reach 137R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

A	rea (sf)	CN I	Description						
	22,902	98 F	Paved roads w/curbs & sewers, HSG D						
	22,902	98 ′	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)							
10.0					Direct Entry,				

Subcatchment 109S: Basin 10

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

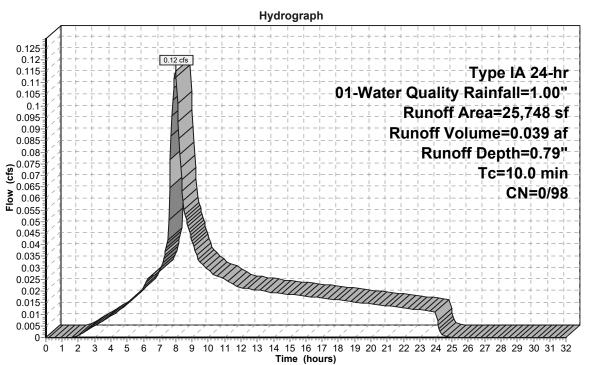
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 60

■ Runoff

Summary for Subcatchment 110S: Basin 11


Runoff = 0.12 cfs @ 7.98 hrs, Volume= 0.039 af, Depth= 0.79"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

A	rea (sf)	CN [Description						
	25,748	98 F	Paved roads w/curbs & sewers, HSG D						
	25,748	98 ′	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)							
10.0					Direct Entry,				

Subcatchment 110S: Basin 11

Type IA 24-hr 01-Water Quality Rainfall=1.00"

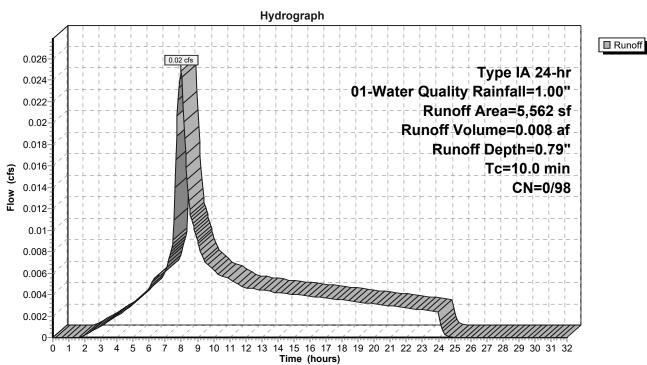
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 61

Summary for Subcatchment 111S: Basin 12


Runoff = 0.02 cfs @ 7.98 hrs, Volume= 0.008 af, Depth= 0.79"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

A	rea (sf)	CN [Description							
	5,562	98 F	Paved roads w/curbs & sewers, HSG D							
	5,562	98 1	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 111S: Basin 12

Type IA 24-hr 01-Water Quality Rainfall=1.00"

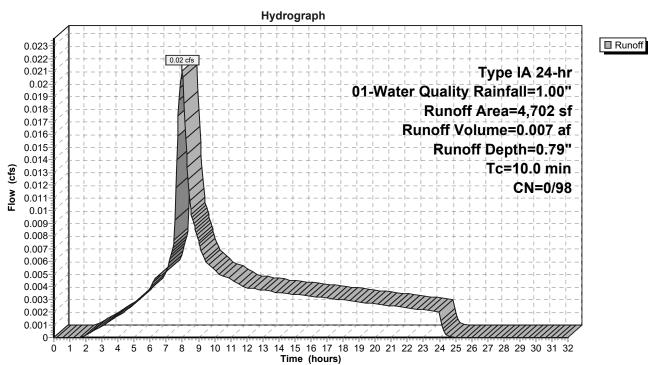
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 62

Summary for Subcatchment 112S: Basin 13


Runoff = 0.02 cfs @ 7.98 hrs, Volume= 0.007 af, Depth= 0.79"

Routed to Reach 158R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

A	rea (sf)	CN [Description							
	4,702	98 F	Paved roads w/curbs & sewers, HSG D							
	4,702	98 1	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 112S: Basin 13

Type IA 24-hr 01-Water Quality Rainfall=1.00"

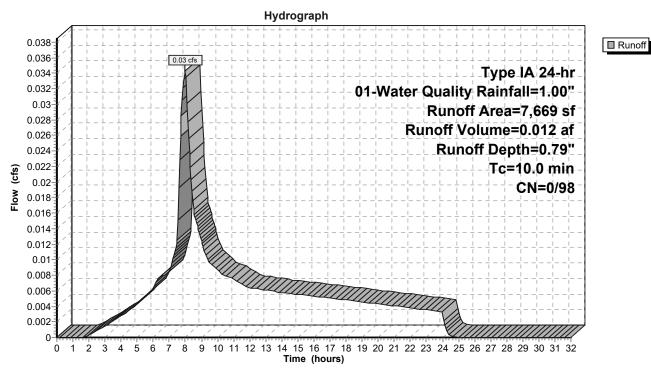
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 63

Summary for Subcatchment 113S: Basin 14


Runoff = 0.03 cfs @ 7.98 hrs, Volume= 0.012 af, Depth= 0.79"

Routed to Reach 159R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

A	rea (sf)	CN [Description							
	7,669	98 F	Paved roads w/curbs & sewers, HSG D							
	7,669	98 ′	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 113S: Basin 14

Type IA 24-hr 01-Water Quality Rainfall=1.00"

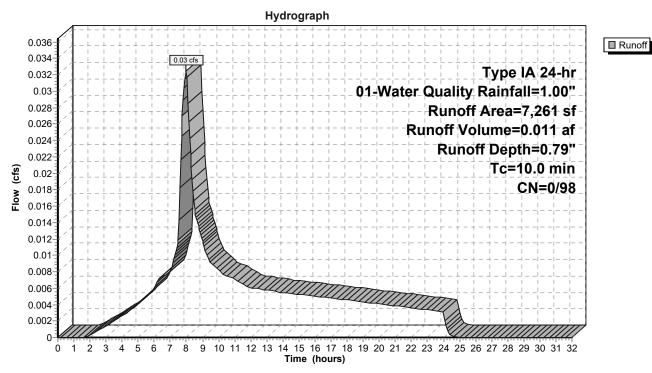
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 64

Summary for Subcatchment 114S: Basin 15


Runoff = 0.03 cfs @ 7.98 hrs, Volume= 0.011 af, Depth= 0.79"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

A	rea (sf)	CN [Description							
	7,261	98 F	Paved roads w/curbs & sewers, HSG D							
	7,261	98 1	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 114S: Basin 15

Type IA 24-hr 01-Water Quality Rainfall=1.00"

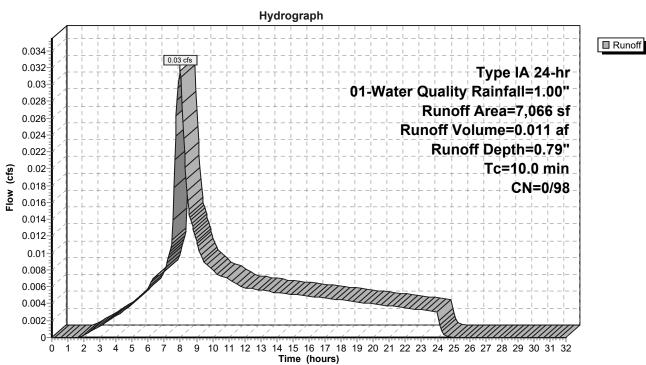
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 65

Summary for Subcatchment 115S: Basin 16


Runoff = 0.03 cfs @ 7.98 hrs, Volume= 0.011 af, Depth= 0.79"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description							
		7,066	98	Paved roads w/curbs & sewers, HSG D							
		7,066	98	100.00% Impervious Area							
	_				_						
	Tc	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	10.0			Direct Entry.							

Subcatchment 115S: Basin 16

Type IA 24-hr 01-Water Quality Rainfall=1.00"

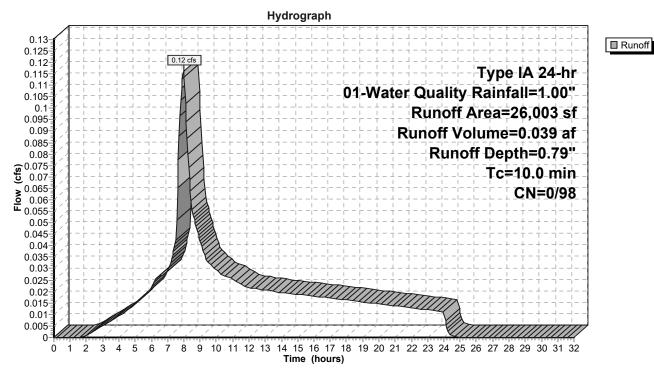
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 66

Summary for Subcatchment 116S: Basin 17


Runoff = 0.12 cfs @ 7.98 hrs, Volume= 0.039 af, Depth= 0.79"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

Are	a (sf) (CN E	Description							
26	6,003	98 F	Paved roads w/curbs & sewers, HSG D							
26	6,003	98 1	100.00% Impervious Area							
Tc L (min)	_ength (feet)	Slope (ft/ft)								
10.0					Direct Entry,					

Subcatchment 116S: Basin 17

Type IA 24-hr 01-Water Quality Rainfall=1.00"

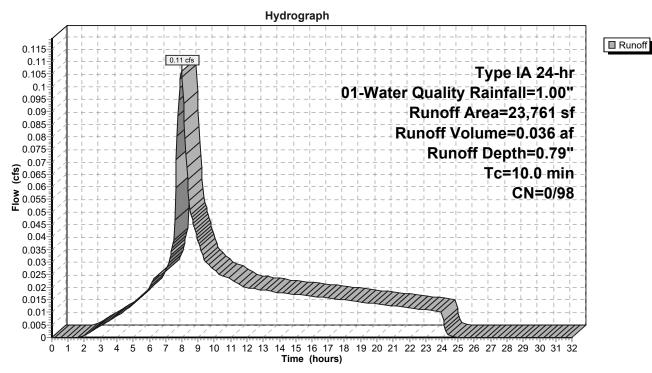
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 67

Summary for Subcatchment 117S: Basin 18


Runoff = 0.11 cfs @ 7.98 hrs, Volume= 0.036 af, Depth= 0.79"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

Are	ea (sf)	CN I	Description							
2	3,761	98 F	Paved roads w/curbs & sewers, HSG D							
2	3,761	98	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 117S: Basin 18

Type IA 24-hr 01-Water Quality Rainfall=1.00"

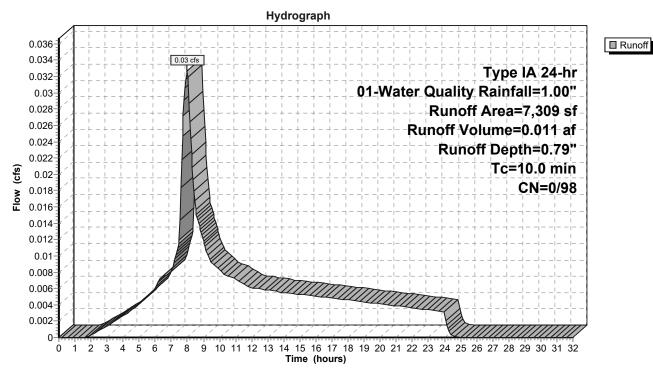
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 68

Summary for Subcatchment 118S: Basin 19


Runoff = 0.03 cfs @ 7.98 hrs, Volume= 0.011 af, Depth= 0.79"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

A	rea (sf)	CN [Description								
	7,309	98 F	Paved roads w/curbs & sewers, HSG D								
	7,309	98 1	100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
10.0					Direct Entry,						

Subcatchment 118S: Basin 19

Type IA 24-hr 01-Water Quality Rainfall=1.00"

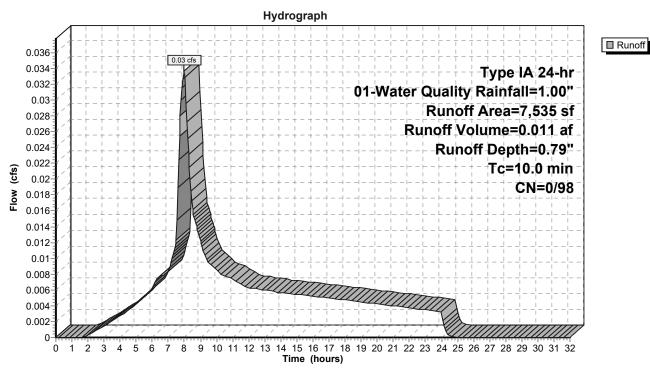
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 69

Summary for Subcatchment 119S: Basin 20


Runoff = 0.03 cfs @ 7.98 hrs, Volume= 0.011 af, Depth= 0.79"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	Α	rea (sf)	CN	Description								
		7,535	98	Paved roads w/curbs & sewers, HSG D								
		7,535	98	3 100.00% Impervious Area								
	Тс	Length	Slope	•	Capacity	Description						
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	10.0					Direct Entry.						

Subcatchment 119S: Basin 20

Type IA 24-hr 01-Water Quality Rainfall=1.00"

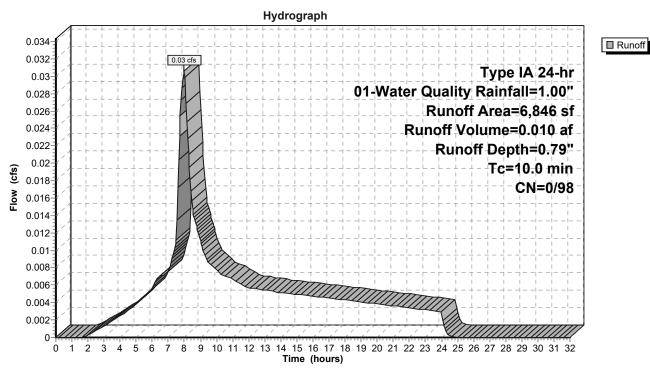
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 70

Summary for Subcatchment 120S: Basin 21


Runoff = 0.03 cfs @ 7.98 hrs, Volume= 0.010 af, Depth= 0.79"

Routed to Reach 148R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

A	rea (sf)	CN [Description							
	6,846	98 F	Paved roads w/curbs & sewers, HSG D							
	6,846	98 1	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 120S: Basin 21

Type IA 24-hr 01-Water Quality Rainfall=1.00"

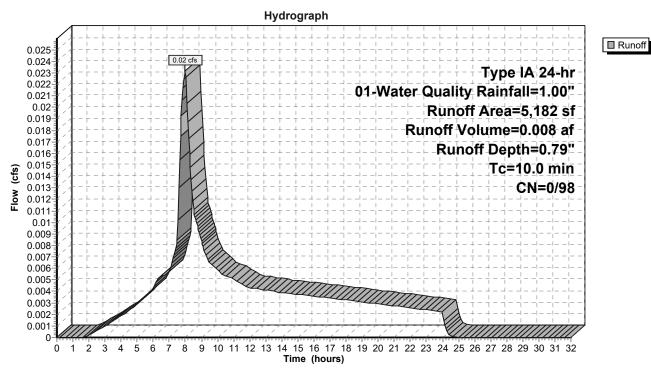
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 71

Summary for Subcatchment 121S: Basin 22


Runoff = 0.02 cfs @ 7.98 hrs, Volume= 0.008 af, Depth= 0.79"

Routed to Reach 154R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

	rea (sf)	CN [Description							
	5,182	98 F	Paved roads w/curbs & sewers, HSG D							
	5,182	98 ′	00.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 121S: Basin 22

Type IA 24-hr 01-Water Quality Rainfall=1.00"

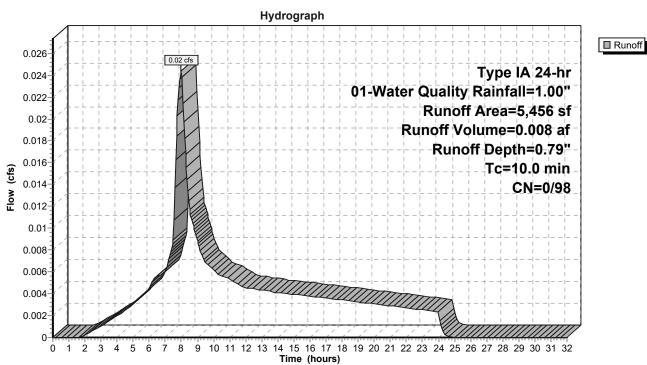
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 72

Summary for Subcatchment 122S: Basin 23


Runoff = 0.02 cfs @ 7.98 hrs, Volume= 0.008 af, Depth= 0.79"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

_	A	rea (sf)	CN	Description								
		5,456	98	Paved roads w/curbs & sewers, HSG D								
		5,456	98	3 100.00% Impervious Area								
	_											
	Tc	Length	Slope	•	Capacity	Description						
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	10.0					Direct Entry.						

Subcatchment 122S: Basin 23

Type IA 24-hr 01-Water Quality Rainfall=1.00"

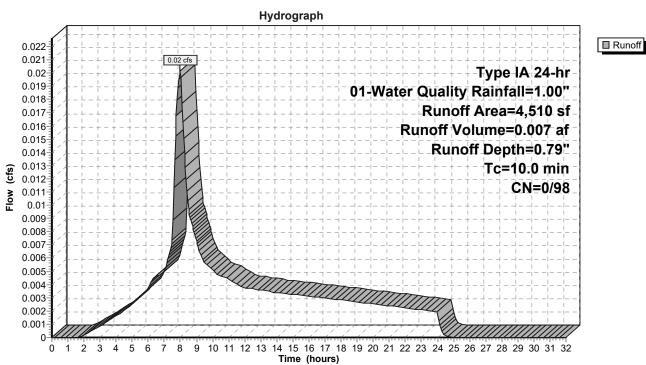
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 73

Summary for Subcatchment 123S: Basin 24


Runoff = 0.02 cfs @ 7.98 hrs, Volume= 0.007 af, Depth= 0.79"

Routed to Reach 162R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

	Area (sf)	CN	Description								
	4,510	98	Paved road	Paved roads w/curbs & sewers, HSG D							
	4,510	98	00.00% Impervious Area								
(mi	Гс Length n) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
10	.0				Direct Entry,						

Subcatchment 123S: Basin 24

Type IA 24-hr 01-Water Quality Rainfall=1.00"

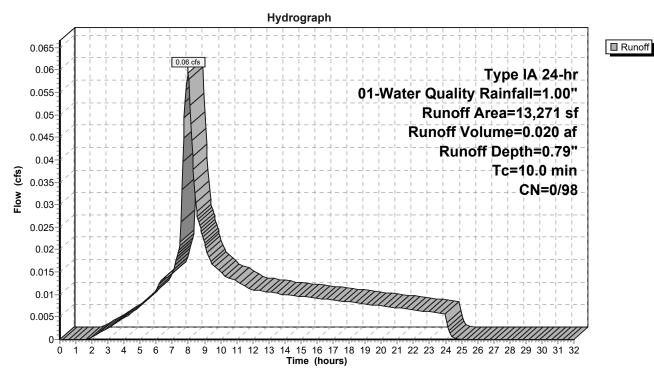
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 74

Summary for Subcatchment 124S: Basin 25


Runoff = 0.06 cfs @ 7.98 hrs, Volume= 0.020 af, Depth= 0.79"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

Are	ea (sf)	CN [Description							
1	3,271	98 F	Paved roads w/curbs & sewers, HSG D							
1	3,271	98 1	100.00% Impervious Area							
Tc I (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 124S: Basin 25

Type IA 24-hr 01-Water Quality Rainfall=1.00"

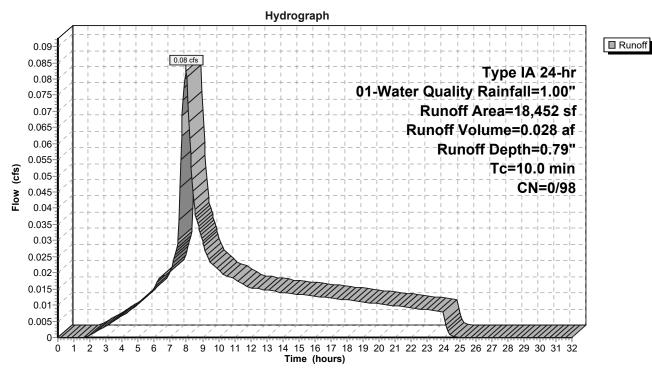
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 75

Summary for Subcatchment 125S: Basin 26


Runoff = 0.08 cfs @ 7.98 hrs, Volume= 0.028 af, Depth= 0.79"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

A	rea (sf)	CN [Description							
	18,452	98 F	Paved roads w/curbs & sewers, HSG D							
•	18,452	98 ′	00.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 125S: Basin 26

Type IA 24-hr 01-Water Quality Rainfall=1.00"

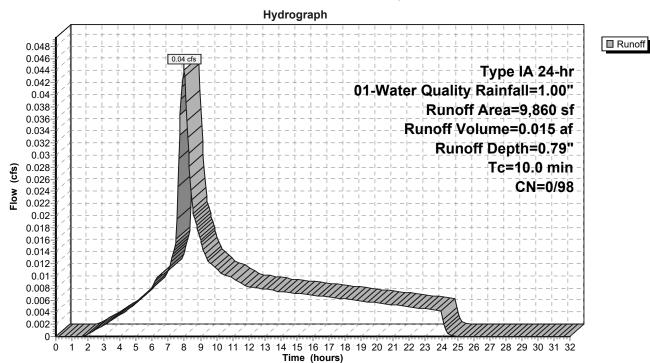
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 76

Summary for Subcatchment 126S: Alley Basin 1


Runoff = 0.04 cfs @ 7.98 hrs, Volume= 0.015 af, Depth= 0.79"

Routed to Reach 140R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

A	rea (sf)	CN [Description							
	9,860	98 F	Paved roads w/curbs & sewers, HSG D							
	9,860	98 1	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 126S: Alley Basin 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

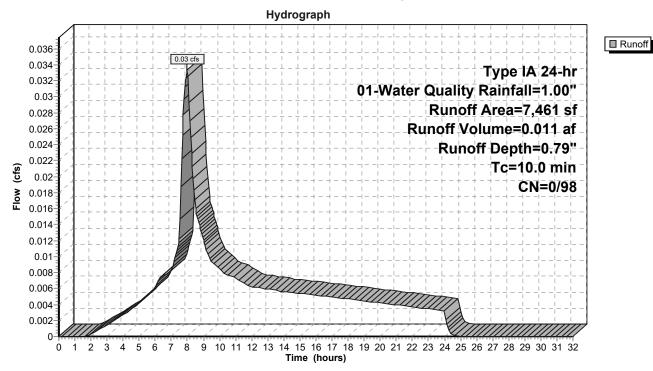
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 77

Summary for Subcatchment 127S: Alley Basin 2


Runoff = 0.03 cfs @ 7.98 hrs, Volume= 0.011 af, Depth= 0.79"

Routed to Reach 141R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

A	rea (sf)	CN [Description								
	7,461	98 F	Paved roads w/curbs & sewers, HSG D								
	7,461	98 1	100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
10.0					Direct Entry,						

Subcatchment 127S: Alley Basin 2

Type IA 24-hr 01-Water Quality Rainfall=1.00"

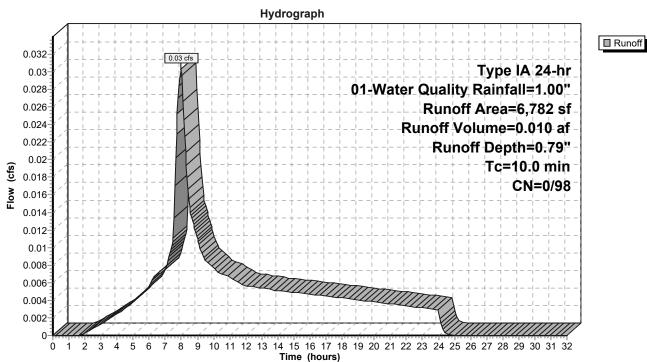
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 78

Summary for Subcatchment 128S: Alley Basin 3


Runoff = 0.03 cfs @ 7.98 hrs, Volume= 0.010 af, Depth= 0.79"

Routed to Reach 147R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

A	rea (sf)	CN [Description							
	6,782	98 F	Paved roads w/curbs & sewers, HSG D							
	6,782	98 ′	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 128S: Alley Basin 3

Type IA 24-hr 01-Water Quality Rainfall=1.00"

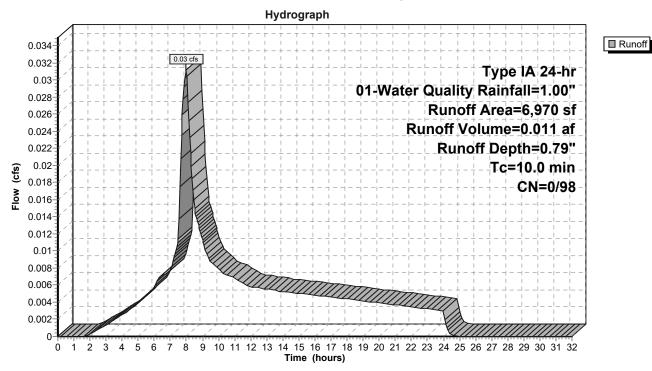
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 79

Summary for Subcatchment 129S: Alley Basin 4


Runoff = 0.03 cfs @ 7.98 hrs, Volume= 0.011 af, Depth= 0.79"

Routed to Reach 153R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

A	rea (sf)	CN [Description		
	6,970	98 Paved roads w/curbs & sewers, HSG D			
	6,970	98 1	00.00% Im	pervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry,

Subcatchment 129S: Alley Basin 4

Type IA 24-hr 01-Water Quality Rainfall=1.00"

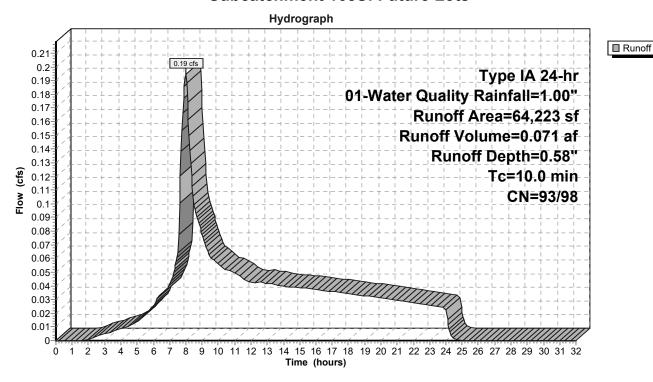
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 80

Summary for Subcatchment 168S: Future Lots


Runoff = 0.19 cfs @ 7.99 hrs, Volume= 0.071 af, Depth= 0.58"

Routed to Reach 166R: Basin Future

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

	Area (sf)	CN	Description
4	39,915	93	70% Lot Coverage Weighted
	24,308	98	Paved roads w/curbs & sewers, HSG D
	64,223	95	Weighted Average
	39,915	93	62.15% Pervious Area
	24,308	98	37.85% Impervious Area
_	Tc Length (min) (feet)	Slo _l (ft/	
	10.0		Direct Entry,

Subcatchment 168S: Future Lots

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

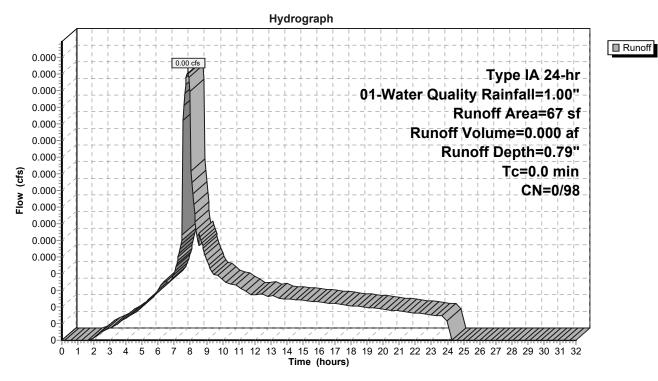
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 81

Summary for Subcatchment 169S: Swale 2

[46] Hint: Tc=0 (Instant runoff peak depends on dt)


Runoff = 0.00 cfs @ 7.83 hrs, Volume= 0.000 af, Depth= 0.79"

Routed to Pond 54P: Stormwater Swale 2

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

Area (sf)	CN	Description	
67	98	Water Surface, HSG D	
67	98	100 00% Impervious Area	

Subcatchment 169S: Swale 2

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

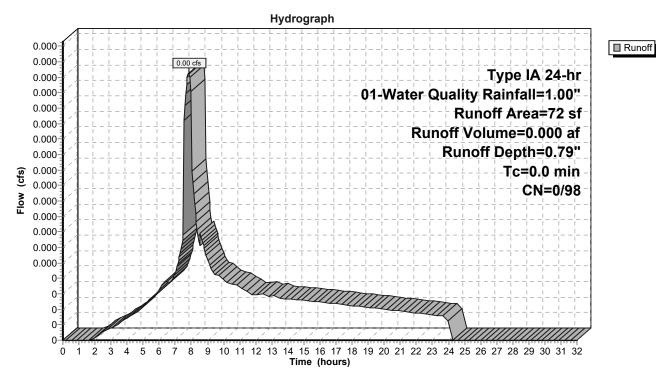
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 82

Summary for Subcatchment 170S: Swale 1

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 0.00 cfs @ 7.83 hrs, Volume= 0.000 at


0.000 af, Depth= 0.79"

Routed to Pond 60P: Stormwater Swale 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 01-Water Quality Rainfall=1.00"

 Area (sf)	CN	Description
72	98	Water Surface, HSG D
 72	98	100.00% Impervious Area

Subcatchment 170S: Swale 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

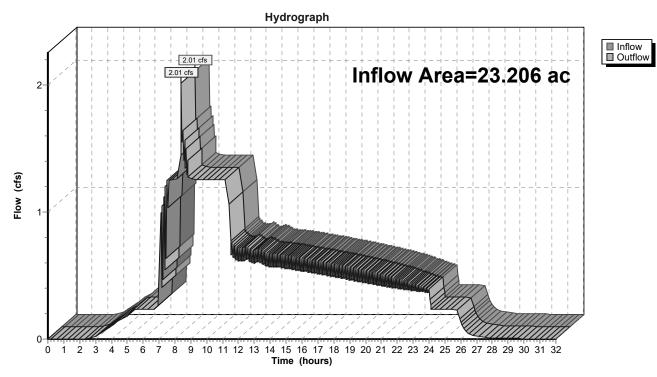
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 83

Summary for Reach 39R: Post-Construction Peak Flow

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 23.206 ac, 36.84% Impervious, Inflow Depth > 0.58" for 01-Water Quality event

Inflow = 2.01 cfs @ 8.40 hrs, Volume= 1.113 af

Outflow = 2.01 cfs @ 8.40 hrs, Volume= 1.113 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 39R: Post-Construction Peak Flow

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

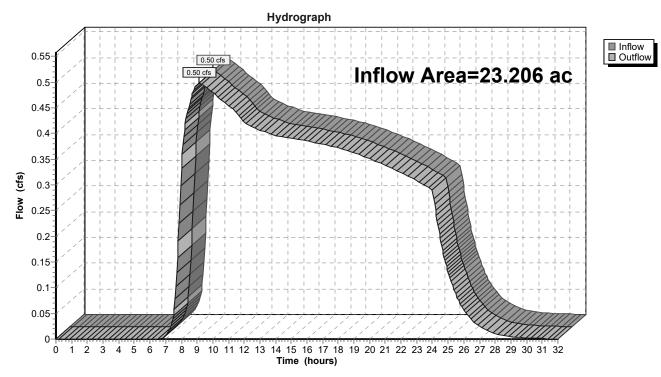
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 84

Summary for Reach 42R: Pre-Construction Peak Flow

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 23.206 ac, 0.00% Impervious, Inflow Depth > 0.28" for 01-Water Quality event

Inflow = 0.50 cfs @ 9.13 hrs, Volume= 0.551 af

Outflow = 0.50 cfs @ 9.13 hrs, Volume= 0.551 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 42R: Pre-Construction Peak Flow

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

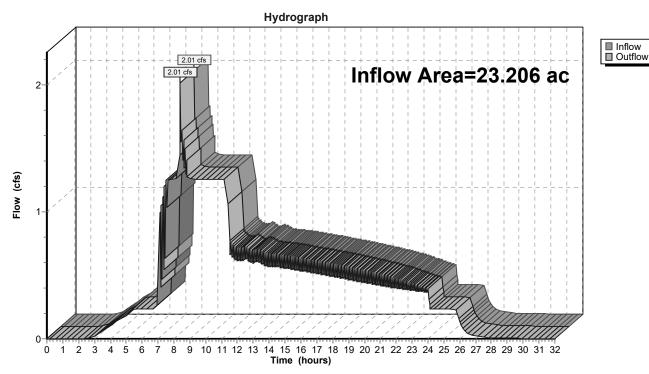
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 85

Summary for Reach 58R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 23.206 ac, 36.84% Impervious, Inflow Depth > 0.58" for 01-Water Quality event


Inflow = 2.01 cfs @ 8.40 hrs, Volume= 1.113 af

Outflow = 2.01 cfs @ 8.40 hrs, Volume= 1.113 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 39R: Post-Construction Peak Flow

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 58R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

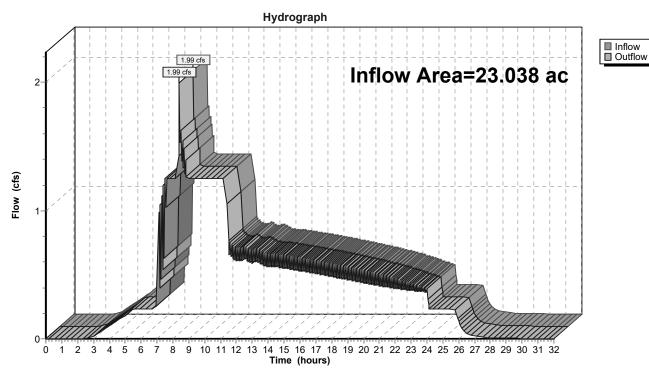
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 86

Summary for Reach 85R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 23.038 ac, 36.38% Impervious, Inflow Depth > 0.57" for 01-Water Quality event


Inflow = 1.99 cfs @ 8.40 hrs, Volume= 1.102 af

Outflow = 1.99 cfs @ 8.40 hrs, Volume= 1.102 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 85R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

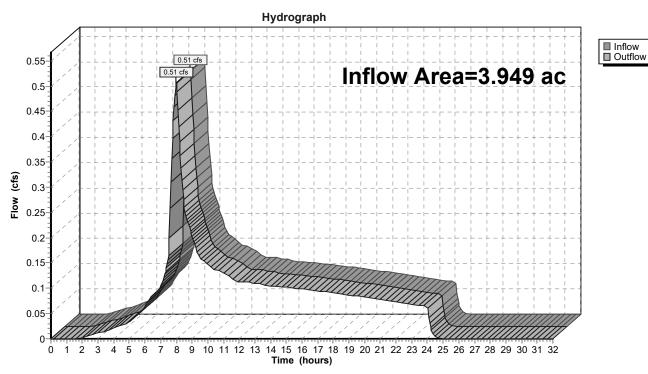
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 87

Summary for Reach 130R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.949 ac, 33.88% Impervious, Inflow Depth = 0.57" for 01-Water Quality event


Inflow = 0.51 cfs @ 7.99 hrs, Volume= 0.186 af

Outflow = 0.51 cfs @ 7.99 hrs, Volume= 0.186 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 130R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

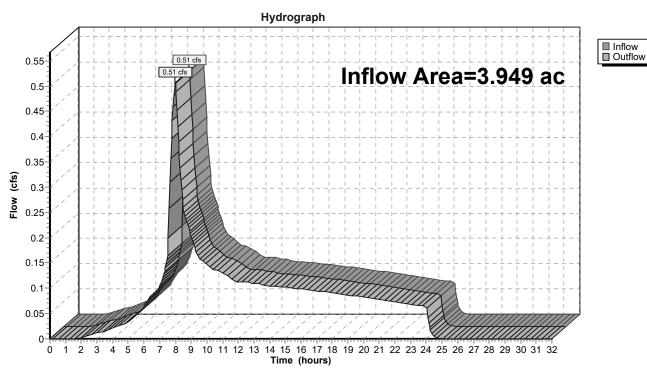
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 88

Summary for Reach 131R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.949 ac, 33.88% Impervious, Inflow Depth = 0.57" for 01-Water Quality event


Inflow = 0.51 cfs @ 7.99 hrs, Volume= 0.186 af

Outflow = 0.51 cfs @ 7.99 hrs, Volume= 0.186 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 130R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 131R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

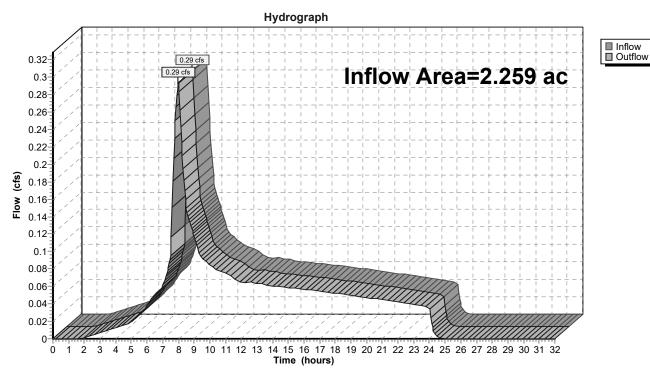
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 89

Summary for Reach 132R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.259 ac, 35.43% Impervious, Inflow Depth = 0.57" for 01-Water Quality event


Inflow = 0.29 cfs @ 7.99 hrs, Volume= 0.108 af

Outflow = 0.29 cfs @ 7.99 hrs, Volume= 0.108 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 131R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 132R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

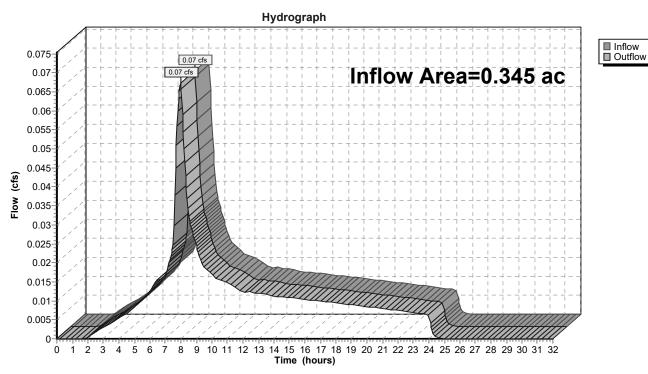
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 90

Summary for Reach 133R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.345 ac,100.00% Impervious, Inflow Depth = 0.79" for 01-Water Quality event


Inflow = 0.07 cfs @ 7.98 hrs, Volume= 0.023 af

Outflow = 0.07 cfs @ 7.98 hrs, Volume= 0.023 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 132R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 133R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

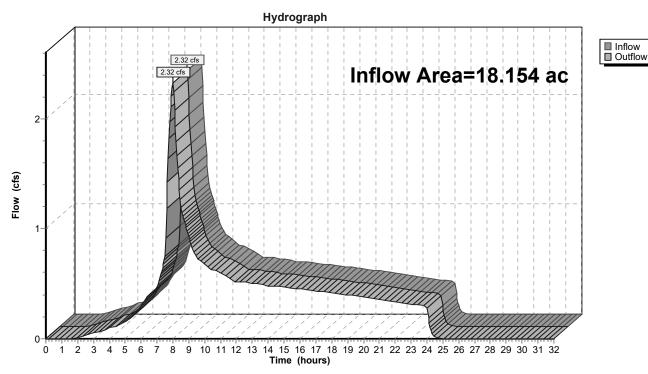
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 91

Summary for Reach 134R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 18.154 ac, 33.65% Impervious, Inflow Depth = 0.56" for 01-Water Quality event


Inflow = 2.32 cfs @ 7.99 hrs, Volume= 0.855 af

Outflow = 2.32 cfs @ 7.99 hrs, Volume= 0.855 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 134R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

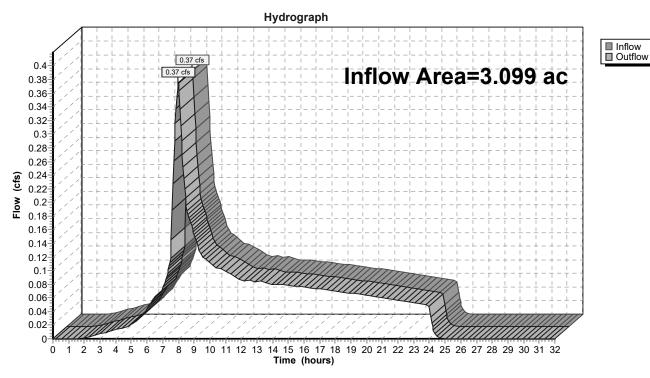
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 92

Summary for Reach 135R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.099 ac, 26.69% Impervious, Inflow Depth = 0.54" for 01-Water Quality event


Inflow = 0.37 cfs @ 7.99 hrs, Volume= 0.140 af

Outflow = 0.37 cfs @ 7.99 hrs, Volume= 0.140 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 134R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 135R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

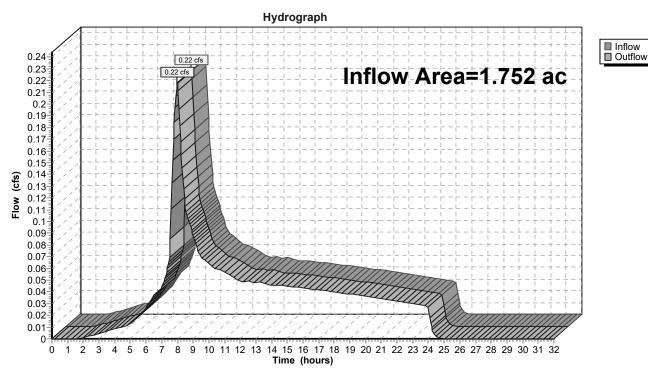
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 93

Summary for Reach 136R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.752 ac, 30.00% Impervious, Inflow Depth = 0.55" for 01-Water Quality event


Inflow = 0.22 cfs @ 7.99 hrs, Volume= 0.081 af

Outflow = 0.22 cfs @ 7.99 hrs, Volume= 0.081 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 135R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 136R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

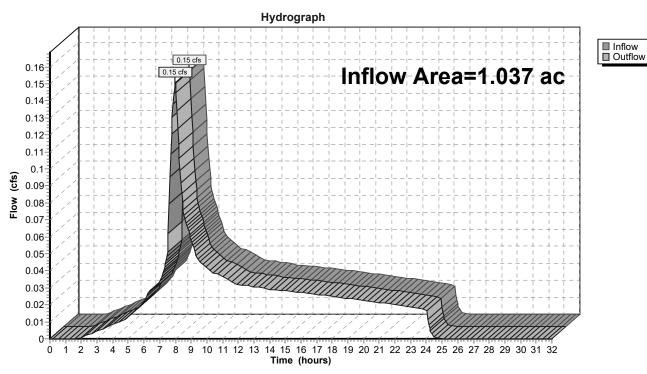
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 94

Summary for Reach 137R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.037 ac, 50.68% Impervious, Inflow Depth = 0.62" for 01-Water Quality event


Inflow = 0.15 cfs @ 7.99 hrs, Volume= 0.054 af

Outflow = 0.15 cfs @ 7.99 hrs, Volume= 0.054 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 136R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 137R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

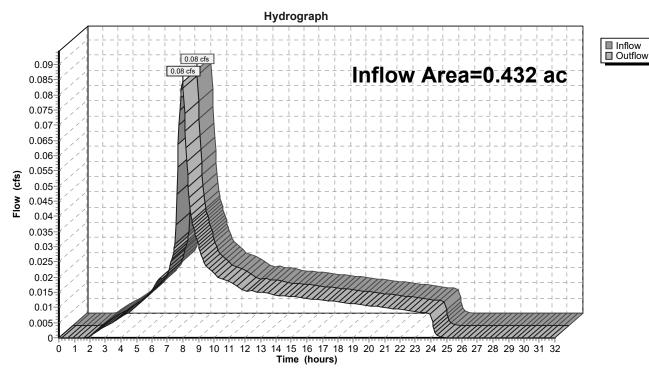
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 95

Summary for Reach 138R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.432 ac,100.00% Impervious, Inflow Depth = 0.79" for 01-Water Quality event


Inflow = 0.08 cfs @ 7.98 hrs, Volume= 0.028 af

Outflow = 0.08 cfs @ 7.98 hrs, Volume= 0.028 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 138R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

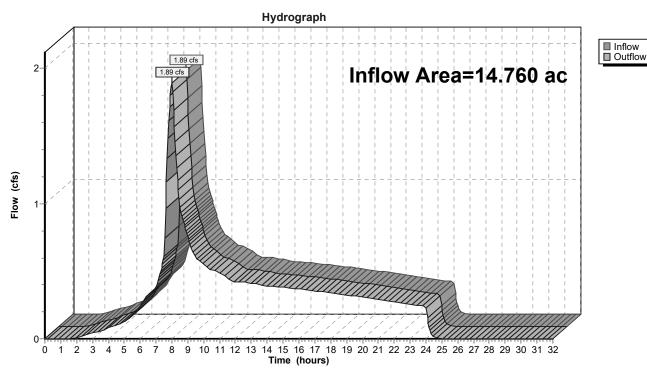
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 96

Summary for Reach 139R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.760 ac, 33.78% Impervious, Inflow Depth = 0.57" for 01-Water Quality event


Inflow = 1.89 cfs @ 7.99 hrs, Volume= 0.695 af

Outflow = 1.89 cfs @ 7.99 hrs, Volume= 0.695 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 158R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 139R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

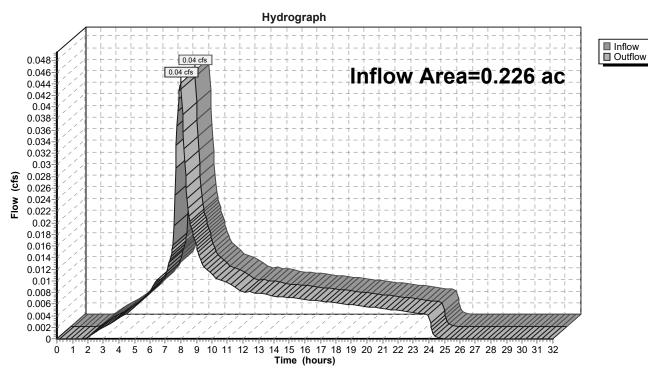
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 97

Summary for Reach 140R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.226 ac,100.00% Impervious, Inflow Depth = 0.79" for 01-Water Quality event


Inflow = 0.04 cfs @ 7.98 hrs, Volume= 0.015 af

Outflow = 0.04 cfs @ 7.98 hrs, Volume= 0.015 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 138R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 140R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

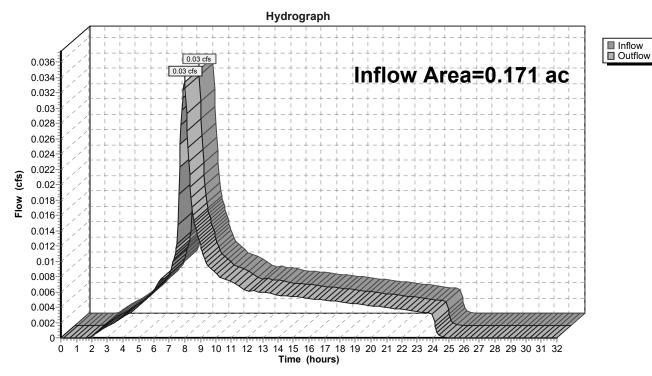
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 98

Summary for Reach 141R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.171 ac,100.00% Impervious, Inflow Depth = 0.79" for 01-Water Quality event


Inflow = 0.03 cfs @ 7.98 hrs, Volume= 0.011 af

Outflow = 0.03 cfs @ 7.98 hrs, Volume= 0.011 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 139R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 141R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

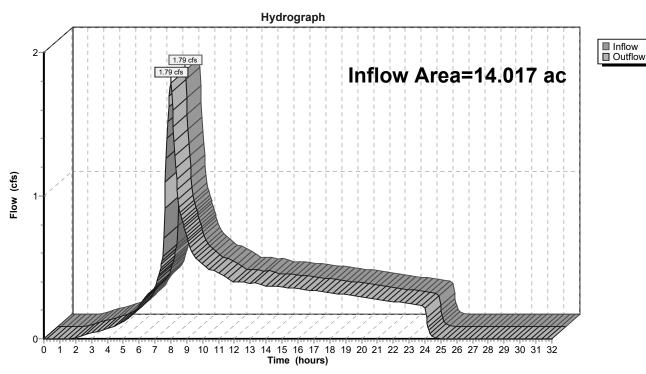
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 99

Summary for Reach 142R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.017 ac, 33.09% Impervious, Inflow Depth = 0.56" for 01-Water Quality event


Inflow = 1.79 cfs @ 7.99 hrs, Volume= 0.658 af

Outflow = 1.79 cfs @ 7.99 hrs, Volume= 0.658 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 159R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 142R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

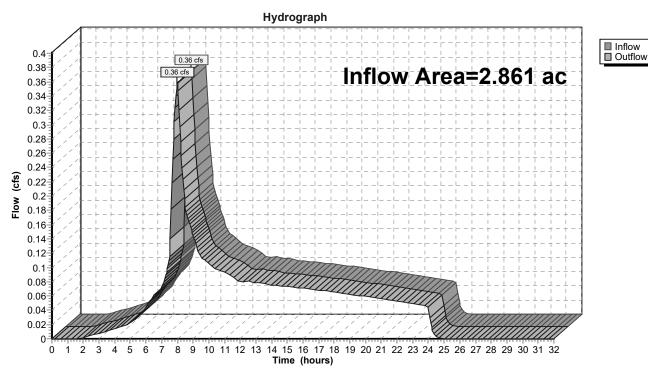
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 100

Summary for Reach 143R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.861 ac, 30.95% Impervious, Inflow Depth = 0.56" for 01-Water Quality event


Inflow = 0.36 cfs @ 7.99 hrs, Volume= 0.133 af

Outflow = 0.36 cfs @ 7.99 hrs, Volume= 0.133 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 142R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 143R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

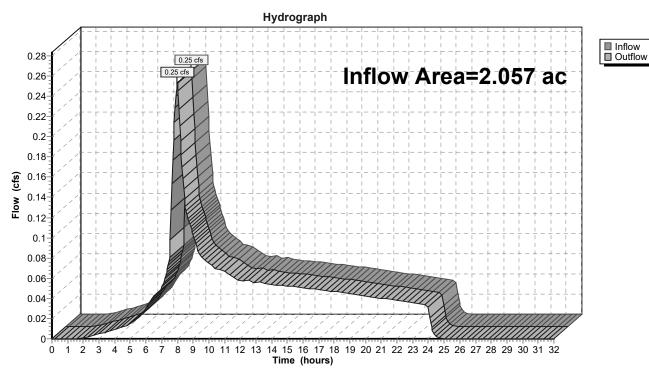
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

<u>Page 101</u>

Summary for Reach 144R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.057 ac, 28.74% Impervious, Inflow Depth = 0.55" for 01-Water Quality event


Inflow = 0.25 cfs @ 7.99 hrs, Volume= 0.094 af

Outflow = 0.25 cfs @ 7.99 hrs, Volume= 0.094 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 143R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 144R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

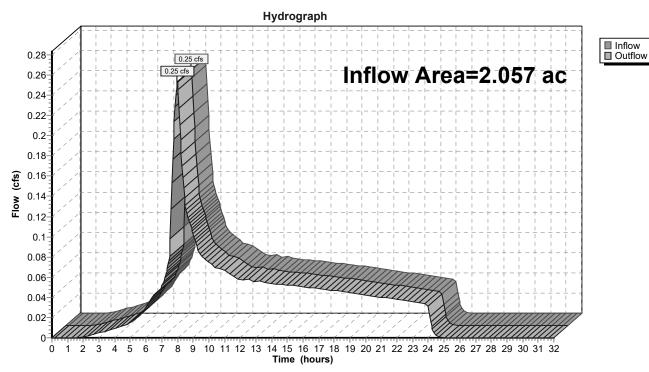
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 102

Summary for Reach 145R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.057 ac, 28.74% Impervious, Inflow Depth = 0.55" for 01-Water Quality event


Inflow = 0.25 cfs @ 7.99 hrs, Volume= 0.094 af

Outflow = 0.25 cfs @ 7.99 hrs, Volume= 0.094 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 144R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 145R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

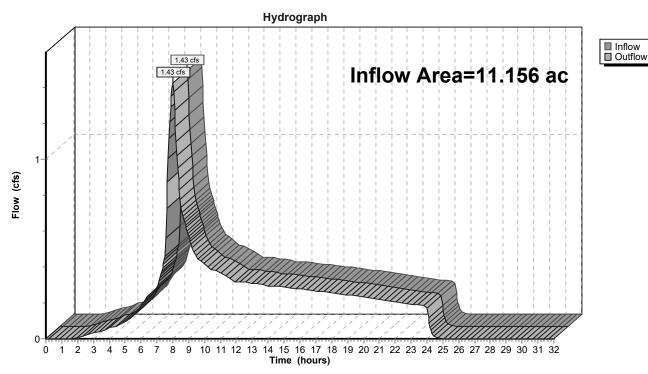
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 103

Summary for Reach 146R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 11.156 ac, 33.63% Impervious, Inflow Depth = 0.56" for 01-Water Quality event


Inflow = 1.43 cfs @ 7.99 hrs, Volume= 0.525 af

Outflow = 1.43 cfs @ 7.99 hrs, Volume= 0.525 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 142R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 146R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

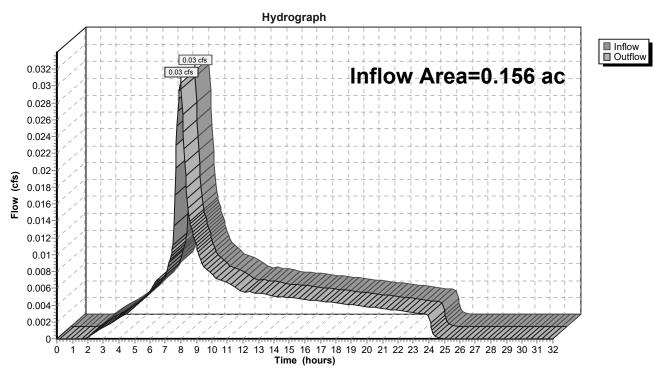
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 104

Summary for Reach 147R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.156 ac,100.00% Impervious, Inflow Depth = 0.79" for 01-Water Quality event


Inflow = 0.03 cfs @ 7.98 hrs, Volume= 0.010 af

Outflow = 0.03 cfs @ 7.98 hrs, Volume= 0.010 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 146R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 147R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

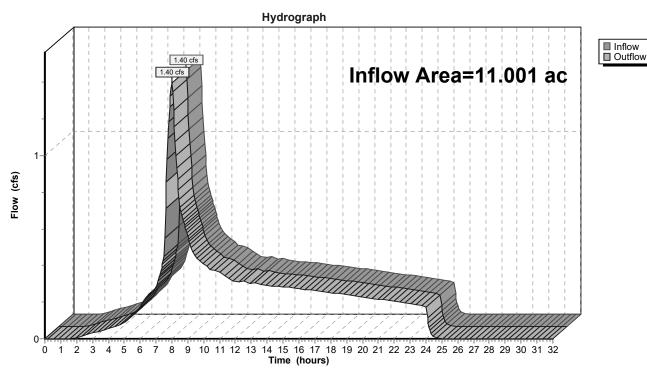
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 105

Summary for Reach 148R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 11.001 ac, 32.69% Impervious, Inflow Depth = 0.56" for 01-Water Quality event


Inflow = 1.40 cfs @ 7.99 hrs, Volume= 0.515 af

Outflow = 1.40 cfs @ 7.99 hrs, Volume= 0.515 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 146R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 148R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

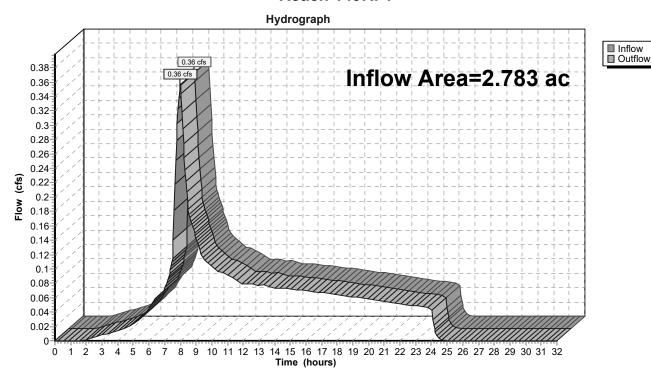
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 106

Summary for Reach 149R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.783 ac, 33.49% Impervious, Inflow Depth = 0.56" for 01-Water Quality event


Inflow = 0.36 cfs @ 7.99 hrs, Volume= 0.131 af

Outflow = $0.36 \text{ cfs } \overline{\textcircled{0}}$ 7.99 hrs, Volume= 0.131 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 148R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 149R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

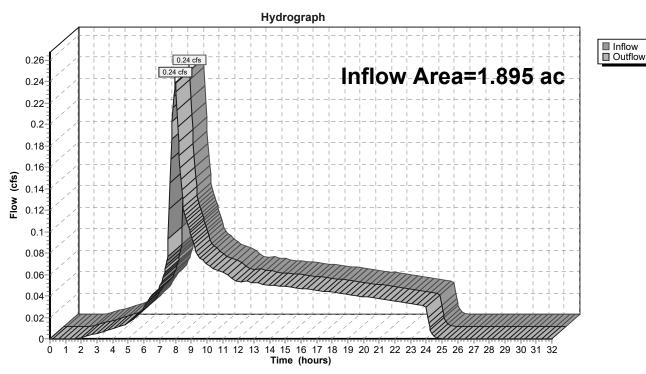
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 107

Summary for Reach 150R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.895 ac, 31.51% Impervious, Inflow Depth = 0.56" for 01-Water Quality event


Inflow = 0.24 cfs @ 7.99 hrs, Volume= 0.088 af

Outflow = 0.24 cfs @ 7.99 hrs, Volume= 0.088 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 149R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 150R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

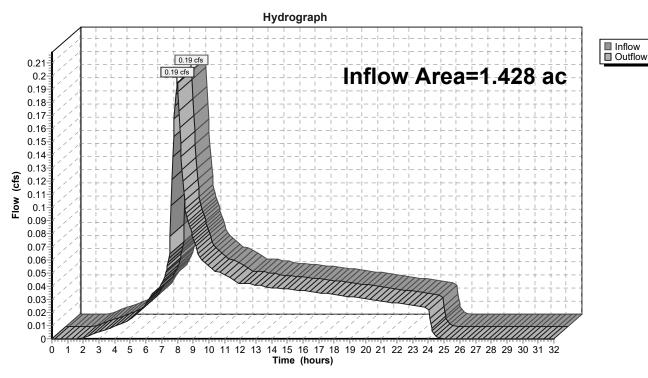
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 108

Summary for Reach 151R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.428 ac, 41.79% Impervious, Inflow Depth = 0.59" for 01-Water Quality event


Inflow = 0.19 cfs @ 7.99 hrs, Volume= 0.071 af

Outflow = 0.19 cfs @ 7.99 hrs, Volume= 0.071 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 150R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 151R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

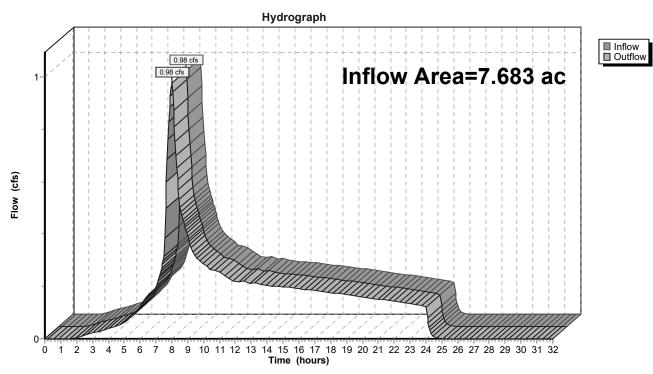
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 109

Summary for Reach 152R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 7.683 ac, 32.64% Impervious, Inflow Depth = 0.56" for 01-Water Quality event


Inflow = 0.98 cfs @ 7.99 hrs, Volume= 0.360 af

Outflow = 0.98 cfs @ 7.99 hrs, Volume= 0.360 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 148R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 152R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

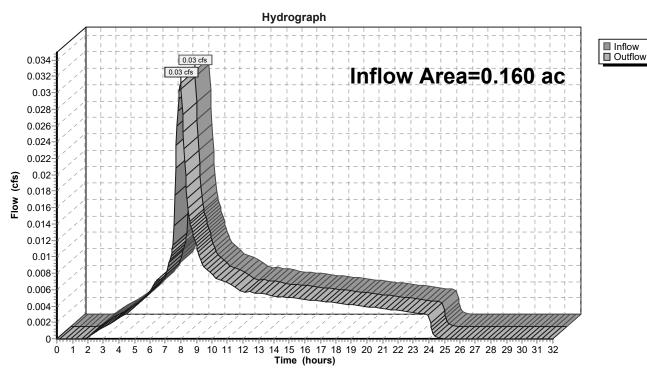
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 110

Summary for Reach 153R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.160 ac,100.00% Impervious, Inflow Depth = 0.79" for 01-Water Quality event


Inflow = 0.03 cfs @ 7.98 hrs, Volume= 0.011 af

Outflow = 0.03 cfs @ 7.98 hrs, Volume= 0.011 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 152R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 153R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

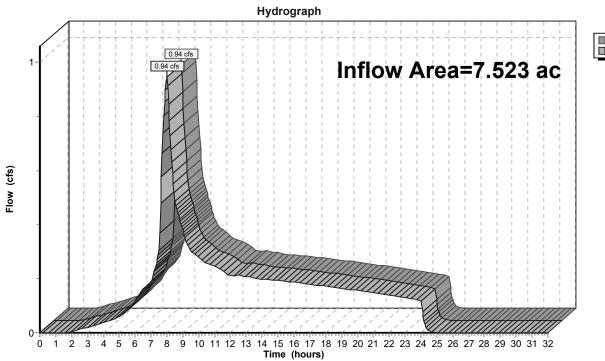
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

<u>Page 111</u>

Summary for Reach 154R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 7.523 ac, 31.20% Impervious, Inflow Depth = 0.56" for 01-Water Quality event


Inflow = 0.94 cfs @ 7.99 hrs, Volume= 0.349 af

Outflow = 0.94 cfs @ 7.99 hrs, Volume= 0.349 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 152R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 154R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

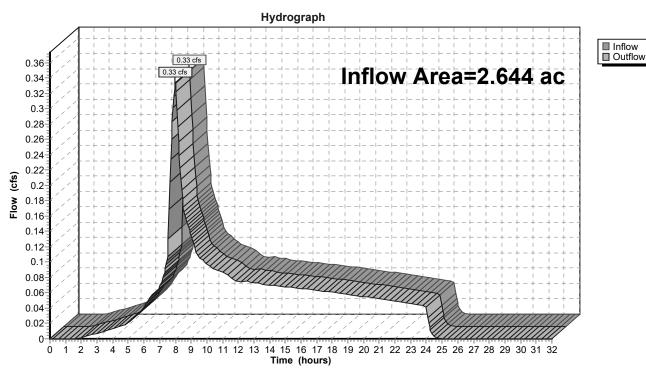
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 112

Summary for Reach 155R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.644 ac, 31.72% Impervious, Inflow Depth = 0.56" for 01-Water Quality event


Inflow = 0.33 cfs @ 7.99 hrs, Volume= 0.123 af

Outflow = 0.33 cfs @ 7.99 hrs, Volume= 0.123 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 154R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 155R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

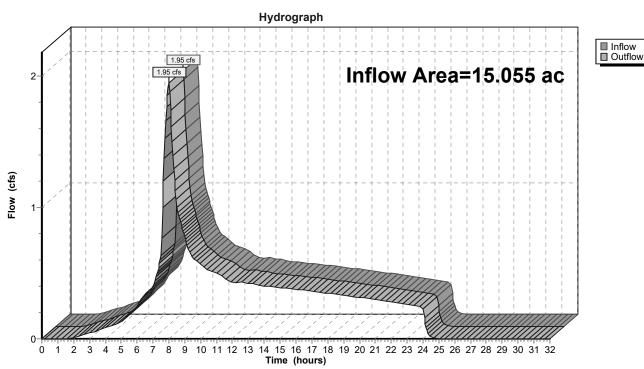
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 113

Summary for Reach 158R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 15.055 ac, 35.08% Impervious, Inflow Depth = 0.57" for 01-Water Quality event


Inflow = 1.95 cfs @ 7.99 hrs, Volume= 0.715 af

Outflow = 1.95 cfs @ 7.99 hrs, Volume= 0.715 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 134R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 158R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

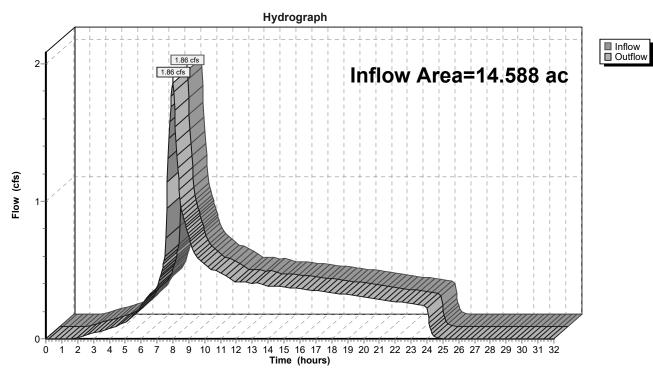
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 114

Summary for Reach 159R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.588 ac, 33.00% Impervious, Inflow Depth = 0.56" for 01-Water Quality event


Inflow = 1.86 cfs @ 7.99 hrs, Volume= 0.684 af

Outflow = 1.86 cfs @ 7.99 hrs, Volume= 0.684 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 139R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 159R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

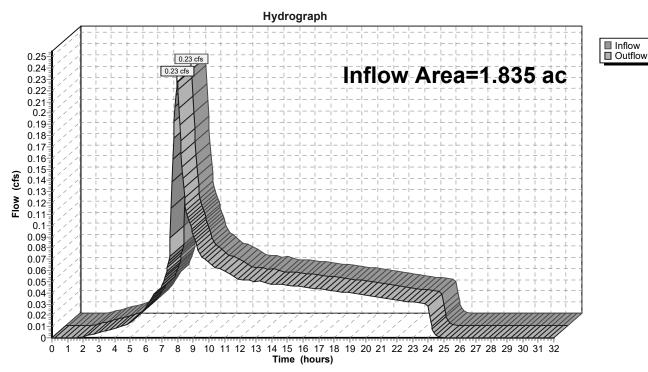
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 115

Summary for Reach 160R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.835 ac, 29.73% Impervious, Inflow Depth = 0.55" for 01-Water Quality event


Inflow = 0.23 cfs @ 7.99 hrs, Volume= 0.084 af

Outflow = 0.23 cfs @ 7.99 hrs, Volume= 0.084 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 155R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 160R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

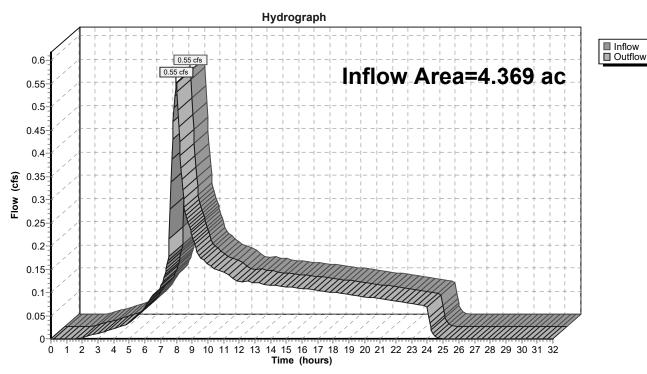
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 116

Summary for Reach 162R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.369 ac, 31.81% Impervious, Inflow Depth = 0.56" for 01-Water Quality event


Inflow = 0.55 cfs @ 7.99 hrs, Volume= 0.203 af

Outflow = 0.55 cfs @ 7.99 hrs, Volume= 0.203 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 154R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 162R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

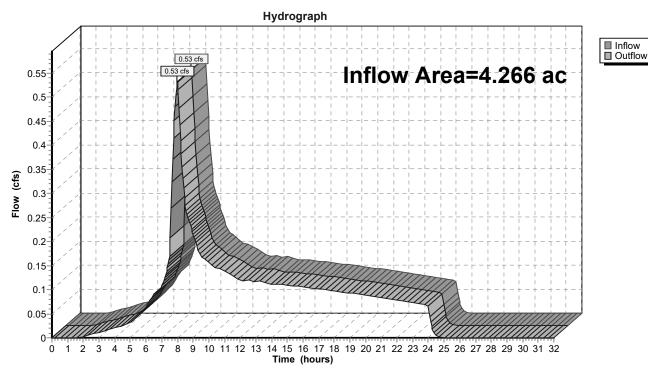
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 117

Summary for Reach 163R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.266 ac, 30.15% Impervious, Inflow Depth = 0.55" for 01-Water Quality event


Inflow = 0.53 cfs @ 7.99 hrs, Volume= 0.197 af

Outflow = 0.53 cfs @ 7.99 hrs, Volume= 0.197 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 162R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 163R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

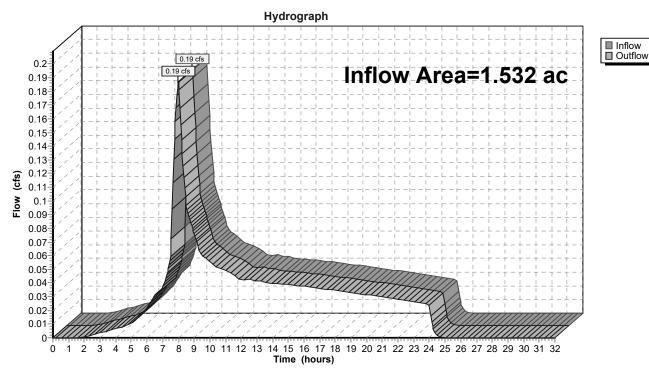
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 118

Summary for Reach 165R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.532 ac, 27.64% Impervious, Inflow Depth = 0.54" for 01-Water Quality event


Inflow = 0.19 cfs @ 7.99 hrs, Volume= 0.070 af

Outflow = 0.19 cfs @ 7.99 hrs, Volume= 0.070 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 163R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 165R: 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

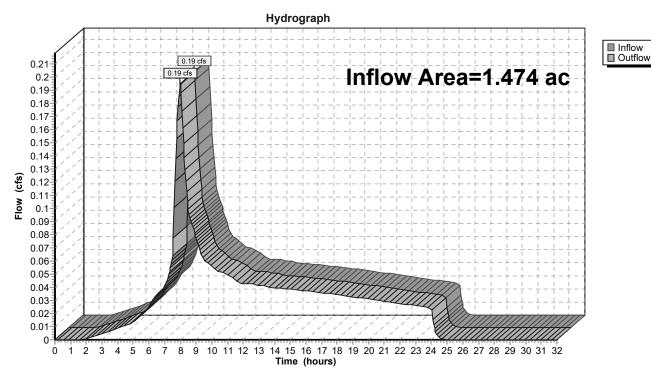
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 119

Summary for Reach 166R: Basin Future

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.474 ac, 37.85% Impervious, Inflow Depth = 0.58" for 01-Water Quality event


Inflow = 0.19 cfs @ 7.99 hrs, Volume= 0.071 af

Outflow = 0.19 cfs @ 7.99 hrs, Volume= 0.071 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 163R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 166R: Basin Future

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 120

Summary for Pond 54P: Stormwater Swale 2

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=33)

Inflow Area = 0.082 ac,100.00% Impervious, Inflow Depth = 0.79" for 01-Water Quality event

Inflow = 0.02 cfs @ 7.98 hrs, Volume= 0.005 af

Outflow = 0.01 cfs @ 8.25 hrs, Volume= 0.005 af, Atten= 31%, Lag= 16.1 min

Primary = 0.01 cfs @ 8.25 hrs, Volume= 0.005 af

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Peak Elev= 222.33' @ 8.25 hrs Surf.Area= 184 sf Storage= 27 cf

Flood Elev= 223.30' Surf.Area= 192 sf Storage= 88 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 54.3 min (772.9 - 718.7)

Volume	Inv	ert Avai	I.Storage	Storage Description					
#1	222.3	30'	63 cf		rregular)Listed be				
#2	220.8	30'	10 cf	Imported Soil (Ir 101 cf Overall x	regular)Listed be	low (Recalc)			
#3	220.0)5'	15 cf	Rock Chamber (Irregular)Listed below (Recalc) 44 cf Overall x 35.0% Voids					
			88 cf	Total Available S	torage				
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
222.3	0	59	33.0	0	0	59			
223.3	0	67	34.0	63	63	93			
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet Area			
(feet		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
220.8		67	34.0	0	0	67			
222.3	0	67	34.0	101	101	118			
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
220.0	<u>, </u>	58	33.0	0	0	58			
220.8	_	58	33.0	44	44	83			
Davisa	Davitina	l.e.		at Davissa					
<u>Device</u>	Routing			et Devices	Of				
#1 #2	Primary			0 in/hr Perf Pipes		ea			
#2	Primary	223		Horiz. 4"Overflow ted to weir flow at l					
#3	Primary	222	.30' 10.0	" Vert. 10" Outflo ted to weir flow at l					

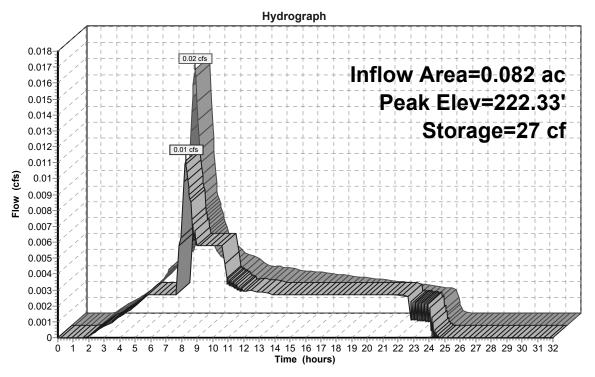
Primary OutFlow Max=0.01 cfs @ 8.25 hrs HW=222.33' TW=0.00' (Dynamic Tailwater)

—1=Perf Pipes (Exfiltration Controls 0.01 cfs)

-2=4"Overflow Pipe (Controls 0.00 cfs)

-3=10" Outflow Pipe (Orifice Controls 0.00 cfs @ 0.54 fps)

Type IA 24-hr 01-Water Quality Rainfall=1.00"


Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 121

Pond 54P: Stormwater Swale 2

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 122

Summary for Pond 60P: Stormwater Swale 1

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=34)

Inflow Area = 0.085 ac,100.00% Impervious, Inflow Depth = 0.79" for 01-Water Quality event

Inflow = 0.02 cfs @ 7.98 hrs, Volume= 0.006 af

Outflow = 0.01 cfs @ 8.26 hrs, Volume= 0.006 af, Atten= 32%, Lag= 16.7 min

Primary = 0.01 cfs @ 8.26 hrs, Volume= 0.006 af

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Peak Elev= 221.97' @ 8.26 hrs Surf.Area= 194 sf Storage= 28 cf

Flood Elev= 222.95' Surf.Area= 204 sf Storage= 93 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 54.4 min (773.0 - 718.7)

Volume	Inv	ert Avai	l.Storage	Storage Descripti	on				
#1	221.9	95'	67 cf	Open Storage (Irregular)Listed below (Recalc)					
#2	220.4	45'	11 cf		Imported Soil (Irregular)Listed below (Recalc)				
				108 cf Overall x					
#3	219.7	70'	16 cf		Irregular)Listed b	elow (Recalc)			
				45 cf Overall x 3					
			93 cf	Total Available S	torage				
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
221.9	<i>'</i>	62	34.0	0	0	62			
222.9	_	72	36.0	67	67	99			
Elevation	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet	t)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
220.4	-	72	36.0	0	0	72			
221.9	5	72	36.0	108	108	126			
		0.11	. .		0 0	187 . A			
Elevation		Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
219.7	-	60	34.0	0	0	60			
220.4	5	60	34.0	45	45	86			
Device	Routing	In	vert Outle	et Devices					
#1	Primary	219	.70' 2.00	0 in/hr Perf Pipes	over Surface are				
#2	Primary	222		Horiz. 4"Overflov					
	,		Limi	ted to weir flow at l	low heads				
#3	Primary	221	.95' 10.0	" Vert. 10" Outflo	w Pipe C= 0.600				
			Limi	ted to weir flow at l	low heads				

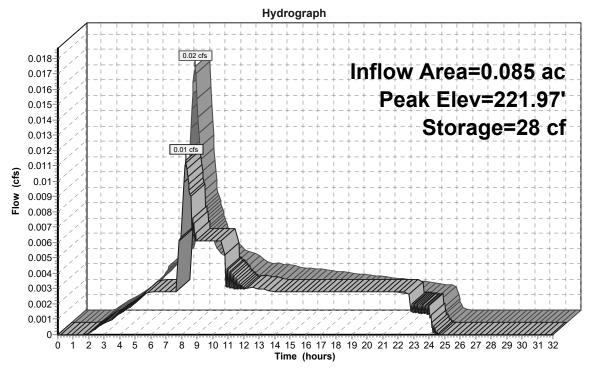
Primary OutFlow Max=0.01 cfs @ 8.26 hrs HW=221.97' TW=0.00' (Dynamic Tailwater)

-1=Perf Pipes (Exfiltration Controls 0.01 cfs)

—2=4"Overflow Pipe (Controls 0.00 cfs)

-3=10" Outflow Pipe (Orifice Controls 0.00 cfs @ 0.53 fps)

Type IA 24-hr 01-Water Quality Rainfall=1.00"


Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 123

Pond 60P: Stormwater Swale 1

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 124

Summary for Pond 63P: Detention Pond

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=133)

23.038 ac, 36.38% Impervious, Inflow Depth = 0.57" for 01-Water Quality event Inflow Area =

Inflow 3.01 cfs @ 7.99 hrs, Volume= 1.103 af

Outflow 8.40 hrs, Volume= 1.102 af, Atten= 34%, Lag= 24.8 min 1.99 cfs @

Primary 1.99 cfs @ 8.40 hrs, Volume= 1.102 af

Routed to Reach 85R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Peak Elev= 221.50' @ 8.40 hrs Surf.Area= 43,028 sf Storage= 5,053 cf

Flood Elev= 225.50' Surf.Area= 48,838 sf Storage= 80,897 cf

Plug-Flow detention time= 52.7 min calculated for 1.100 af (100% of inflow)

Center-of-Mass det. time= 52.5 min (822.9 - 770.5)

Volume	Invert	Avail.Storage	Storage Description
#1	221.50'	75,859 cf	Open Storage (Irregular)Listed below (Recalc)
#2	220.00'	3,288 cf	Growing Medium (Irregular)Listed below (Recalc)
			32,879 cf Overall x 10.0% Voids
#3	219.00'	1,750 cf	Rock Chamber (Prismatic)Listed below (Recalc)
			5,000 cf Overall x 35.0% Voids
		90 907 of	Total Available Storage

	8	0,897 cf	Total Available Stor	rage	
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
221.50	16,108	696.8	0	0	16,108
222.50	17,511	717.0	16,805	16,805	18,488
223.50	18,943	738.5	18,222	35,027	21,082
224.50	20,410	754.7	19,672	54,699	23,147
225.50	21,919	770.9	21,160	75,859	25,257
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	/ 	(f = - + \	(cubic-feet)	(cubic-feet)	(sq-ft)
(1661)	(sq-ft)	(feet)	(Cubic-leet)	(Cubic-icci)	(34-11)
220.00	(sq-π) 21,919	770.9	0	0	21,919
220.00	21,919	770.9	0	0	21,919
220.00	21,919	770.9 770.9	0	0 32,879	21,919
220.00 221.50	21,919 21,919	770.9 770.9 Inc	0 32,879	0 32,879 tore	21,919
220.00 221.50 Elevation	21,919 21,919 Surf.Area	770.9 770.9 Inc	0 32,879 .Store Cum.St	0 32,879 tore	21,919

Type IA 24-hr 01-Water Quality Rainfall=1.00"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 125

Device	Routing	Invert	Outlet Devices		
#1	Primary	219.00'	24.0" Round 24" Pipe		
	•		L= 100.0' CPP, mitered to conform to fill, Ke= 0.700		
			Inlet / Outlet Invert= 219.00' / 218.80' S= 0.0020 '/' Cc= 0.900		
			n= 0.010, Flow Area= 3.14 sf		
#2	Device 1	219.00'	2.000 in/hr 4" Perf Pipes over Surface area		
#3	Device 1	221.85'	6.0" Vert. 2x6" Orifice X 2.00 C= 0.600		
			Limited to weir flow at low heads		
#4	Device 1	222.78'	6.0" Vert. 6" Orifice C= 0.600 Limited to weir flow at low heads		
#5	Device 1	222.95'	6.0" Vert. 6" Orifice C= 0.600 Limited to weir flow at low heads		
#6	Device 1	223.25'	4.0" Vert. 4" Orifice C= 0.600 Limited to weir flow at low heads		
#7	Device 1	223.55'	4.0" Vert. 4" Orifice C= 0.600 Limited to weir flow at low heads		
#8	Device 1	223.77'	4.0" Vert. 2x4" Orifice X 2.00 C= 0.600		
			Limited to weir flow at low heads		
#9	Device 1	224.35'	48.0" x 48.0" Horiz. 48" Overflow C= 0.600		
			Limited to weir flow at low heads		

Primary OutFlow Max=1.99 cfs @ 8.40 hrs HW=221.50' TW=0.00' (Dynamic Tailwater)

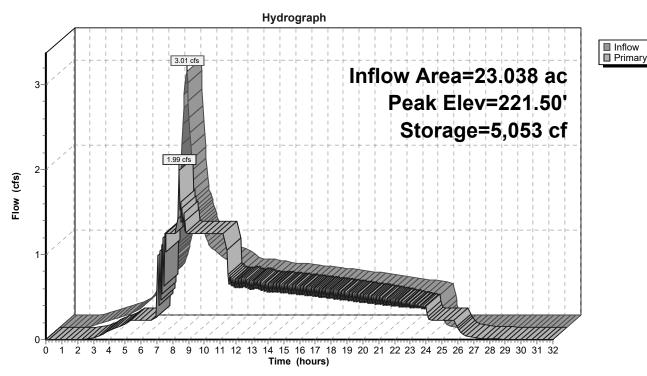
1=24" Pipe (Passes 1.99 cfs of 14.70 cfs potential flow)

-2=4" Perf Pipes (Exfiltration Controls 1.99 cfs)

-3=2x6" Orifice (Controls 0.00 cfs)

-4=6" Orifice (Controls 0.00 cfs)

-5=6" Orifice (Controls 0.00 cfs)


-6=4" Orifice (Controls 0.00 cfs)

-7=4" Orifice (Controls 0.00 cfs)

-8=2x4" Orifice (Controls 0.00 cfs)

-9=48" Overflow (Controls 0.00 cfs)

Pond 63P: Detention Pond

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 126

Time span=0.00-32.00 hrs, dt=0.05 hrs, 641 points
Runoff by SBUH method, Split Pervious/Imperv.
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

redoil routing by byill-otor	-ind method - 1 ond routing by byn-otor-ind method
Subcatchment64S: Home Basin 20	Runoff Area=9,940 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.10 cfs 0.033 af
Subcatchment65S: Single Pond Existing Flow Length=1,526	ng Runoff Area=23.038 ac 0.00% Impervious Runoff Depth>1.43" Slope=0.0076 '/' Tc=73.0 min CN=89/0 Runoff=3.76 cfs 2.742 af
Subcatchment67S: Home Basin 19	Runoff Area=17,197 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.17 cfs 0.058 af
Subcatchment68S: Home Basin 12	Runoff Area=18,133 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.18 cfs 0.061 af
Subcatchment69S: Home Basin 17	Runoff Area=16,661 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.16 cfs 0.056 af
Subcatchment70S: Home Basin 18	Runoff Area=11,596 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.11 cfs 0.039 af
Subcatchment71S: Home Basin 14	Runoff Area=16,444 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.16 cfs 0.055 af
Subcatchment72S: Home Basin 16	Runoff Area=20,310 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.20 cfs 0.068 af
Subcatchment73S: Home Basin 13	Runoff Area=10,807 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.11 cfs 0.036 af
Subcatchment74S: Swale Existing Flow Length=105	Runoff Area=0.168 ac 0.00% Impervious Runoff Depth=1.43" Slope=0.0565 '/' Tc=10.0 min CN=89/0 Runoff=0.06 cfs 0.020 af
Subcatchment75S: Home Basin 11	Runoff Area=18,483 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.18 cfs 0.062 af
Subcatchment77S: Home Basin 15	Runoff Area=12,503 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.12 cfs 0.042 af
Subcatchment78S: Single Pond	Runoff Area=21,919 sf 100.00% Impervious Runoff Depth=2.24" Tc=0.0 min CN=0/98 Runoff=0.29 cfs 0.094 af
Subcatchment79S: Home Basin 30	Runoff Area=38,416 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.38 cfs 0.129 af
Subcatchment80S: Home Basin 10	Runoff Area=14,789 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.14 cfs 0.050 af
Subcatchment81S: Home Basin 9	Runoff Area=15,575 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.15 cfs 0.052 af

9-6-23 HydroCAD D	DOM
-------------------	-----

Type IA 24-hr 02-2 Year Rainfall=2.47"

9-6-23 HydroCAD DOM	Type IA 24-nr U2-2 Year Rainfall=2.47
Prepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 Hyd	Printed 9/6/2023
<u>HydioCAD® 10.20-2g S/II 04993 © 2022 Hyd</u>	IroCAD Software Solutions LLC Page 127
Subcatchment82S: Home Basin 2	Runoff Area=20,667 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.20 cfs 0.069 af
Subcatchment83S: Home Basin 7	Runoff Area=17,032 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.17 cfs 0.057 af
Subcatchment84S: Home Basin 8	Runoff Area=11,668 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.11 cfs 0.039 af
Subcatchment85S: Home Basin 29	Runoff Area=25,118 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.25 cfs 0.084 af
Subcatchment86S: Home Basin 22	Runoff Area=16,159 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.16 cfs 0.054 af
Subcatchment87S: Home Basin 27	Runoff Area=24,839 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.24 cfs 0.083 af
Subcatchment88S: Home Basin 28	Runoff Area=25,318 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.25 cfs 0.085 af
Subcatchment89S: Home Basin 24	Runoff Area=20,676 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.20 cfs 0.069 af
Subcatchment90S: Home Basin 26	Runoff Area=14,135 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.14 cfs 0.047 af
Subcatchment91S: Home Basin 23	Runoff Area=12,271 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.12 cfs 0.041 af
Subcatchment92S: Home Basin 21	Runoff Area=27,019 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.26 cfs 0.091 af
Subcatchment93S: Home Basin 25	Runoff Area=17,012 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.17 cfs 0.057 af
Subcatchment94S: Home Basin 4	Runoff Area=19,535 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.19 cfs 0.065 af
Subcatchment95S: Home Basin 31	Runoff Area=24,883 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.24 cfs 0.083 af
Subcatchment96S: Basin 1	Runoff Area=15,045 sf 100.00% Impervious Runoff Depth=2.24" Tc=10.0 min CN=0/98 Runoff=0.19 cfs 0.064 af
Subcatchment97S: Basin 2	Runoff Area=19,824 sf 100.00% Impervious Runoff Depth=2.24" Tc=10.0 min CN=0/98 Runoff=0.25 cfs 0.085 af
Subcatchment98S: Basin 3	Runoff Area=23,416 sf 100.00% Impervious Runoff Depth=2.24" Tc=10.0 min CN=0/98 Runoff=0.29 cfs 0.100 af

Subcatchment116S: Basin 17

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC Printed 9/6/2023 Page 128

Runoff Area=25,997 sf 0.00% Impervious Runoff Depth=1.75" Subcatchment99S: Home Basin 6 Tc=10.0 min CN=93/0 Runoff=0.25 cfs 0.087 af Subcatchment100S: Basin 4 Runoff Area=3,650 sf 100.00% Impervious Runoff Depth=2.24" Tc=10.0 min CN=0/98 Runoff=0.05 cfs 0.016 af Subcatchment 101S: Basin 5 Runoff Area=3,523 sf 100.00% Impervious Runoff Depth=2.24" Tc=10.0 min CN=0/98 Runoff=0.04 cfs 0.015 af Subcatchment102S: Home Basin 3 Runoff Area=19,559 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.19 cfs 0.066 af Runoff Area=22,288 sf 0.00% Impervious Runoff Depth=1.75" Subcatchment 103S: Home Basin 1 Tc=10.0 min CN=93/0 Runoff=0.22 cfs 0.075 af Subcatchment 104S: Home Basin 5 Runoff Area=33,512 sf 0.00% Impervious Runoff Depth=1.75" Tc=10.0 min CN=93/0 Runoff=0.33 cfs 0.112 af Subcatchment 105S: Basin 6 Runoff Area=8,965 sf 100.00% Impervious Runoff Depth=2.24" Tc=10.0 min CN=0/98 Runoff=0.11 cfs 0.038 af Runoff Area=8,177 sf 100.00% Impervious Runoff Depth=2.24" Subcatchment107S: Basin 8 Tc=10.0 min CN=0/98 Runoff=0.10 cfs 0.035 af Runoff Area=13,130 sf 100.00% Impervious Runoff Depth=2.24" Subcatchment 108S: Basin 9 Tc=10.0 min CN=0/98 Runoff=0.16 cfs 0.056 af Runoff Area=22,902 sf 100.00% Impervious Runoff Depth=2.24" Subcatchment109S: Basin 10 Tc=10.0 min CN=0/98 Runoff=0.28 cfs 0.098 af Subcatchment110S: Basin 11 Runoff Area=25,748 sf 100.00% Impervious Runoff Depth=2.24" Tc=10.0 min CN=0/98 Runoff=0.32 cfs 0.110 af Subcatchment111S: Basin 12 Runoff Area=5,562 sf 100.00% Impervious Runoff Depth=2.24" Tc=10.0 min CN=0/98 Runoff=0.07 cfs 0.024 af Subcatchment112S: Basin 13 Runoff Area=4,702 sf 100.00% Impervious Runoff Depth=2.24" Tc=10.0 min CN=0/98 Runoff=0.06 cfs 0.020 af Subcatchment113S: Basin 14 Runoff Area=7,669 sf 100.00% Impervious Runoff Depth=2.24" Tc=10.0 min CN=0/98 Runoff=0.10 cfs 0.033 af Subcatchment114S: Basin 15 Runoff Area=7,261 sf 100.00% Impervious Runoff Depth=2.24" Tc=10.0 min CN=0/98 Runoff=0.09 cfs 0.031 af Runoff Area=7,066 sf 100.00% Impervious Runoff Depth=2.24" Subcatchment115S: Basin 16 Tc=10.0 min CN=0/98 Runoff=0.09 cfs 0.030 af

Runoff Area=26,003 sf 100.00% Impervious Runoff Depth=2.24"

Tc=10.0 min CN=0/98 Runoff=0.32 cfs 0.111 af

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Printed 9/6/2023

.20-2g s/n 04993 © 2022 HydroCAD Soπware Solutions LLC

Page 129

Runoff Area=23,761 sf 100.00% Impervious Runoff Depth=2.24" Subcatchment117S: Basin 18 Tc=10.0 min CN=0/98 Runoff=0.30 cfs 0.102 af Subcatchment118S: Basin 19 Runoff Area=7,309 sf 100.00% Impervious Runoff Depth=2.24" Tc=10.0 min CN=0/98 Runoff=0.09 cfs 0.031 af Subcatchment119S: Basin 20 Runoff Area=7,535 sf 100.00% Impervious Runoff Depth=2.24" Tc=10.0 min CN=0/98 Runoff=0.09 cfs 0.032 af Subcatchment120S: Basin 21 Runoff Area=6,846 sf 100.00% Impervious Runoff Depth=2.24" Tc=10.0 min CN=0/98 Runoff=0.09 cfs 0.029 af Runoff Area=5,182 sf 100.00% Impervious Runoff Depth=2.24" Subcatchment121S: Basin 22 Tc=10.0 min CN=0/98 Runoff=0.06 cfs 0.022 af Subcatchment 122S: Basin 23 Runoff Area=5.456 sf 100.00% Impervious Runoff Depth=2.24" Tc=10.0 min CN=0/98 Runoff=0.07 cfs 0.023 af Subcatchment123S: Basin 24 Runoff Area=4,510 sf 100.00% Impervious Runoff Depth=2.24" Tc=10.0 min CN=0/98 Runoff=0.06 cfs 0.019 af Runoff Area=13,271 sf 100.00% Impervious Runoff Depth=2.24" Subcatchment124S: Basin 25 Tc=10.0 min CN=0/98 Runoff=0.16 cfs 0.057 af Runoff Area=18,452 sf 100.00% Impervious Runoff Depth=2.24" Subcatchment 125S: Basin 26 Tc=10.0 min CN=0/98 Runoff=0.23 cfs 0.079 af Runoff Area=9,860 sf 100.00% Impervious Runoff Depth=2.24" Subcatchment126S: Alley Basin 1 Tc=10.0 min CN=0/98 Runoff=0.12 cfs 0.042 af Subcatchment127S: Alley Basin 2 Runoff Area=7,461 sf 100.00% Impervious Runoff Depth=2.24" Tc=10.0 min CN=0/98 Runoff=0.09 cfs 0.032 af Runoff Area=6,782 sf 100.00% Impervious Runoff Depth=2.24" Subcatchment 128S: Alley Basin 3 Tc=10.0 min CN=0/98 Runoff=0.08 cfs 0.029 af Runoff Area=6,970 sf 100.00% Impervious Runoff Depth=2.24" Subcatchment129S: Alley Basin 4 Tc=10.0 min CN=0/98 Runoff=0.09 cfs 0.030 af Subcatchment 168S: Future Lots Runoff Area=64,223 sf 37.85% Impervious Runoff Depth=1.94" Tc=10.0 min CN=93/98 Runoff=0.69 cfs 0.238 af Subcatchment169S: Swale 2 Runoff Area=67 sf 100.00% Impervious Runoff Depth=2.24" Tc=0.0 min CN=0/98 Runoff=0.00 cfs 0.000 af Runoff Area=72 sf 100.00% Impervious Runoff Depth=2.24" Subcatchment 170S: Swale 1 Tc=0.0 min CN=0/98 Runoff=0.00 cfs 0.000 af

Reach 39R: Post-ConstructionPeak Flow

Inflow=3.79 cfs 3.734 af Outflow=3.79 cfs 3.734 af

Type IA 24-hr 02-2 Year Rainfall=2.47"

	UZ-Z TEAL RAIIIIAII-2.47
Prepared by A&O Engineering LLC	Printed 9/6/2023
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC	Page 130
Reach 42R: Pre-ConstructionPeak Flow	Inflow=3.80 cfs 2.762 af
	Outflow=3.80 cfs 2.762 af
	34110W 3.00 310 2.7 32 41
Reach 58R: 1	Inflow=3.79 cfs 3.734 af
Reach Son. 1	
	Outflow=3.79 cfs 3.734 af
D 105D 4	1 (1 0 70 (0 700 (
Reach 85R: 1	Inflow=3.76 cfs 3.703 af
	Outflow=3.76 cfs 3.703 af
Reach 130R: 1	Inflow=1.84 cfs 0.631 af
	Outflow=1.84 cfs 0.631 af
Reach 131R: 1	Inflow=1.84 cfs 0.631 af
	Outflow=1.84 cfs 0.631 af
Reach 132R: 1	Inflow=1.06 cfs 0.362 af
	Outflow=1.06 cfs 0.362 af
	Callon 1.00 010 0.002 at
Reach 133R: 1	Inflow=0.19 cfs 0.064 af
Neach 199N. 1	Outflow=0.19 cfs 0.064 af
	Outilow=0.19 cis 0.004 ai
Decel 404D: 4	Inflame 0.45 ata 0.000 at
Reach 134R: 1	Inflow=8.45 cfs 2.899 af
	Outflow=8.45 cfs 2.899 af
Reach 135R: 1	Inflow=1.42 cfs 0.486 af
	Outflow=1.42 cfs 0.486 af
Reach 136R: 1	Inflow=0.81 cfs 0.277 af
	Outflow=0.81 cfs 0.277 af
Reach 137R: 1	Inflow=0.50 cfs 0.173 af
	Outflow=0.50 cfs 0.173 af
Reach 138R: 1	Inflow=0.23 cfs 0.081 af
	Outflow=0.23 cfs 0.081 af
	0.20 die 0.00 i di
Reach 139R: 1	Inflow=6.87 cfs 2.357 af
Neach 1991. 1	Outflow=6.87 cfs 2.357 af
	Outilow-0.67 CIS 2.337 at
Decel 440D: 4	Inflow=0.12 of 0.042 of
Reach 140R: 1	Inflow=0.12 cfs 0.042 af
	Outflow=0.12 cfs 0.042 af
Reach 141R: 1	Inflow=0.09 cfs 0.032 af
	Outflow=0.09 cfs 0.032 af
Reach 142R: 1	Inflow=6.51 cfs 2.235 af
	Outflow=6.51 cfs 2.235 af
Reach 143R: 1	Inflow=1.32 cfs 0.454 af
	Outflow=1.32 cfs 0.454 af

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC	Printed 9/6/2023 Page 131
Reach 144R: 1	Inflow=0.95 cfs 0.324 af Outflow=0.95 cfs 0.324 af
Reach 145R: 1	Inflow=0.95 cfs 0.324 af Outflow=0.95 cfs 0.324 af
Reach 146R: 1	Inflow=5.19 cfs 1.781 af Outflow=5.19 cfs 1.781 af
Reach 147R: 1	Inflow=0.08 cfs 0.029 af Outflow=0.08 cfs 0.029 af
Reach 148R: 1	Inflow=5.11 cfs 1.752 af Outflow=5.11 cfs 1.752 af
Reach 149R: 1	Inflow=1.29 cfs 0.444 af Outflow=1.29 cfs 0.444 af
Reach 150R: 1	Inflow=0.88 cfs 0.301 af Outflow=0.88 cfs 0.301 af
Reach 151R: 1	Inflow=0.68 cfs 0.233 af Outflow=0.68 cfs 0.233 af
Reach 152R: 1	Inflow=3.57 cfs 1.224 af Outflow=3.57 cfs 1.224 af
Reach 153R: 1	Inflow=0.09 cfs 0.030 af Outflow=0.09 cfs 0.030 af
Reach 154R: 1	Inflow=3.48 cfs 1.194 af Outflow=3.48 cfs 1.194 af
Reach 155R: 1	Inflow=1.22 cfs 0.420 af Outflow=1.22 cfs 0.420 af
Reach 158R: 1	Inflow=7.03 cfs 2.413 af Outflow=7.03 cfs 2.413 af
Reach 159R: 1	Inflow=6.78 cfs 2.325 af Outflow=6.78 cfs 2.325 af
Reach 160R: 1	Inflow=0.85 cfs 0.290 af Outflow=0.85 cfs 0.290 af
Reach 162R: 1	Inflow=2.02 cfs 0.694 af Outflow=2.02 cfs 0.694 af
Reach 163R: 1	Inflow=1.97 cfs 0.675 af Outflow=1.97 cfs 0.675 af

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 132

Reach 165R: 1 Inflow=0.70 cfs 0.241 af

Outflow=0.70 cfs 0.241 af

Reach 166R: Basin Future Inflow=0.69 cfs 0.238 af

Outflow=0.69 cfs 0.238 af

Pond 54P: Stormwater Swale 2 Peak Elev=222.39' Storage=31 cf Inflow=0.04 cfs 0.015 af

Outflow=0.04 cfs 0.015 af

Pond 60P: Stormwater Swale 1 Peak Elev=222.05' Storage=33 cf Inflow=0.05 cfs 0.016 af

Outflow=0.05 cfs 0.016 af

Pond 63P: Detention Pond Peak Elev=222.87' Storage=28,382 cf Inflow=10.80 cfs 3.704 af

Outflow=3.76 cfs 3.703 af

Total Runoff Area = 46.412 ac Runoff Volume = 6.498 af Average Runoff Depth = 1.68" 81.58% Pervious = 37.863 ac 18.42% Impervious = 8.549 ac

Type IA 24-hr 02-2 Year Rainfall=2.47"

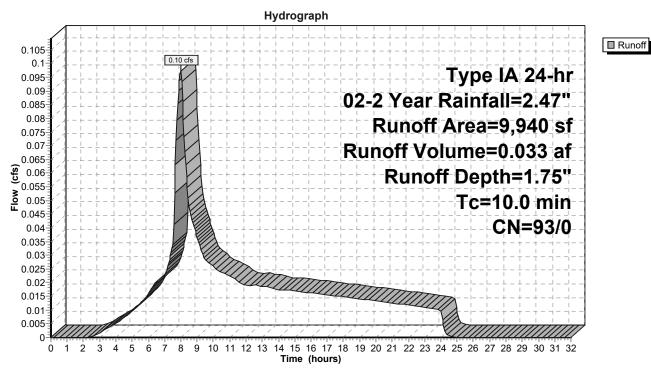
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 133

Summary for Subcatchment 64S: Home Basin 20


Runoff = 0.10 cfs @ 7.99 hrs, Volume= 0.033 af, Depth= 1.75"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

	Α	rea (sf)	CN	Description					
*		9,940	93	70% Lot Coverage Weighted					
		9,940	93	100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
_	10.0	(.501)	(10/10)	(.2000)	(010)	Direct Entry,			

Subcatchment 64S: Home Basin 20

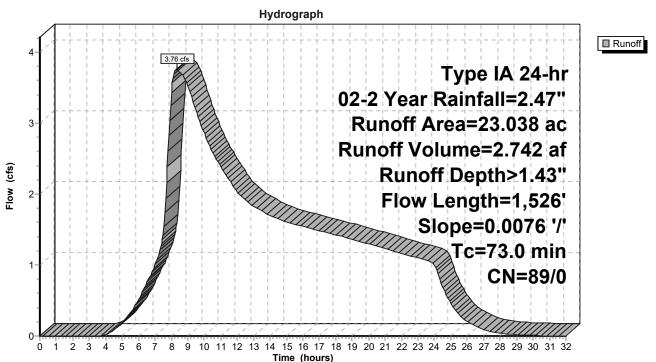
Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 134


Summary for Subcatchment 65S: Single Pond Existing Conditions

Runoff = 3.76 cfs @ 8.33 hrs, Volume= 2.742 af, Depth> 1.43" Routed to Reach 42R : Pre-Construction Peak Flow

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

	Area	(ac) C	N Des	cription		
_	23.	038 8	39 Past	ture/grassl	and/range,	Poor, HSG D
	23.	038 8	39 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	39.5	300	0.0076	0.13	, ,	Sheet Flow,
	33.5	1,226	0.0076	0.61		Grass: Short n= 0.150 P2= 2.47" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	73.0	1 526	Total			

Subcatchment 65S: Single Pond Existing Conditions

Type IA 24-hr 02-2 Year Rainfall=2.47"

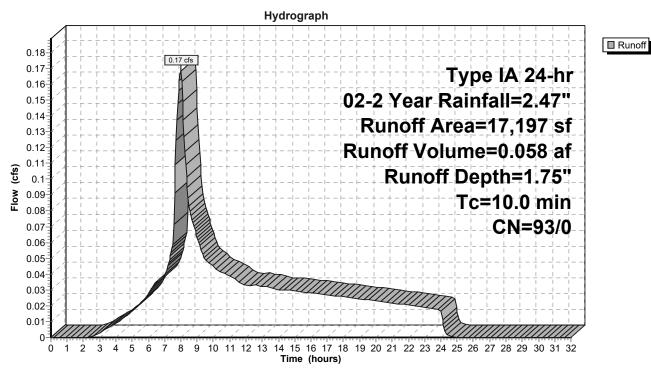
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 135

Summary for Subcatchment 67S: Home Basin 19


Runoff = 0.17 cfs @ 7.99 hrs, Volume= 0.058 af, Depth= 1.75"

Routed to Reach 159R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

Α	rea (sf)	CN	Description				
*	17,197	93	70% Lot Coverage Weighted				
	17,197	93	93 100.00% Pervious Area				
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	,	(cfs)	2 00011 1011		
10.0			•	•	Direct Entry		

Subcatchment 67S: Home Basin 19

Type IA 24-hr 02-2 Year Rainfall=2.47"

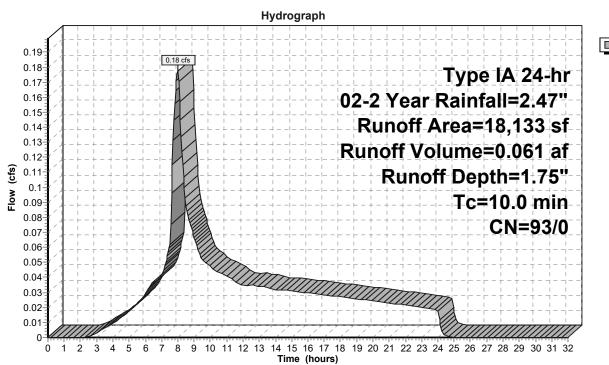
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 136

Summary for Subcatchment 68S: Home Basin 12


Runoff = 0.18 cfs @ 7.99 hrs, Volume= 0.061 af, Depth= 1.75"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN I	Description					
*		18,133	93	70% Lot Coverage Weighted					
		18,133	93	93 100.00% Pervious Area					
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry			

Subcatchment 68S: Home Basin 12

■ Runoff

Type IA 24-hr 02-2 Year Rainfall=2.47"

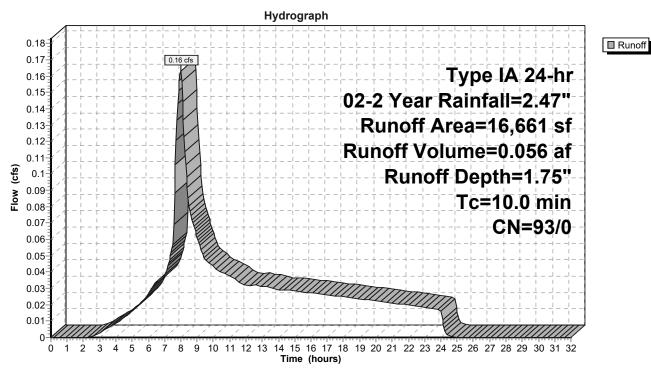
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 137

Summary for Subcatchment 69S: Home Basin 17


Runoff = 0.16 cfs @ 7.99 hrs, Volume= 0.056 af, Depth= 1.75"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

Α	rea (sf)	CN I	Description				
*	16,661	93	70% Lot Coverage Weighted				
	16,661	93	100.00% Pervious Area				
Tc	Length	Slone	Velocity	Canacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description		
10.0					Direct Entry		

Subcatchment 69S: Home Basin 17

Type IA 24-hr 02-2 Year Rainfall=2.47"

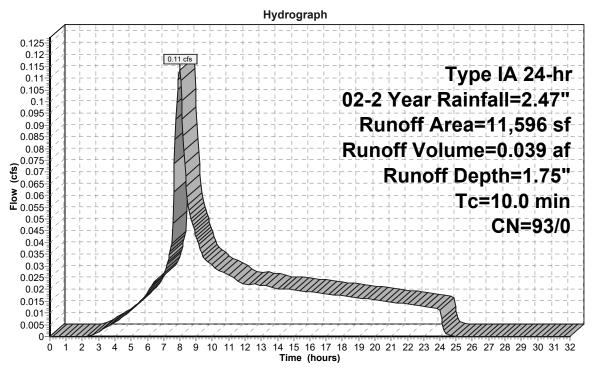
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 138

Summary for Subcatchment 70S: Home Basin 18


Runoff = 0.11 cfs @ 7.99 hrs, Volume= 0.039 af, Depth= 1.75"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	N Description				
*		11,596	93	70% Lot Coverage Weighted				
		11,596	93	100.00% Pervious Area				
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description		
	10.0					Direct Entry,		

Subcatchment 70S: Home Basin 18

■ Runoff

Type IA 24-hr 02-2 Year Rainfall=2.47"

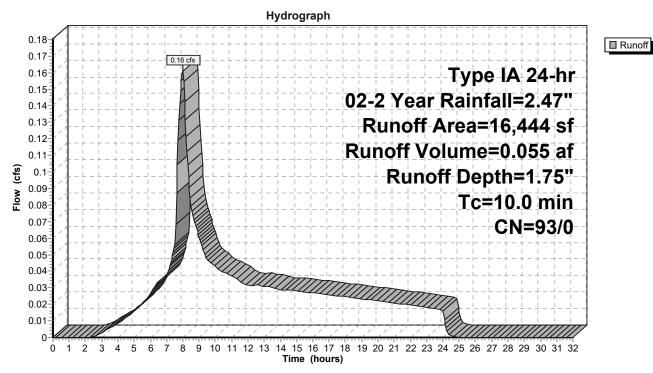
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 139

Summary for Subcatchment 71S: Home Basin 14


Runoff = 0.16 cfs @ 7.99 hrs, Volume= 0.055 af, Depth= 1.75"

Routed to Reach 148R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

	Α	rea (sf)	CN I	Description						
	*	16,444	93	70% Lot Coverage Weighted						
		16,444	93	100.00% Pervious Area						
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
10.0 Direct Entry										

Subcatchment 71S: Home Basin 14

Type IA 24-hr 02-2 Year Rainfall=2.47"

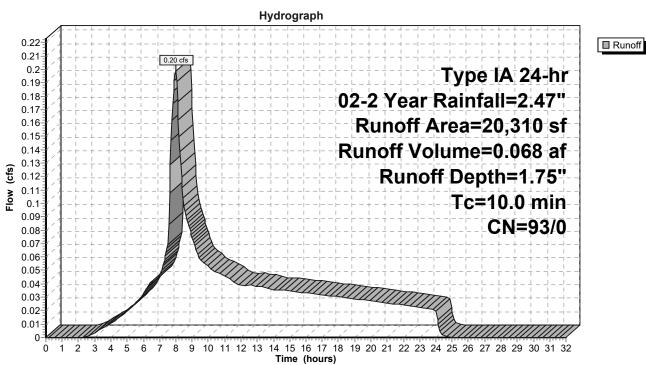
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 140

Summary for Subcatchment 72S: Home Basin 16


Runoff = 0.20 cfs @ 7.99 hrs, Volume= 0.068 af, Depth= 1.75"

Routed to Reach 150R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

	Α	rea (sf)	CN I	N Description						
	*	20,310	93	70% Lot Coverage Weighted						
-		20,310	93 100.00% Pervious Area							
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
•	10.0			•		Direct Entry				

Subcatchment 72S: Home Basin 16

Type IA 24-hr 02-2 Year Rainfall=2.47"

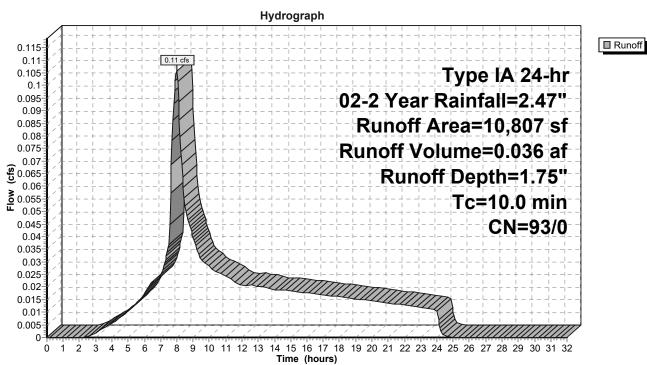
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 141

Summary for Subcatchment 73S: Home Basin 13


Runoff = 0.11 cfs @ 7.99 hrs, Volume= 0.036 af, Depth= 1.75"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

	Α	rea (sf)	CN	Description						
3	k	10,807	93	70% Lot Coverage Weighted						
-		10,807	93	100.00% Pervious Area						
	Tc	Length	Slone	Velocity	Canacity	Description				
	(min)	(feet)	(ft/ft)	,	(cfs)	Description				
	10.0					Direct Entry				

Subcatchment 73S: Home Basin 13

Type IA 24-hr 02-2 Year Rainfall=2.47"

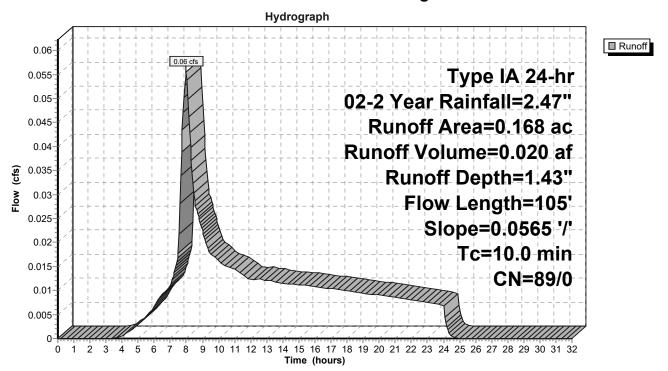
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 142

Summary for Subcatchment 74S: Swale Existing Conditions


Runoff = 0.06 cfs @ 7.99 hrs, Volume= 0.020 af, Depth= 1.43" Routed to Reach 42R : Pre-Construction Peak Flow

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

Area	Area (ac) CN Description								
0.	168 8	89 Past	ure/grassla	and/range,	Poor, HSG D				
0.168 89 100.00% Pervious Area									
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
7.7	105	0.0565	0.23		Sheet Flow, Grass: Short	n= 0.150	P2= 2.47"		

7.7 105 Total, Increased to minimum Tc = 10.0 min

Subcatchment 74S: Swale Existing Conditions

Type IA 24-hr 02-2 Year Rainfall=2.47"

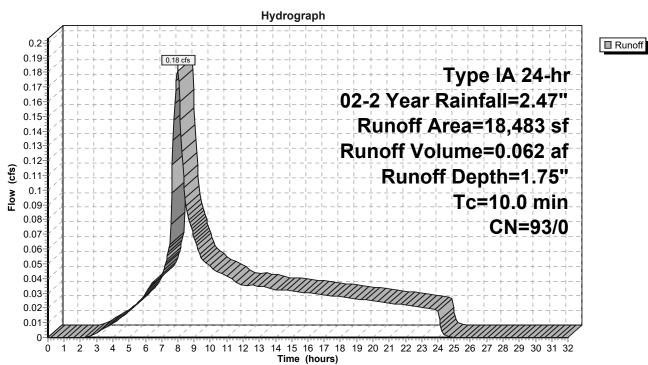
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 143

Summary for Subcatchment 75S: Home Basin 11


Runoff = 0.18 cfs @ 7.99 hrs, Volume= 0.062 af, Depth= 1.75"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

Α	rea (sf)	CN I	Description						
*	18,483	93	70% Lot Coverage Weighted						
	18,483	93	100.00% Pervious Area						
Тс	Length	Slope	Velocity	Capacity	Description				
(min) (feet) (ft/ft) (ft/sec) (cfs)					'				
10.0	10.0 Direct Entry								

Subcatchment 75S: Home Basin 11

Type IA 24-hr 02-2 Year Rainfall=2.47"

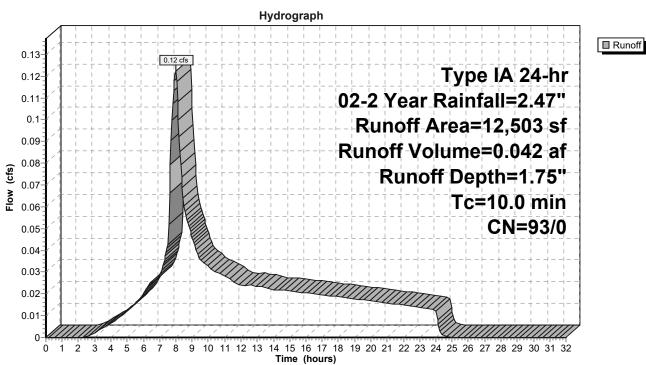
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 144

Summary for Subcatchment 77S: Home Basin 15


Runoff = 0.12 cfs @ 7.99 hrs, Volume= 0.042 af, Depth= 1.75"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

Α	rea (sf)	CN I	Description						
*	12,503	93	70% Lot Coverage Weighted						
	12,503	93	100.00% Pervious Area						
Tc	Length	Slone	Velocity	Canacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
10.0					Direct Entry				

Subcatchment 77S: Home Basin 15

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

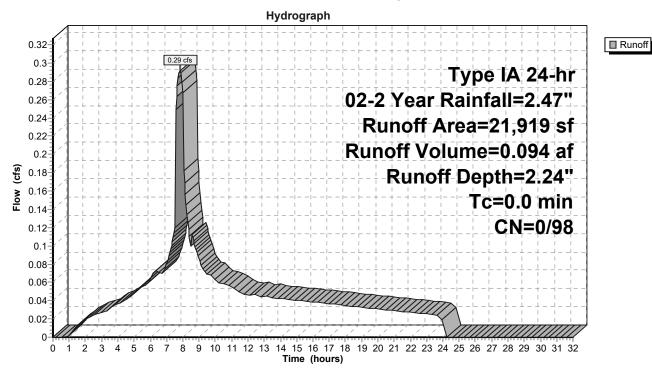
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 145

Summary for Subcatchment 78S: Single Pond

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 0.29 cfs @ 7.81 hrs, Volume= 0.09


0.094 af, Depth= 2.24"

Routed to Pond 63P: Detention Pond

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

 Area (sf)	CN	Description
21,919	98	Water Surface, HSG D
21,919	98	100.00% Impervious Area

Subcatchment 78S: Single Pond

Type IA 24-hr 02-2 Year Rainfall=2.47"

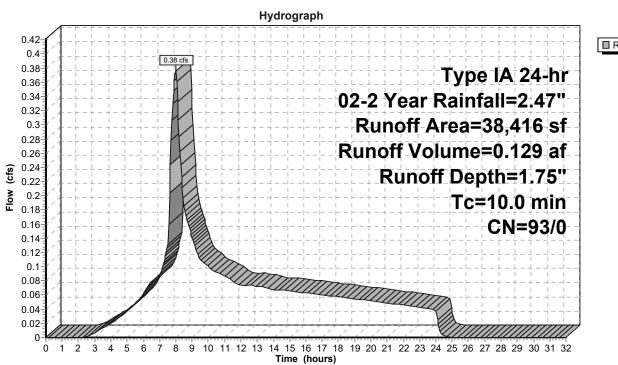
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 146

Summary for Subcatchment 79S: Home Basin 30


Runoff = 0.38 cfs @ 7.99 hrs, Volume= 0.129 af, Depth= 1.75"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN I	I Description						
*		38,416	93	70% Lot Coverage Weighted						
		38,416	93 100.00% Pervious Area							
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 79S: Home Basin 30

Type IA 24-hr 02-2 Year Rainfall=2.47"

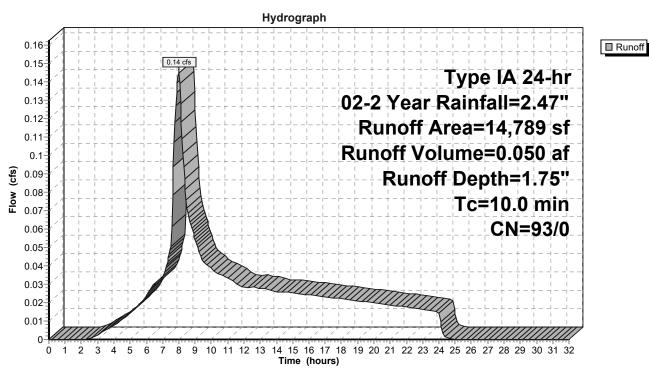
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 147

Summary for Subcatchment 80S: Home Basin 10


Runoff = 0.14 cfs @ 7.99 hrs, Volume= 0.050 af, Depth= 1.75"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

	Α	rea (sf)	CN	Description						
*		14,789	93	70% Lot Coverage Weighted						
		14,789	93	100.00% Pervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 80S: Home Basin 10

Type IA 24-hr 02-2 Year Rainfall=2.47"

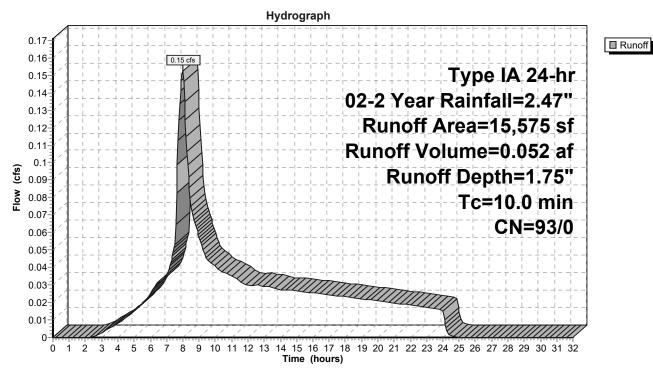
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 148

Summary for Subcatchment 81S: Home Basin 9


Runoff = 0.15 cfs @ 7.99 hrs, Volume= 0.052 af, Depth= 1.75"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN I	Description						
*		15,575	93	70% Lot Coverage Weighted						
		15,575	93	3 100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	10.0	(/	(12,12)	(1422)	(212)	Direct Entry,				

Subcatchment 81S: Home Basin 9

Type IA 24-hr 02-2 Year Rainfall=2.47"

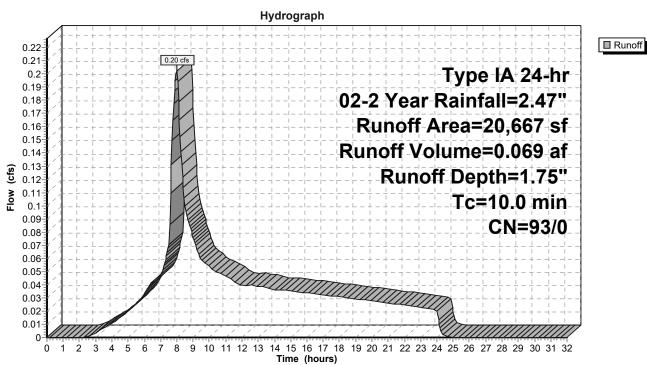
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 149

Summary for Subcatchment 82S: Home Basin 2


Runoff = 0.20 cfs @ 7.99 hrs, Volume= 0.069 af, Depth= 1.75"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

	Α	rea (sf)	CN	Description						
	*	20,667	93	70% Lot Coverage Weighted						
-		20,667	93	3 100.00% Pervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
_	10.0					Direct Entry				

Subcatchment 82S: Home Basin 2

Type IA 24-hr 02-2 Year Rainfall=2.47"

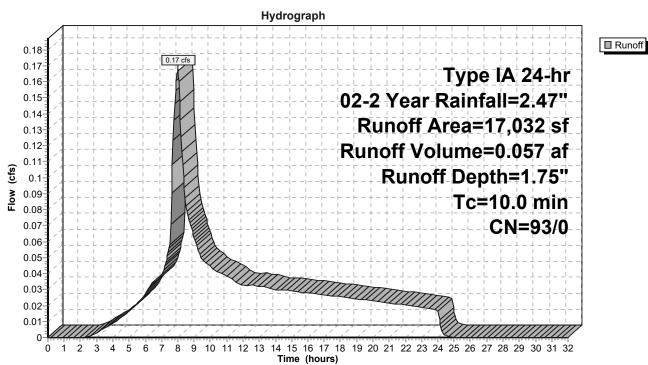
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 150

Summary for Subcatchment 83S: Home Basin 7


Runoff = 0.17 cfs @ 7.99 hrs, Volume= 0.057 af, Depth= 1.75"

Routed to Reach 154R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	Description						
*		17,032	93	70% Lot Coverage Weighted						
		17,032	93	100.00% Pervious Area						
_	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description				
	10.0					Direct Entry,				

Subcatchment 83S: Home Basin 7

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

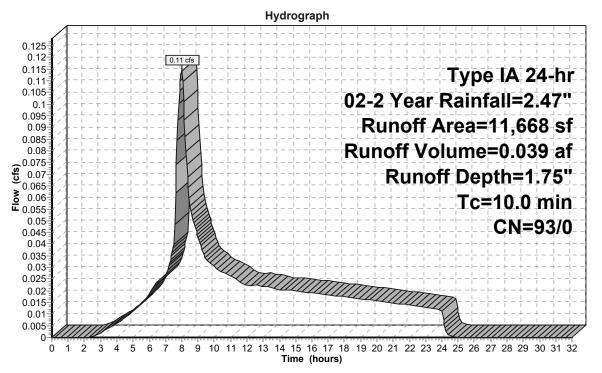
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 151

■ Runoff

Summary for Subcatchment 84S: Home Basin 8


Runoff = 0.11 cfs @ 7.99 hrs, Volume= 0.039 af, Depth= 1.75"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	Description						
*		11,668	93	70% Lot Coverage Weighted						
_		11,668	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0					Direct Entry,				

Subcatchment 84S: Home Basin 8

Type IA 24-hr 02-2 Year Rainfall=2.47"

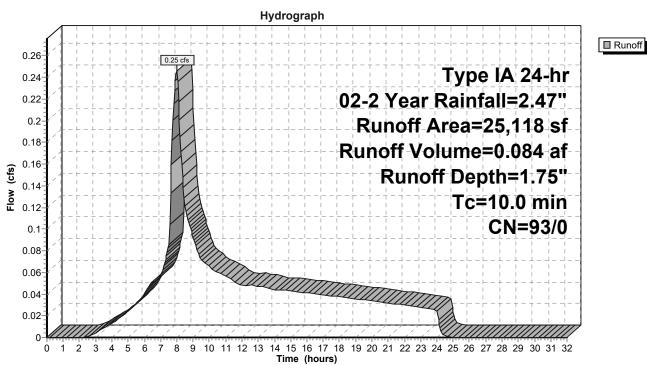
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 152

Summary for Subcatchment 85S: Home Basin 29


Runoff = 0.25 cfs @ 7.99 hrs, Volume= 0.084 af, Depth= 1.75"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	Description						
*		25,118	93	70% Lot Coverage Weighted						
	25,118 93 100.00% Pervious Area									
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	10.0	(.551)	(10/10)	(.4000)	(010)	Direct Entry				

Subcatchment 85S: Home Basin 29

Type IA 24-hr 02-2 Year Rainfall=2.47"

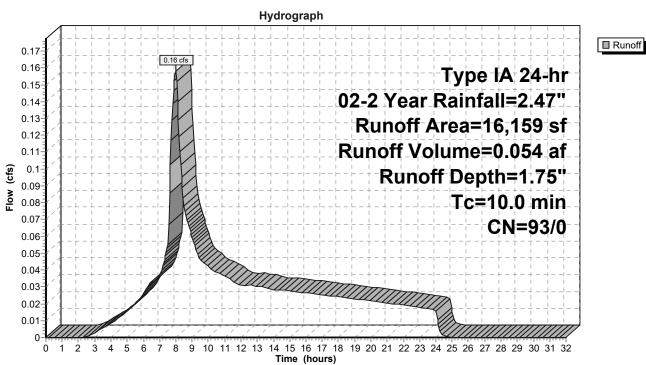
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 153

Summary for Subcatchment 86S: Home Basin 22


Runoff = 0.16 cfs @ 7.99 hrs, Volume= 0.054 af, Depth= 1.75"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN I	Description					
*		16,159	93	70% Lot Coverage Weighted					
		16,159	93	100.00% Pervious Area					
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 86S: Home Basin 22

Type IA 24-hr 02-2 Year Rainfall=2.47"

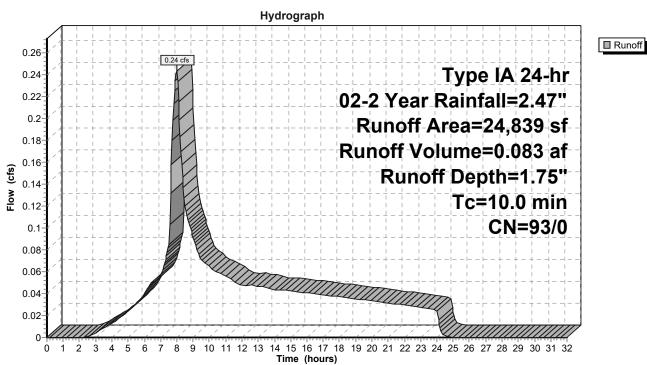
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 154

Summary for Subcatchment 87S: Home Basin 27


Runoff = 0.24 cfs @ 7.99 hrs, Volume= 0.083 af, Depth= 1.75"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	Description						
*		24,839	93	70% Lot Coverage Weighted						
		24,839	93	3 100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
-	10.0	(.551)	(10/10)	(12000)	(010)	Direct Entry				

Subcatchment 87S: Home Basin 27

Type IA 24-hr 02-2 Year Rainfall=2.47"

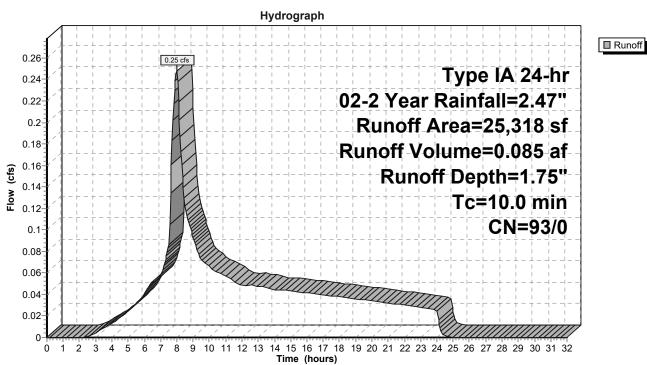
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 155

Summary for Subcatchment 88S: Home Basin 28


Runoff = 0.25 cfs @ 7.99 hrs, Volume= 0.085 af, Depth= 1.75"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	Description						
×	•	25,318	93	70% Lot Coverage Weighted						
_		25,318 93 100.00% Pervious Area								
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0	-			-	Direct Entry,				

Subcatchment 88S: Home Basin 28

Type IA 24-hr 02-2 Year Rainfall=2.47"

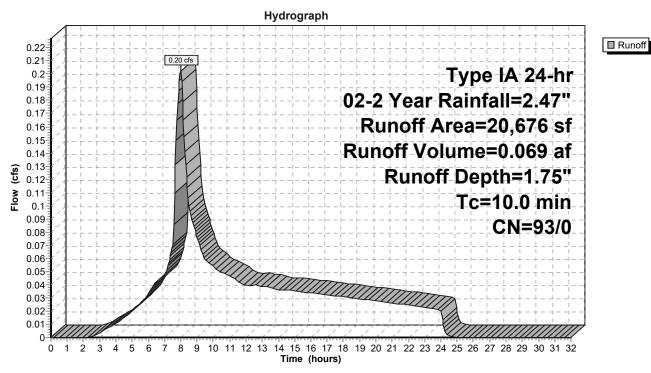
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 156

Summary for Subcatchment 89S: Home Basin 24


Runoff = 0.20 cfs @ 7.99 hrs, Volume= 0.069 af, Depth= 1.75"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

Α	rea (sf)	CN	Description						
*	20,676	93	70% Lot Coverage Weighted						
	20,676	93	3 100.00% Pervious Area						
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	2 00011				
10.0	•				Direct Entry				

Subcatchment 89S: Home Basin 24

Type IA 24-hr 02-2 Year Rainfall=2.47"

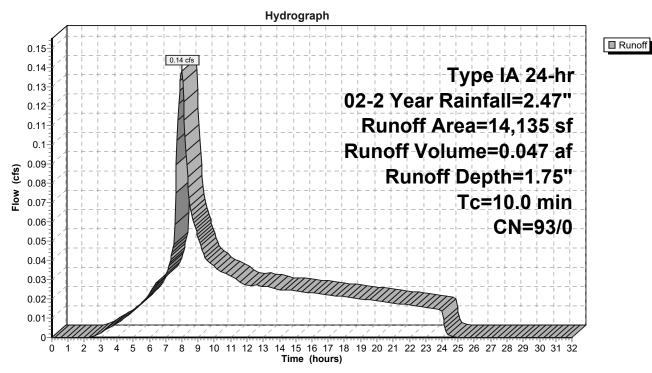
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 157

Summary for Subcatchment 90S: Home Basin 26


Runoff = 0.14 cfs @ 7.99 hrs, Volume= 0.047 af, Depth= 1.75"

Routed to Reach 136R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	Description					
•	ŧ	14,135	93	70% Lot Coverage Weighted					
		14,135	93	100.00% Pervious Area					
	Тс	Length	Slope	e Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	,	(cfs)				
	10.0			•		Direct Entry			

Subcatchment 90S: Home Basin 26

Type IA 24-hr 02-2 Year Rainfall=2.47"

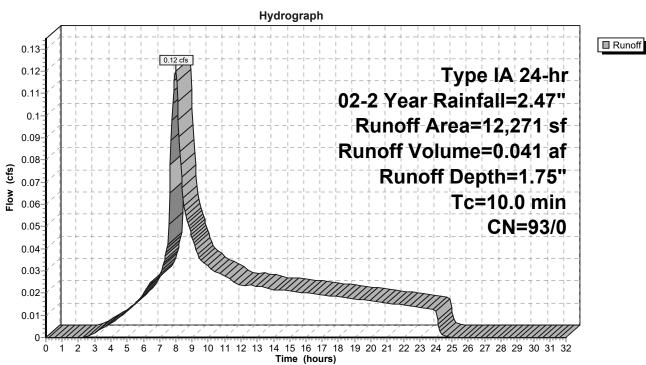
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 158

Summary for Subcatchment 91S: Home Basin 23


Runoff = 0.12 cfs @ 7.99 hrs, Volume= 0.041 af, Depth= 1.75"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN I	Description						
*	,	12,271	93	70% Lot Coverage Weighted						
_	12,271 93 100.00% Pervious Area									
		Length	•	•		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10 0					Direct Entry				

Subcatchment 91S: Home Basin 23

Type IA 24-hr 02-2 Year Rainfall=2.47"

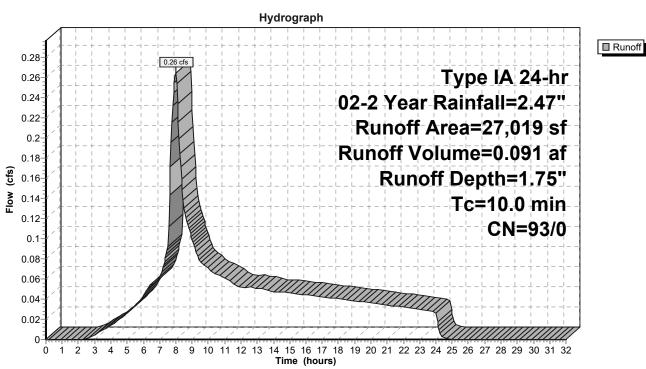
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 159

Summary for Subcatchment 92S: Home Basin 21


Runoff = 0.26 cfs @ 7.99 hrs, Volume= 0.091 af, Depth= 1.75"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

	Α	rea (sf)	CN	Description					
*		27,019	93	70% Lot Coverage Weighted					
		27,019 93 100.00% Pervious Area							
	Тс	3	Slope	,	. ,	Description			
_	(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 92S: Home Basin 21

Type IA 24-hr 02-2 Year Rainfall=2.47"

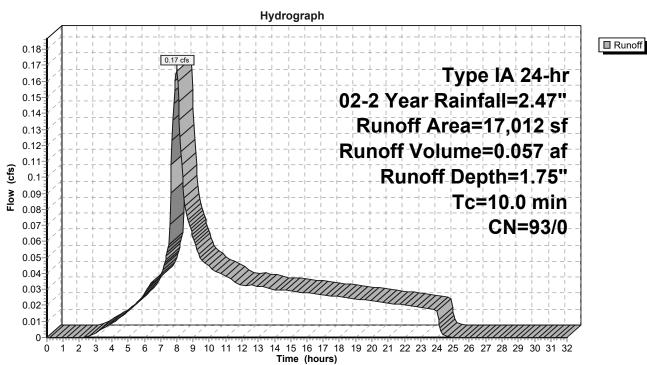
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 160

Summary for Subcatchment 93S: Home Basin 25


Runoff = 0.17 cfs @ 7.99 hrs, Volume= 0.057 af, Depth= 1.75"

Routed to Reach 136R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	Description						
*		17,012	93	70% Lot Coverage Weighted						
		17,012	93	100.00% Pervious Area						
	Тс	Length	Slope	e Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 93S: Home Basin 25

Type IA 24-hr 02-2 Year Rainfall=2.47"

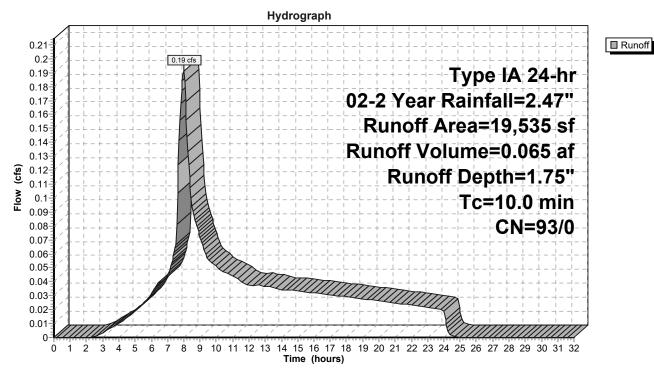
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 161

Summary for Subcatchment 94S: Home Basin 4


Runoff = 0.19 cfs @ 7.99 hrs, Volume= 0.065 af, Depth= 1.75"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	Description						
*		19,535	93	70% Lot Coverage Weighted						
		19,535	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0					Direct Entry,				

Subcatchment 94S: Home Basin 4

Type IA 24-hr 02-2 Year Rainfall=2.47"

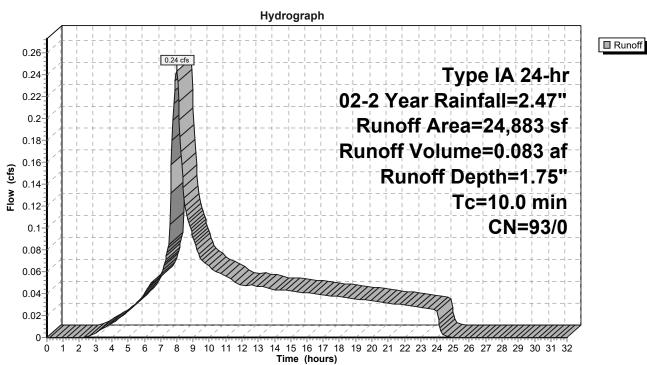
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 162

Summary for Subcatchment 95S: Home Basin 31


Runoff = 0.24 cfs @ 7.99 hrs, Volume= 0.083 af, Depth= 1.75"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

	Α	rea (sf)	CN	Description						
3	ŧ	24,883	93	70% Lot Coverage Weighted						
-		24,883	93	3 100.00% Pervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0	•		•		Direct Entry				

Subcatchment 95S: Home Basin 31

Type IA 24-hr 02-2 Year Rainfall=2.47"

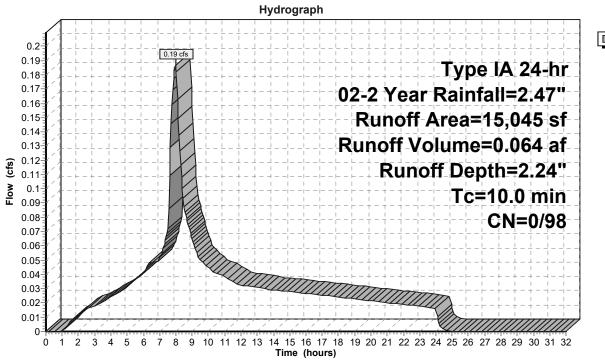
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 163

Summary for Subcatchment 96S: Basin 1


Runoff = 0.19 cfs @ 7.98 hrs, Volume= 0.064 af, Depth= 2.24"

Routed to Reach 133R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

Ar	ea (sf)	CN [Description						
	15,045	98 F	Paved roads w/curbs & sewers, HSG D						
	15,045	98 1	98 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 96S: Basin 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

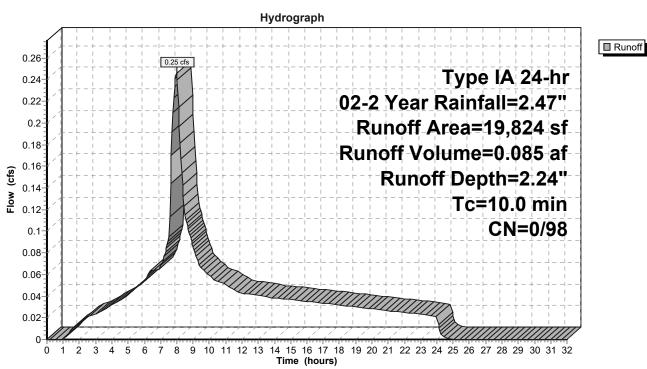
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 164

Summary for Subcatchment 97S: Basin 2


Runoff = 0.25 cfs @ 7.98 hrs, Volume= 0.085 af, Depth= 2.24"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	Description						
		19,824	98	8 Paved roads w/curbs & sewers, HSG D						
_		19,824	98	98 100.00% Impervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
-	10.0					Direct Entry.				

Subcatchment 97S: Basin 2

Type IA 24-hr 02-2 Year Rainfall=2.47"

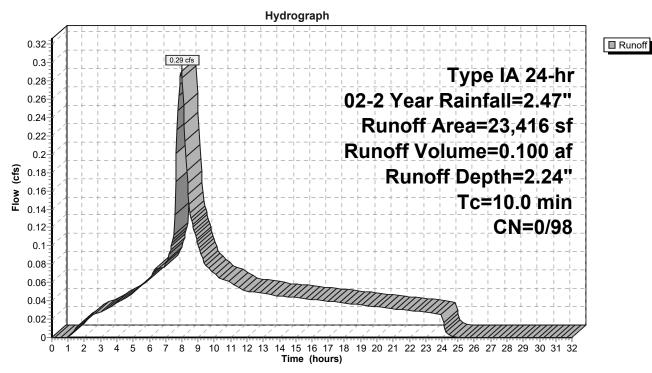
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 165

Summary for Subcatchment 98S: Basin 3


Runoff = 0.29 cfs @ 7.98 hrs, Volume= 0.100 af, Depth= 2.24"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

	Α	rea (sf)	CN [Description						
		23,416	98 F	Paved roads w/curbs & sewers, HSG D						
_		23,416 98 100.00% Impervious Area								
	_									
	IC	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 98S: Basin 3

Type IA 24-hr 02-2 Year Rainfall=2.47"

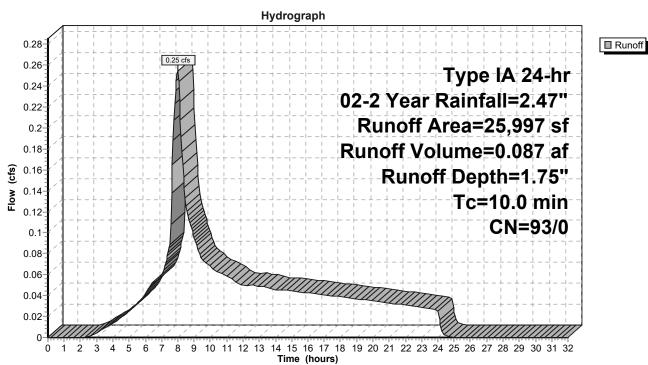
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 166

Summary for Subcatchment 99S: Home Basin 6


Runoff = 0.25 cfs @ 7.99 hrs, Volume= 0.087 af, Depth= 1.75"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

	Α	rea (sf)	CN I	Description						
3	+	25,997	93	70% Lot Coverage Weighted						
-		25,997	93	100.00% Pervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·				
	10.0					Direct Entry				

Subcatchment 99S: Home Basin 6

Type IA 24-hr 02-2 Year Rainfall=2.47"

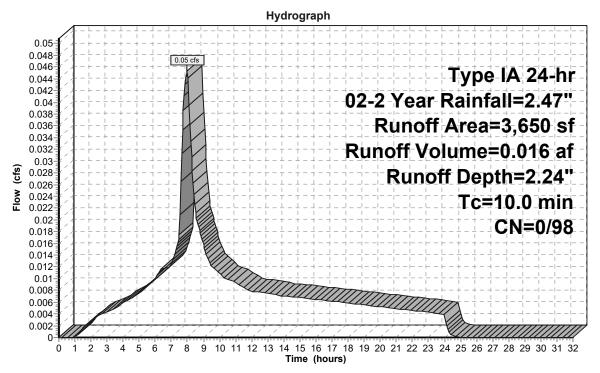
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 167

Summary for Subcatchment 100S: Basin 4


Runoff = 0.05 cfs @ 7.98 hrs, Volume= 0.016 af, Depth= 2.24"

Routed to Pond 60P: Stormwater Swale 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

	Area (sf)	CN I	Description						
	3,650	98 I	Paved roads w/curbs & sewers, HSG D						
	3,650	98	3 100.00% Impervious Area						
To (min	c Length) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0)				Direct Entry,				

Subcatchment 100S: Basin 4

Type IA 24-hr 02-2 Year Rainfall=2.47"

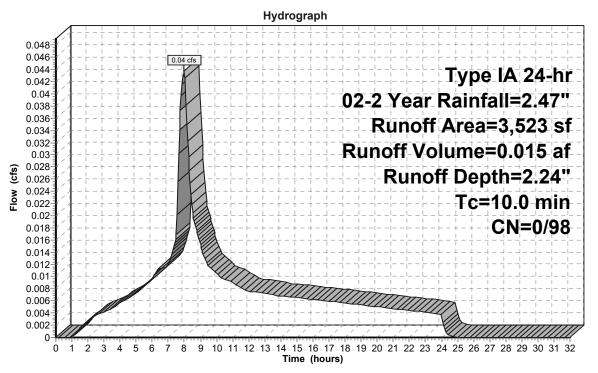
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 168

Summary for Subcatchment 101S: Basin 5


Runoff = 0.04 cfs @ 7.98 hrs, Volume= 0.015 af, Depth= 2.24"

Routed to Pond 54P: Stormwater Swale 2

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	Description						
		3,523	98	Paved roads w/curbs & sewers, HSG D						
		3,523	98	8 100.00% Impervious Area						
	_		01							
	IC	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	/ft) (ft/sec) (cfs)						
	10.0					Direct Entry.				

Subcatchment 101S: Basin 5

Type IA 24-hr 02-2 Year Rainfall=2.47"

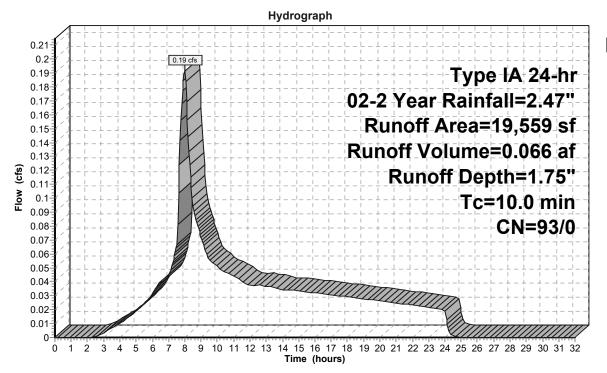
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 169

Summary for Subcatchment 102S: Home Basin 3


Runoff = 0.19 cfs @ 7.99 hrs, Volume= 0.066 af, Depth= 1.75"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	Description						
*		19,559	93	70% Lot Coverage Weighted						
		19,559	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
_	10.0	•	• •	,	, ,	Direct Entry,				

Subcatchment 102S: Home Basin 3

Type IA 24-hr 02-2 Year Rainfall=2.47"

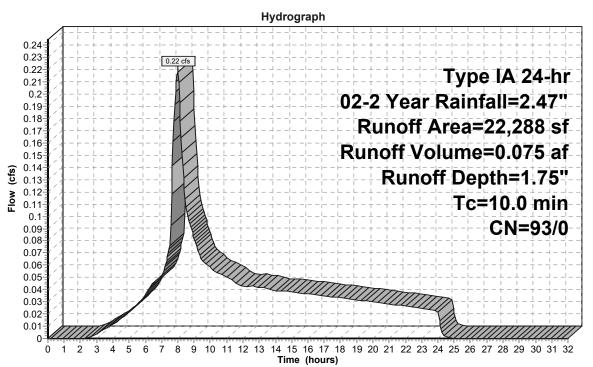
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 170

Summary for Subcatchment 103S: Home Basin 1


Runoff = 0.22 cfs @ 7.99 hrs, Volume= 0.075 af, Depth= 1.75"

Routed to Reach 137R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN [Description						
*	,	22,288	93 7	70% Lot Coverage Weighted						
_		22,288	93 1	3 100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
-	10.0	(leet)	(11/11)	(II/Sec)	(CIS)	Direct Entry				

Subcatchment 103S: Home Basin 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

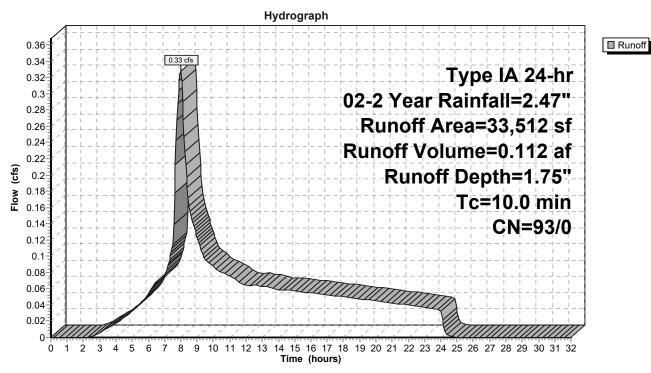
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

<u>Page 171</u>

Summary for Subcatchment 104S: Home Basin 5


Runoff = 0.33 cfs @ 7.99 hrs, Volume= 0.112 af, Depth= 1.75"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

	Α	rea (sf)	CN	Description						
3	k	33,512	93	70% Lot Coverage Weighted						
		33,512	93	100.00% Pervious Area						
		Length		,		Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 104S: Home Basin 5

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

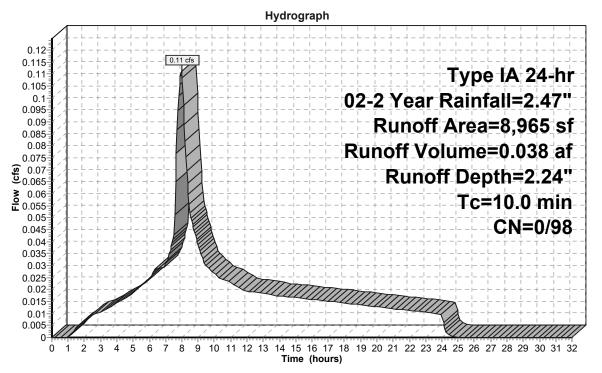
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 172

■ Runoff

Summary for Subcatchment 105S: Basin 6


Runoff = 0.11 cfs @ 7.98 hrs, Volume= 0.038 af, Depth= 2.24"

Routed to Reach 138R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

A	rea (sf)	CN [Description					
	8,965	98 F	Paved roads w/curbs & sewers, HSG D					
	8,965	98 1	8 100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
10.0					Direct Entry,			

Subcatchment 105S: Basin 6

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

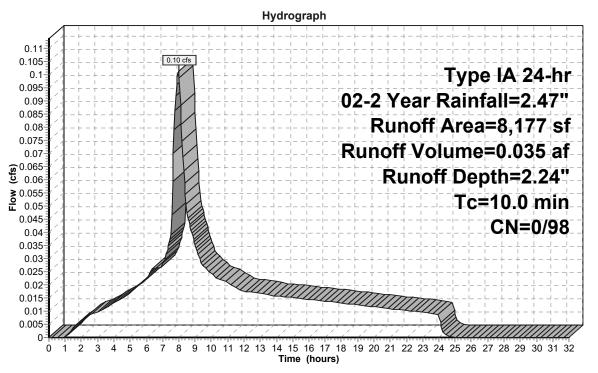
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 173

■ Runoff

Summary for Subcatchment 107S: Basin 8


Runoff = 0.10 cfs @ 7.98 hrs, Volume= 0.035 af, Depth= 2.24"

Routed to Reach 158R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

A	rea (sf)	CN I	Description						
	8,177	98 F	Paved roads w/curbs & sewers, HSG D						
	8,177	98	08 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 107S: Basin 8

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

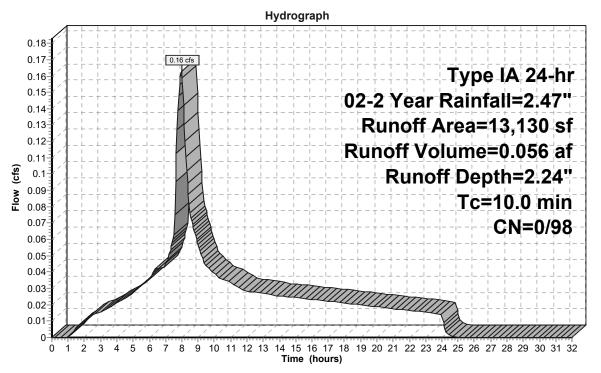
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 174

■ Runoff

Summary for Subcatchment 108S: Basin 9


Runoff = 0.16 cfs @ 7.98 hrs, Volume= 0.056 af, Depth= 2.24"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

Ar	rea (sf)	CN [Description						
	13,130	98 F	Paved roads w/curbs & sewers, HSG D						
•	13,130	98 1	98 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 108S: Basin 9

Type IA 24-hr 02-2 Year Rainfall=2.47"

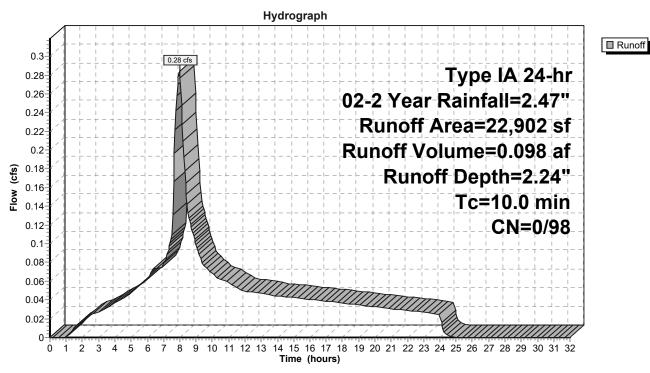
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 175

Summary for Subcatchment 109S: Basin 10


Runoff = 0.28 cfs @ 7.98 hrs, Volume= 0.098 af, Depth= 2.24"

Routed to Reach 137R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

Α	rea (sf)	CN	Description						
	22,902	98	Paved roads w/curbs & sewers, HSG D						
22,902 98 100.00% Impervious Area									
Tc Length Slope Velocity Capacity Description				Description					
(min)	(min) (feet) (ft/ft) (ft/sec) (cfs)								
10.0					Direct Entry.				

Subcatchment 109S: Basin 10

Type IA 24-hr 02-2 Year Rainfall=2.47"

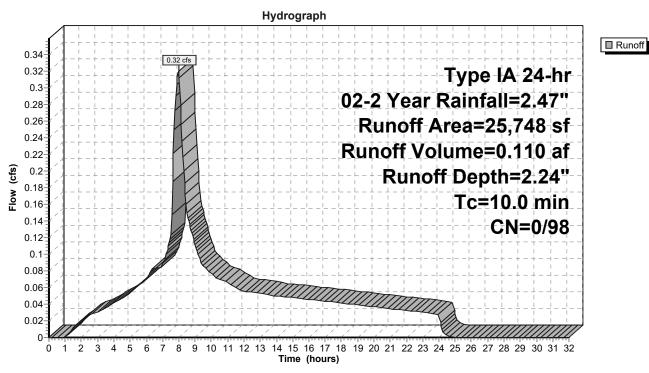
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 176

Summary for Subcatchment 110S: Basin 11


Runoff = 0.32 cfs @ 7.98 hrs, Volume= 0.110 af, Depth= 2.24"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

Are	ea (sf)	CN [Description						
2	25,748	98 F	Paved roads w/curbs & sewers, HSG D						
2	25,748 98 100.00% Impervious Area								
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					Description				
10.0					Direct Entry,				

Subcatchment 110S: Basin 11

Type IA 24-hr 02-2 Year Rainfall=2.47"

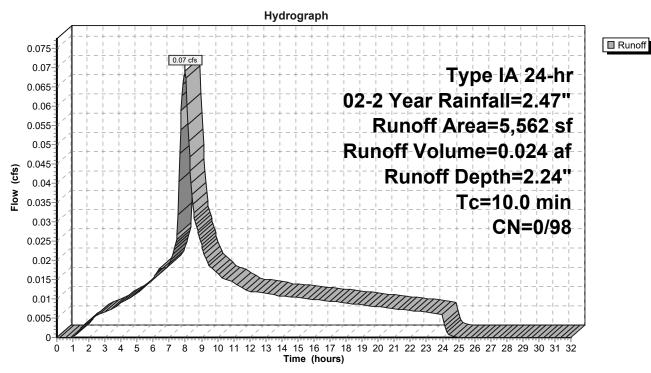
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 177

Summary for Subcatchment 111S: Basin 12


Runoff = 0.07 cfs @ 7.98 hrs, Volume= 0.024 af, Depth= 2.24"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

A	rea (sf)	CN [Description						
	5,562	98 F	Paved roads w/curbs & sewers, HSG D						
	5,562	98 ′	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0		Direct Entry,							

Subcatchment 111S: Basin 12

Type IA 24-hr 02-2 Year Rainfall=2.47"

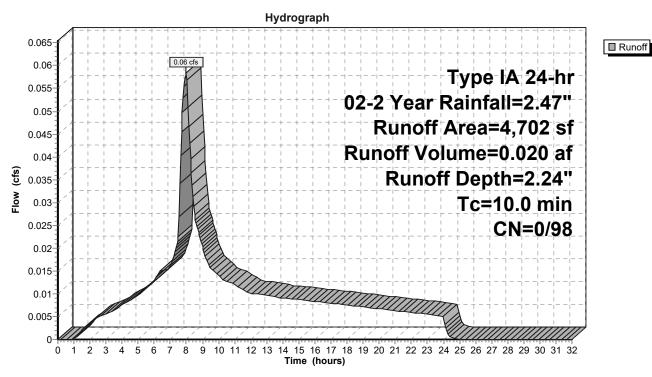
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 178

Summary for Subcatchment 112S: Basin 13


Runoff = 0.06 cfs @ 7.98 hrs, Volume= 0.020 af, Depth= 2.24"

Routed to Reach 158R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN I	Description						
		4,702	98 I	Paved roads w/curbs & sewers, HSG D						
_		4,702	98	98 100.00% Impervious Area						
	Tc	Γc Length Slope Velocity Capacity Description								
	(min)	(feet)	(ft/ft)							
_	10.0		Direct Entry,							

Subcatchment 112S: Basin 13

Type IA 24-hr 02-2 Year Rainfall=2.47"

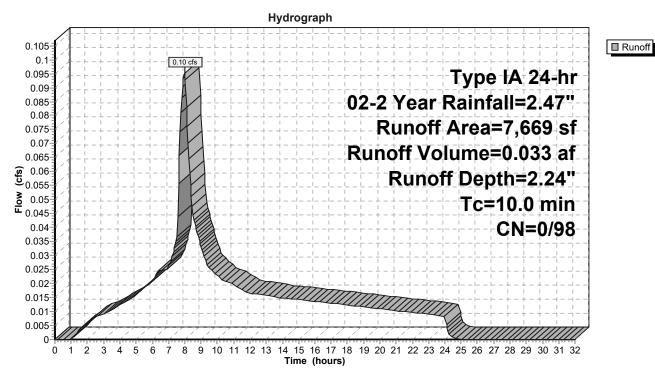
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 179

Summary for Subcatchment 113S: Basin 14


Runoff = 0.10 cfs @ 7.98 hrs, Volume= 0.033 af, Depth= 2.24"

Routed to Reach 159R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	Description						
		7,669	98	Paved roads w/curbs & sewers, HSG D						
		7,669	98	100.00% Impervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0	•	Direct Entry							

Subcatchment 113S: Basin 14

Type IA 24-hr 02-2 Year Rainfall=2.47"

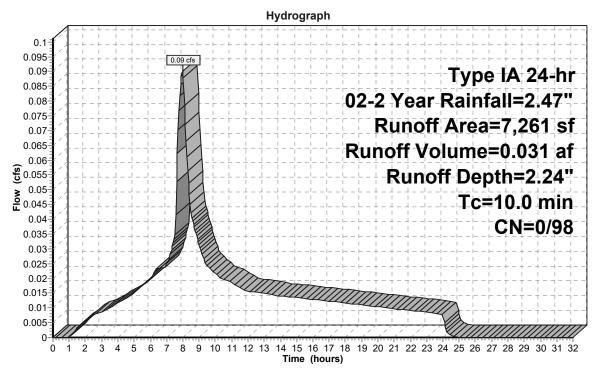
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 180

Summary for Subcatchment 114S: Basin 15


Runoff = 0.09 cfs @ 7.98 hrs, Volume= 0.031 af, Depth= 2.24"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

A	rea (sf)	CN [Description						
	7,261	98 F	Paved roads w/curbs & sewers, HSG D						
	7,261	98 1	3 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0		Direct Entry,							

Subcatchment 114S: Basin 15

Type IA 24-hr 02-2 Year Rainfall=2.47"

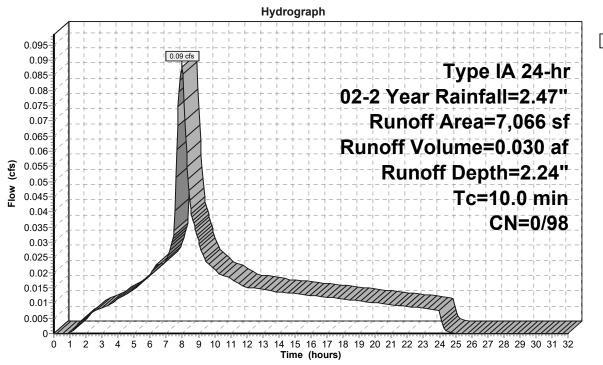
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 181

Summary for Subcatchment 115S: Basin 16


Runoff = 0.09 cfs @ 7.98 hrs, Volume= 0.030 af, Depth= 2.24"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN I	Description						
		7,066	98 F	Paved roads w/curbs & sewers, HSG D						
_		7,066	98	100.00% Impervious Area						
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0		Direct Entry							

Subcatchment 115S: Basin 16

Type IA 24-hr 02-2 Year Rainfall=2.47"

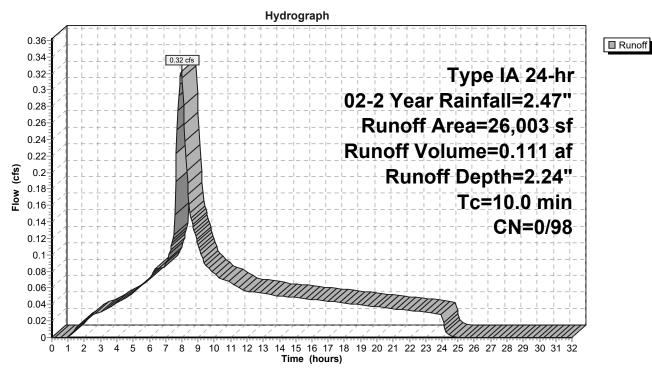
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 182

Summary for Subcatchment 116S: Basin 17


Runoff = 0.32 cfs @ 7.98 hrs, Volume= 0.111 af, Depth= 2.24"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN [Description						
_		26,003	98 F	Paved roads w/curbs & sewers, HSG D						
_		26,003 98 100.00% Impervious Area								
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0	•			•	Direct Entry				

Subcatchment 116S: Basin 17

Type IA 24-hr 02-2 Year Rainfall=2.47"

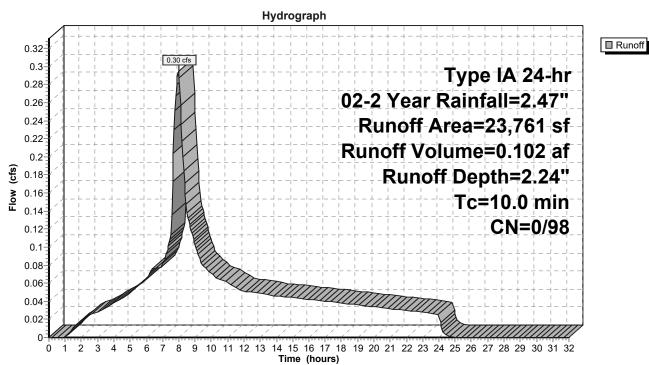
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 183

Summary for Subcatchment 117S: Basin 18


Runoff = 0.30 cfs @ 7.98 hrs, Volume= 0.102 af, Depth= 2.24"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

A	rea (sf)	CN I	Description						
	23,761	98 I	Paved roads w/curbs & sewers, HSG D						
	23,761 98 100.00% Impervious Area								
Tc (min)	Length (feet)								
10.0					Direct Entry,				

Subcatchment 117S: Basin 18

Type IA 24-hr 02-2 Year Rainfall=2.47"

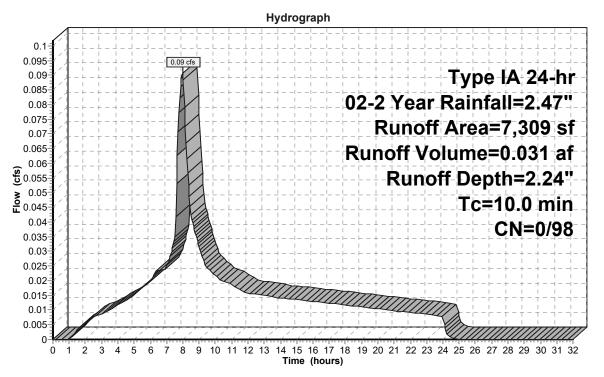
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 184

Summary for Subcatchment 118S: Basin 19


Runoff = 0.09 cfs @ 7.98 hrs, Volume= 0.031 af, Depth= 2.24"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	Description						
		7,309	98	Paved roads w/curbs & sewers, HSG D						
		7,309	98	100.00% Impervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0		Direct Entry							

Subcatchment 118S: Basin 19

Type IA 24-hr 02-2 Year Rainfall=2.47"

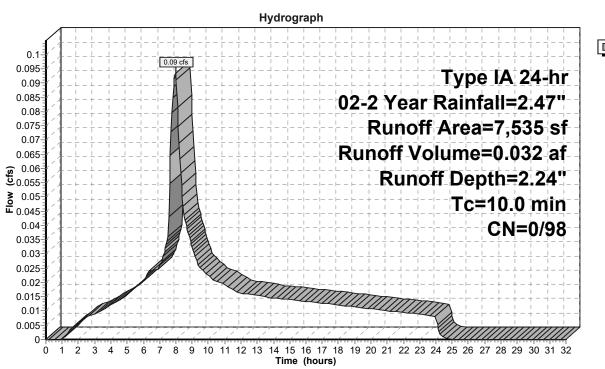
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 185

Summary for Subcatchment 119S: Basin 20


Runoff = 0.09 cfs @ 7.98 hrs, Volume= 0.032 af, Depth= 2.24"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	Description						
		7,535	98	Paved roads w/curbs & sewers, HSG D						
		7,535	98	100.00% Impervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)							
	10.0			Direct Entry,						

Subcatchment 119S: Basin 20

Type IA 24-hr 02-2 Year Rainfall=2.47"

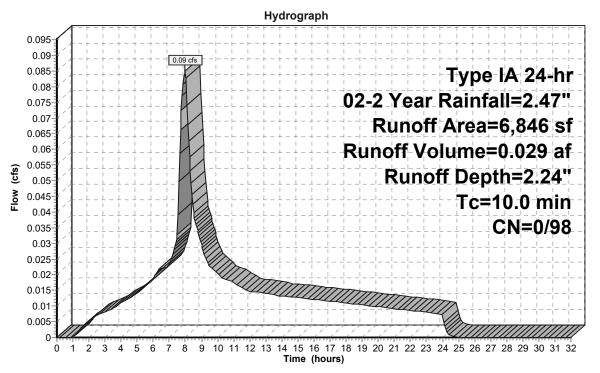
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 186

Summary for Subcatchment 120S: Basin 21


Runoff = 0.09 cfs @ 7.98 hrs, Volume= 0.029 af, Depth= 2.24"

Routed to Reach 148R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

A	rea (sf)	CN [Description						
	6,846	98 F	Paved roads w/curbs & sewers, HSG D						
	6,846	98 1	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0		Direct Entry,							

Subcatchment 120S: Basin 21

Type IA 24-hr 02-2 Year Rainfall=2.47"

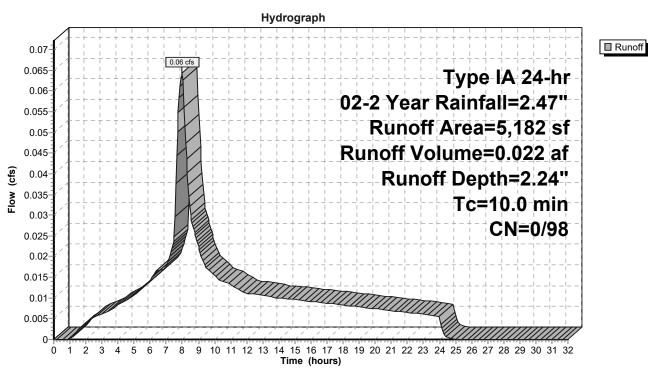
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 187

Summary for Subcatchment 121S: Basin 22


Runoff = 0.06 cfs @ 7.98 hrs, Volume= 0.022 af, Depth= 2.24"

Routed to Reach 154R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN [Description		
		5,182	98 F	Paved road	s w/curbs &	& sewers, HSG D
_		5,182	98 ′	100.00% In	npervious A	ırea
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.0					Direct Entry

Subcatchment 121S: Basin 22

Type IA 24-hr 02-2 Year Rainfall=2.47"

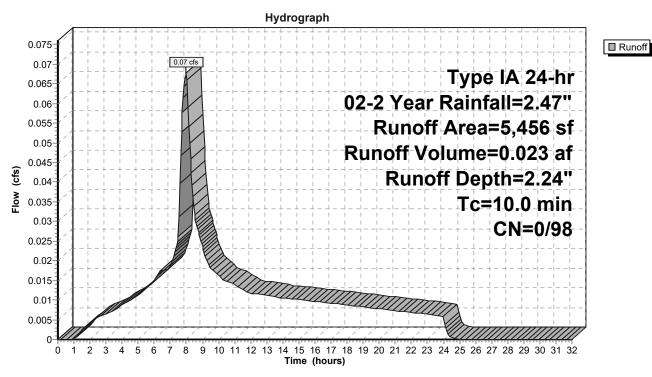
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 188

Summary for Subcatchment 122S: Basin 23


Runoff = 0.07 cfs @ 7.98 hrs, Volume= 0.023 af, Depth= 2.24"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	Description		
		5,456	98	Paved road	ls w/curbs &	& sewers, HSG D
_		5,456	98	100.00% In	npervious A	Area
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	2000 Ipiloti
_	10.0					Direct Entry,

Subcatchment 122S: Basin 23

Type IA 24-hr 02-2 Year Rainfall=2.47"

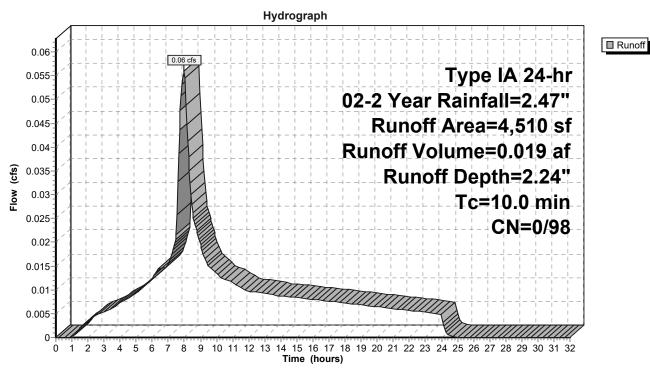
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 189

Summary for Subcatchment 123S: Basin 24


Runoff = 0.06 cfs @ 7.98 hrs, Volume= 0.019 af, Depth= 2.24"

Routed to Reach 162R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	Description		
		4,510	98	Paved road	ls w/curbs &	& sewers, HSG D
		4,510	98	100.00% Im	npervious A	Area
	Тс	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.0					Direct Entry

Subcatchment 123S: Basin 24

Type IA 24-hr 02-2 Year Rainfall=2.47"

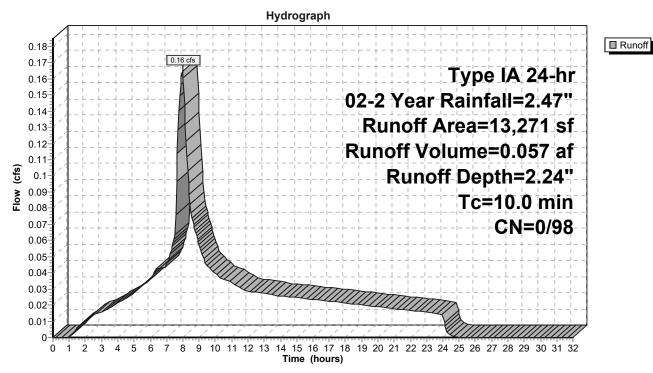
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 190

Summary for Subcatchment 124S: Basin 25


Runoff = 0.16 cfs @ 7.98 hrs, Volume= 0.057 af, Depth= 2.24"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

A	rea (sf)	CN I	Description		
	13,271	98 F	Paved road	s w/curbs &	& sewers, HSG D
	13,271	98 ′	100.00% Im	pervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry,

Subcatchment 124S: Basin 25

Type IA 24-hr 02-2 Year Rainfall=2.47"

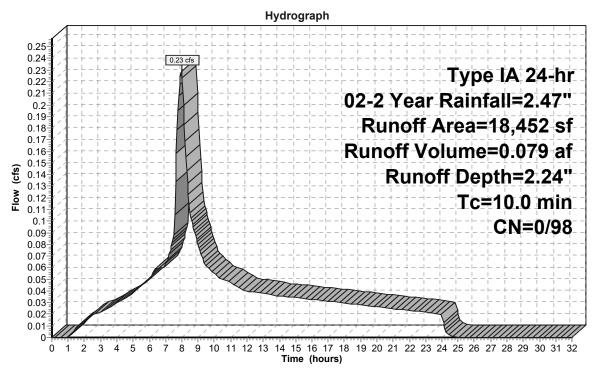
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 191

Summary for Subcatchment 125S: Basin 26


Runoff = 0.23 cfs @ 7.98 hrs, Volume= 0.079 af, Depth= 2.24"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

	Α	rea (sf)	CN I	Description		
		18,452	98 I	Paved road	s w/curbs &	& sewers, HSG D
_		18,452	98	100.00% In	pervious A	ırea
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.0			•	•	Direct Entry

Subcatchment 125S: Basin 26

Type IA 24-hr 02-2 Year Rainfall=2.47"

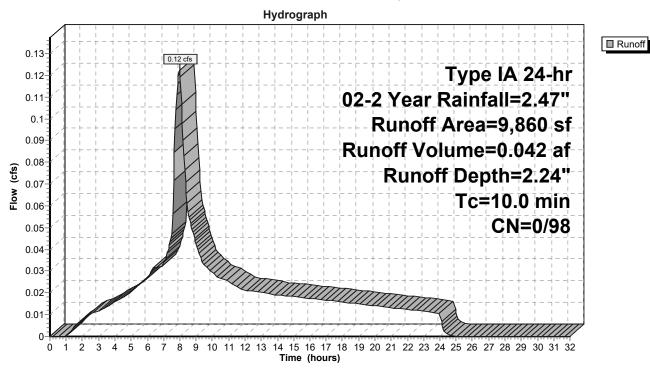
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 192

Summary for Subcatchment 126S: Alley Basin 1


Runoff = 0.12 cfs @ 7.98 hrs, Volume= 0.042 af, Depth= 2.24"

Routed to Reach 140R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	Description		
		9,860	98	Paved road	s w/curbs &	& sewers, HSG D
_		9,860	98	100.00% Im	npervious A	Area
_	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description
	10.0		•			Direct Entry,

Subcatchment 126S: Alley Basin 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

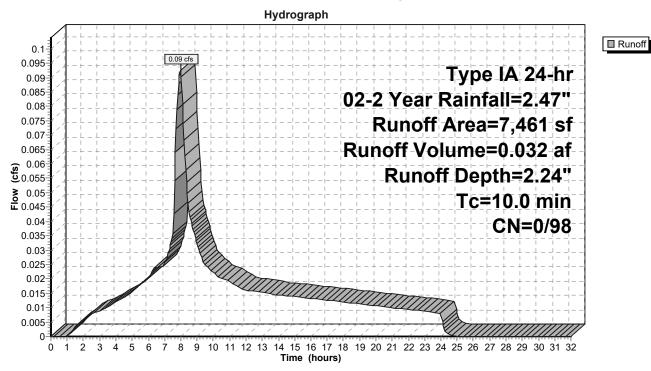
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 193

Summary for Subcatchment 127S: Alley Basin 2


Runoff = 0.09 cfs @ 7.98 hrs, Volume= 0.032 af, Depth= 2.24"

Routed to Reach 141R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

A	rea (sf)	CN [Description		
	7,461	98 F	Paved road	s w/curbs &	& sewers, HSG D
	7,461	98 1	00.00% Im	pervious A	∖rea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry,

Subcatchment 127S: Alley Basin 2

Type IA 24-hr 02-2 Year Rainfall=2.47"

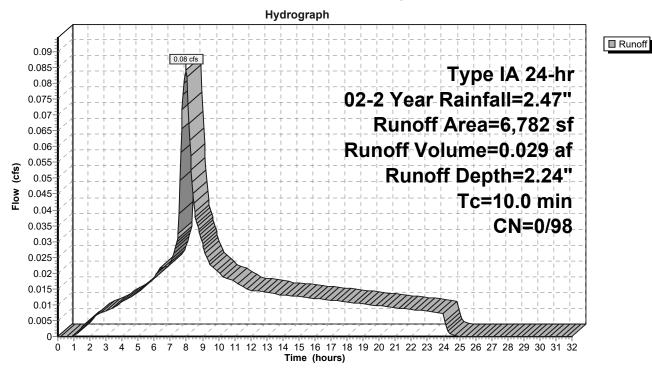
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 194

Summary for Subcatchment 128S: Alley Basin 3


Runoff = 0.08 cfs @ 7.98 hrs, Volume= 0.029 af, Depth= 2.24"

Routed to Reach 147R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN	Description		
		6,782	98	Paved road	s w/curbs &	& sewers, HSG D
		6,782	98	100.00% In	npervious A	Area
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.0					Direct Entry

Subcatchment 128S: Alley Basin 3

Type IA 24-hr 02-2 Year Rainfall=2.47"

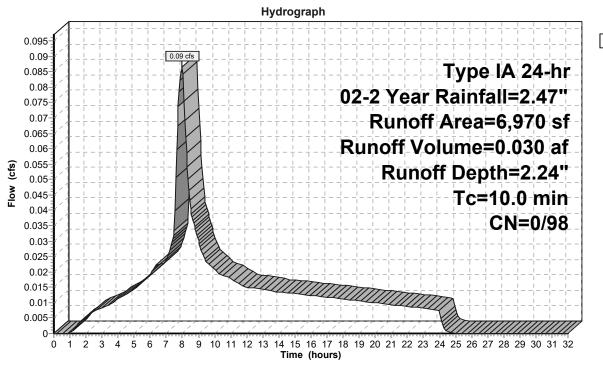
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 195

Summary for Subcatchment 129S: Alley Basin 4


Runoff = 0.09 cfs @ 7.98 hrs, Volume= 0.030 af, Depth= 2.24"

Routed to Reach 153R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

_	Α	rea (sf)	CN I	Description		
_		6,970	98 I	Paved road	s w/curbs &	& sewers, HSG D
_		6,970	98	100.00% Im	pervious A	rea
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.0			•		Direct Entry

Subcatchment 129S: Alley Basin 4

Type IA 24-hr 02-2 Year Rainfall=2.47"

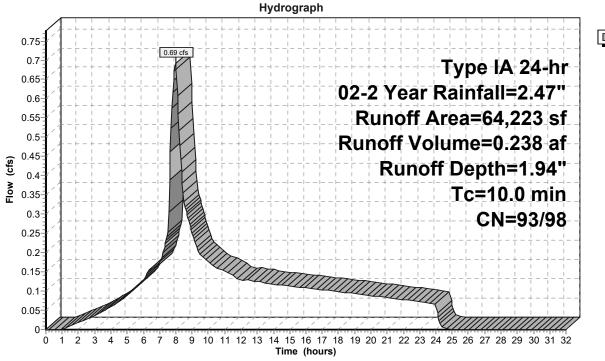
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 196

Summary for Subcatchment 168S: Future Lots


Runoff = 0.69 cfs @ 7.98 hrs, Volume= 0.238 af, Depth= 1.94"

Routed to Reach 166R: Basin Future

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

	Area (sf)	CN	Description		
1	39,915	93	70% Lot Co	verage We	eighted
	24,308	98	Paved roads	s w/curbs 8	& sewers, HSG D
	64,223	95	Weighted A	verage	
	39,915	93	62.15% Per	vious Area	a
	24,308	98	37.85% Imp	ervious Ar	rea
	Tc Length (min) (feet)	Slop (ft/	•	Capacity (cfs)	Description
	10.0				Direct Entry,

Subcatchment 168S: Future Lots

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

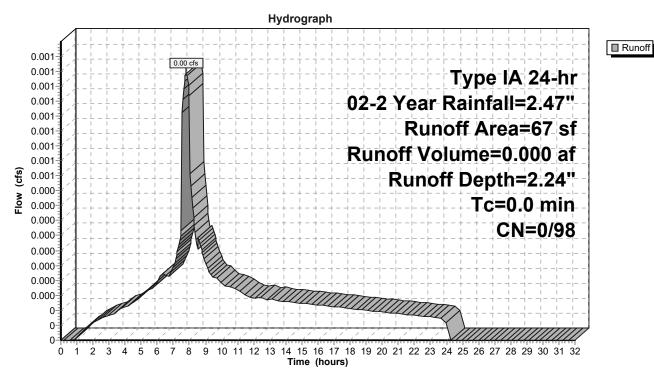
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 197

Summary for Subcatchment 169S: Swale 2

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 0.00 cfs @ 7.81 hrs, Volume=


0.000 af, Depth= 2.24"

Routed to Pond 54P: Stormwater Swale 2

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

	Area (sf)	CN	Description
	67	98	Water Surface, HSG D
-	67	98	100.00% Impervious Area

Subcatchment 169S: Swale 2

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

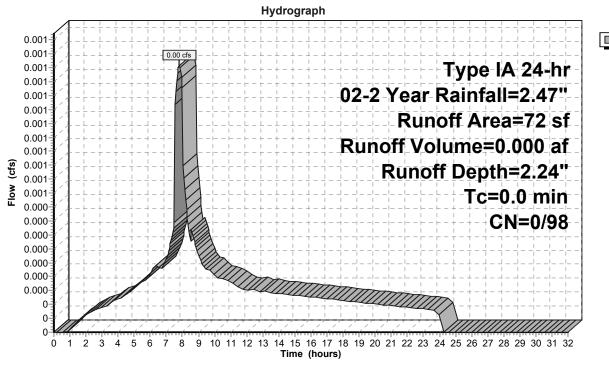
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 198

Summary for Subcatchment 170S: Swale 1

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 0.00 cfs @ 7.81 hrs, Volume=


0.000 af, Depth= 2.24"

Routed to Pond 60P: Stormwater Swale 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 02-2 Year Rainfall=2.47"

 Area (sf)	CN	Description
72	98	Water Surface, HSG D
72	98	100.00% Impervious Area

Subcatchment 170S: Swale 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

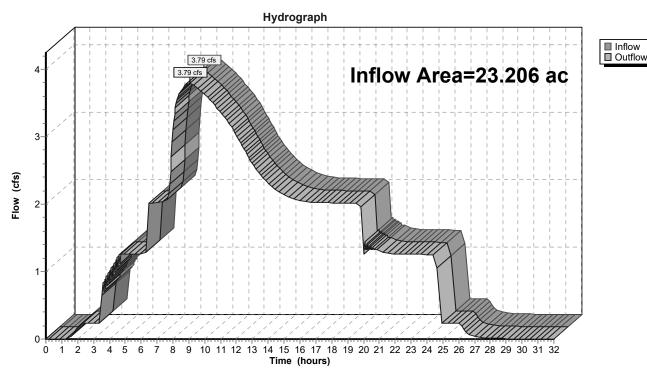
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 199

Summary for Reach 39R: Post-Construction Peak Flow

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 23.206 ac, 36.84% Impervious, Inflow Depth > 1.93" for 02-2 Year event

Inflow = 3.79 cfs @ 9.04 hrs, Volume= 3.734 af

Outflow = 3.79 cfs @ 9.04 hrs, Volume= 3.734 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 39R: Post-Construction Peak Flow

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

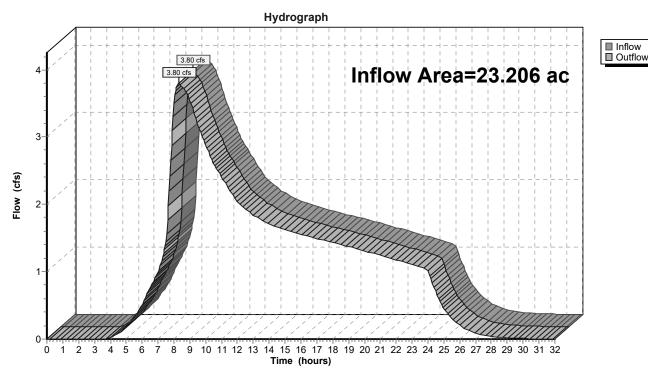
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 200

Summary for Reach 42R: Pre-Construction Peak Flow

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 23.206 ac, 0.00% Impervious, Inflow Depth > 1.43" for 02-2 Year event

Inflow = 3.80 cfs @ 8.32 hrs, Volume= 2.762 af

Outflow = 3.80 cfs @ 8.32 hrs, Volume= 2.762 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 42R: Pre-Construction Peak Flow

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

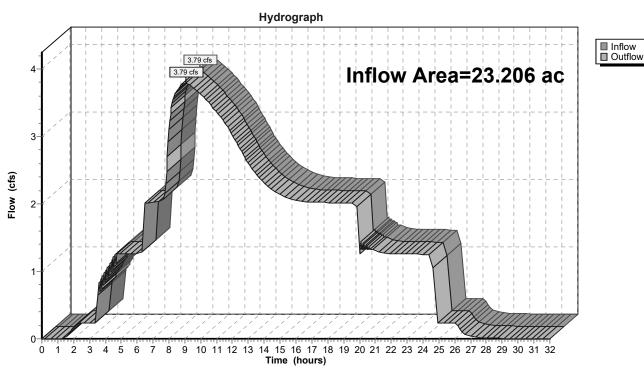
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 201

Summary for Reach 58R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 23.206 ac, 36.84% Impervious, Inflow Depth > 1.93" for 02-2 Year event


Inflow = 3.79 cfs @ 9.04 hrs, Volume= 3.734 af

Outflow = 3.79 cfs @ 9.04 hrs, Volume= 3.734 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 39R: Post-Construction Peak Flow

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 58R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

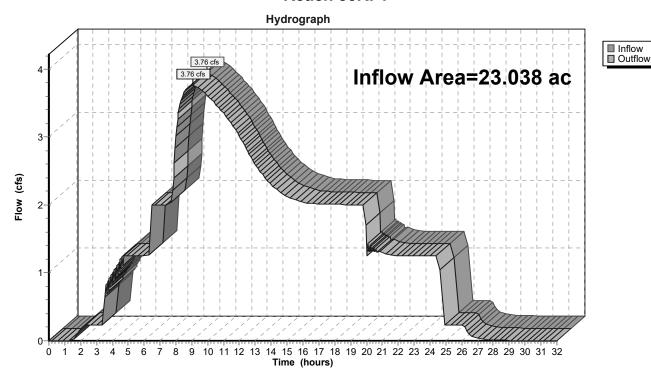
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 202

Summary for Reach 85R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 23.038 ac, 36.38% Impervious, Inflow Depth > 1.93" for 02-2 Year event


Inflow = 3.76 cfs @ 9.07 hrs, Volume= 3.703 af

Outflow = 3.76 cfs @ 9.07 hrs, Volume= 3.703 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 85R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

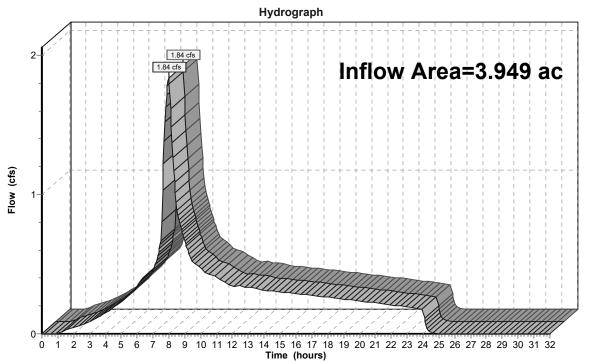
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 203

Summary for Reach 130R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.949 ac, 33.88% Impervious, Inflow Depth = 1.92" for 02-2 Year event


Inflow = 1.84 cfs @ 7.98 hrs, Volume= 0.631 af

Outflow = 1.84 cfs @ 7.98 hrs, Volume= 0.631 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 130R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

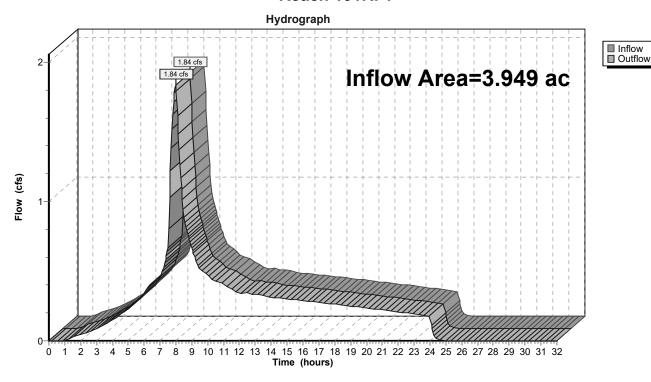
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 204

Summary for Reach 131R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.949 ac, 33.88% Impervious, Inflow Depth = 1.92" for 02-2 Year event


Inflow = 1.84 cfs @ 7.98 hrs, Volume= 0.631 af

Outflow = 1.84 cfs @ 7.98 hrs, Volume= 0.631 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 130R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 131R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

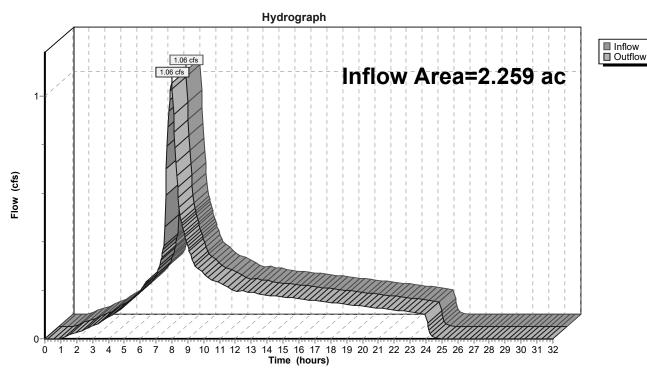
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 205

Summary for Reach 132R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.259 ac, 35.43% Impervious, Inflow Depth = 1.92" for 02-2 Year event


Inflow = 1.06 cfs @ 7.98 hrs, Volume= 0.362 af

Outflow = 1.06 cfs @ 7.98 hrs, Volume= 0.362 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 131R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 132R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

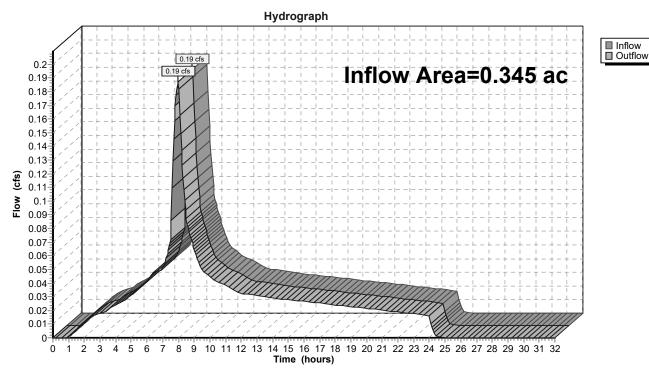
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 206

Summary for Reach 133R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.345 ac,100.00% Impervious, Inflow Depth = 2.24" for 02-2 Year event


Inflow = 0.19 cfs @ 7.98 hrs, Volume= 0.064 af

Outflow = 0.19 cfs @ 7.98 hrs, Volume= 0.064 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 132R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 133R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

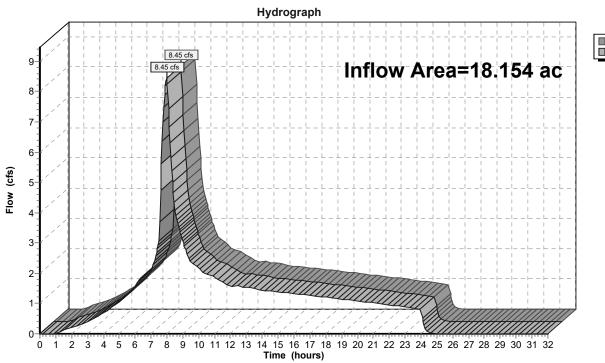
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 207

Summary for Reach 134R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 18.154 ac, 33.65% Impervious, Inflow Depth = 1.92" for 02-2 Year event


Inflow = 8.45 cfs @ 7.98 hrs, Volume= 2.899 af

Outflow = 8.45 cfs @ 7.98 hrs, Volume= 2.899 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 134R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

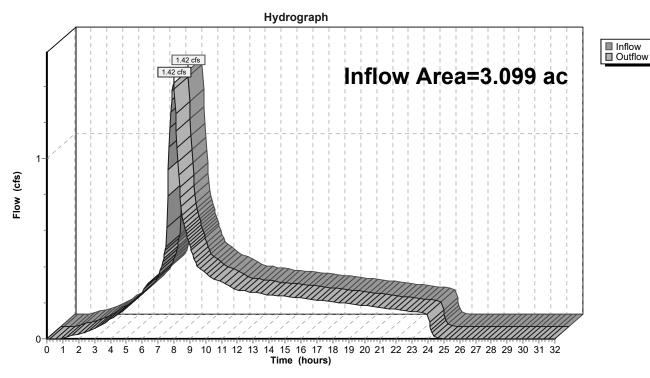
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 208

Summary for Reach 135R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.099 ac, 26.69% Impervious, Inflow Depth = 1.88" for 02-2 Year event


Inflow = 1.42 cfs @ 7.98 hrs, Volume= 0.486 af

Outflow = 1.42 cfs @ 7.98 hrs, Volume= 0.486 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 134R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 135R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

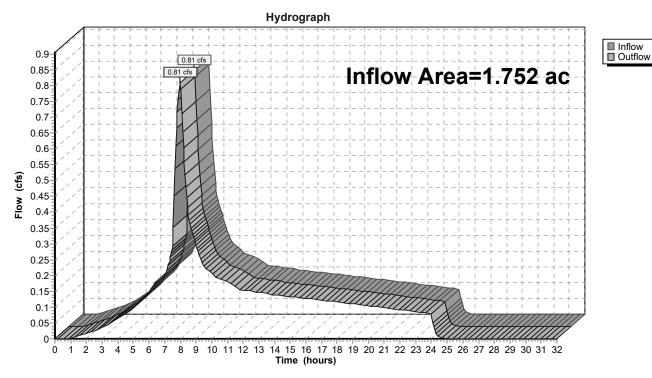
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 209

Summary for Reach 136R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.752 ac, 30.00% Impervious, Inflow Depth = 1.90" for 02-2 Year event


Inflow = 0.81 cfs @ 7.98 hrs, Volume= 0.277 af

Outflow = 0.81 cfs @ 7.98 hrs, Volume= 0.277 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 135R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 136R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

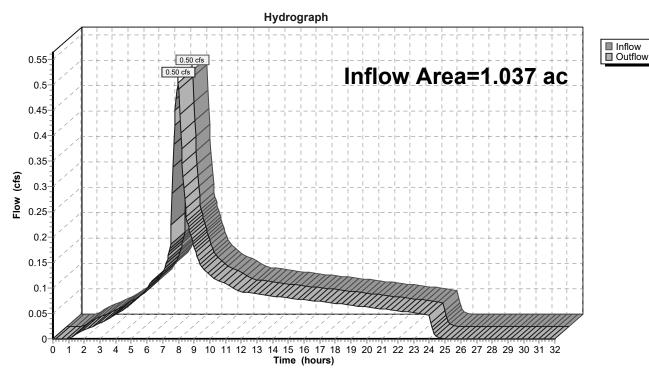
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 210

Summary for Reach 137R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.037 ac, 50.68% Impervious, Inflow Depth = 2.00" for 02-2 Year event


Inflow = 0.50 cfs @ 7.98 hrs, Volume= 0.173 af

Outflow = 0.50 cfs @ 7.98 hrs, Volume= 0.173 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 136R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 137R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

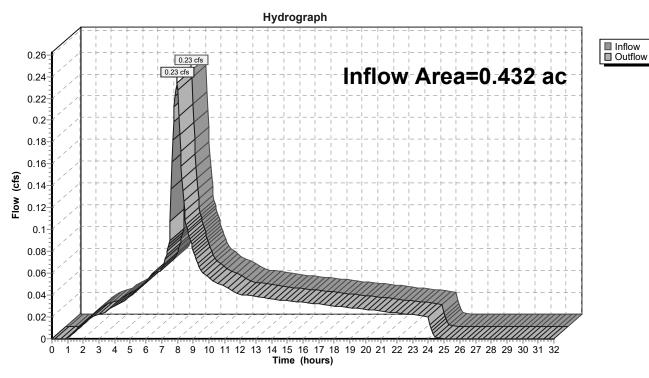
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 211

Summary for Reach 138R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.432 ac,100.00% Impervious, Inflow Depth = 2.24" for 02-2 Year event


Inflow = 0.23 cfs @ 7.98 hrs, Volume= 0.081 af

Outflow = 0.23 cfs @ 7.98 hrs, Volume= 0.081 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 138R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

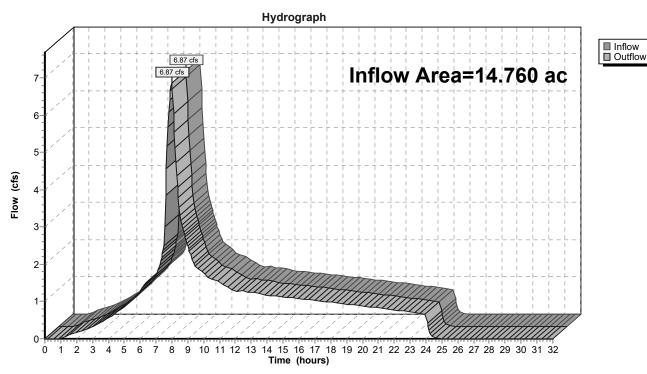
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 212

Summary for Reach 139R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.760 ac, 33.78% Impervious, Inflow Depth = 1.92" for 02-2 Year event


Inflow = 6.87 cfs @ 7.98 hrs, Volume= 2.357 af

Outflow = 6.87 cfs @ 7.98 hrs, Volume= 2.357 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 158R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 139R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

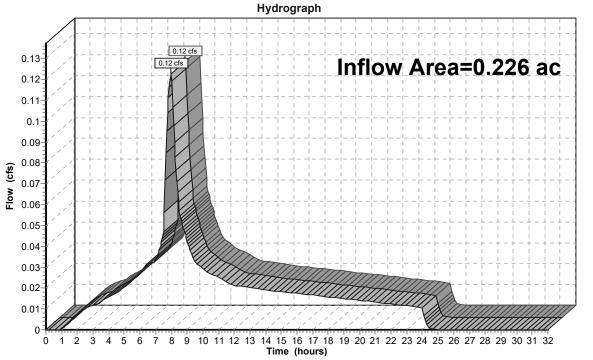
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 213

Summary for Reach 140R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.226 ac,100.00% Impervious, Inflow Depth = 2.24" for 02-2 Year event


Inflow = 0.12 cfs @ 7.98 hrs, Volume= 0.042 af

Outflow = 0.12 cfs @ 7.98 hrs, Volume= 0.042 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 138R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 140R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

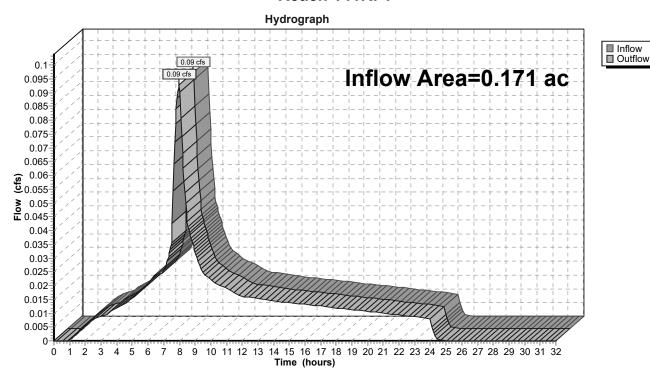
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 214

Summary for Reach 141R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.171 ac,100.00% Impervious, Inflow Depth = 2.24" for 02-2 Year event


Inflow = 0.09 cfs @ 7.98 hrs, Volume= 0.032 af

Outflow = 0.09 cfs @ 7.98 hrs, Volume= 0.032 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 139R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 141R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

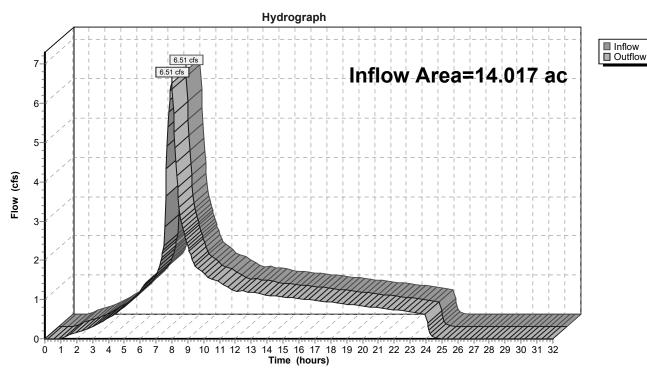
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 215

Summary for Reach 142R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.017 ac, 33.09% Impervious, Inflow Depth = 1.91" for 02-2 Year event


Inflow = 6.51 cfs @ 7.98 hrs, Volume= 2.235 af

Outflow = 6.51 cfs @ 7.98 hrs, Volume= 2.235 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 159R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 142R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

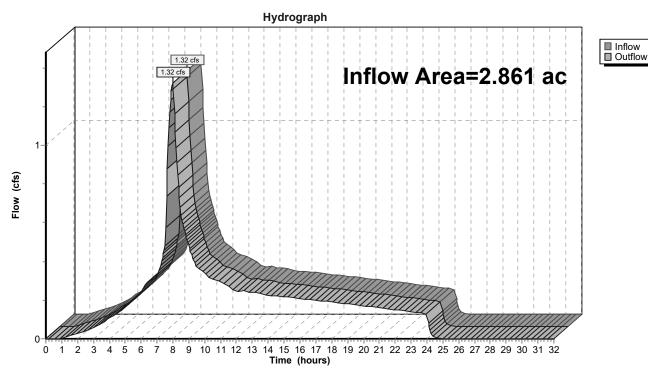
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 216

Summary for Reach 143R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.861 ac, 30.95% Impervious, Inflow Depth = 1.90" for 02-2 Year event


Inflow = 1.32 cfs @ 7.98 hrs, Volume= 0.454 af

Outflow = 1.32 cfs @ 7.98 hrs, Volume= 0.454 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 142R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 143R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

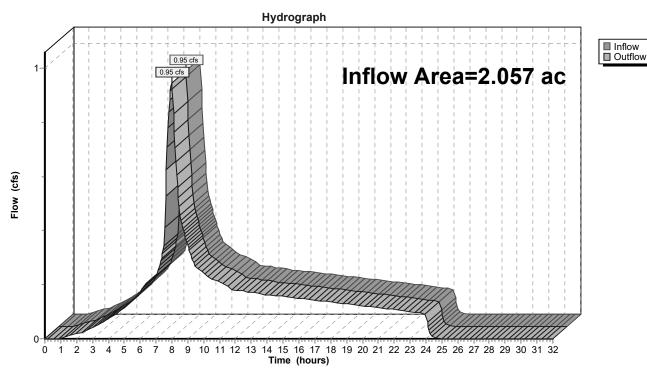
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 217

Summary for Reach 144R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.057 ac, 28.74% Impervious, Inflow Depth = 1.89" for 02-2 Year event


Inflow = 0.95 cfs @ 7.98 hrs, Volume= 0.324 af

Outflow = 0.95 cfs @ 7.98 hrs, Volume= 0.324 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 143R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 144R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

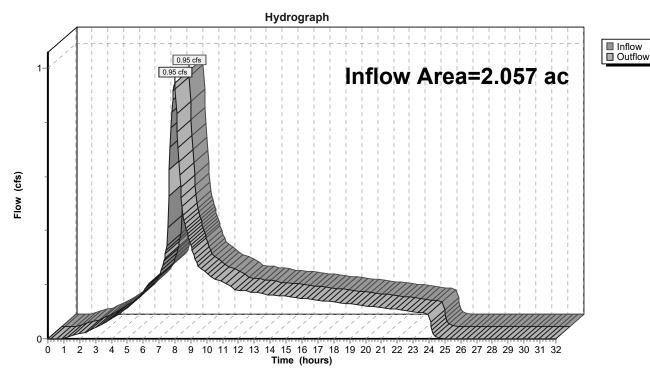
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 218

Summary for Reach 145R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.057 ac, 28.74% Impervious, Inflow Depth = 1.89" for 02-2 Year event


Inflow = 0.95 cfs @ 7.98 hrs, Volume= 0.324 af

Outflow = 0.95 cfs @ 7.98 hrs, Volume= 0.324 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 144R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 145R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

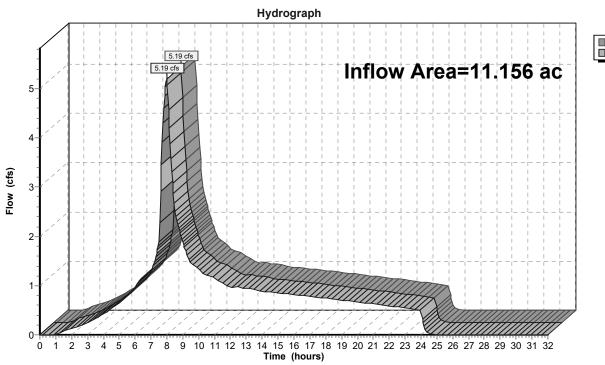
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 219

Summary for Reach 146R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 11.156 ac, 33.63% Impervious, Inflow Depth = 1.92" for 02-2 Year event


Inflow = 5.19 cfs @ 7.98 hrs, Volume= 1.781 af

Outflow = 5.19 cfs @ 7.98 hrs, Volume= 1.781 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 142R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 146R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

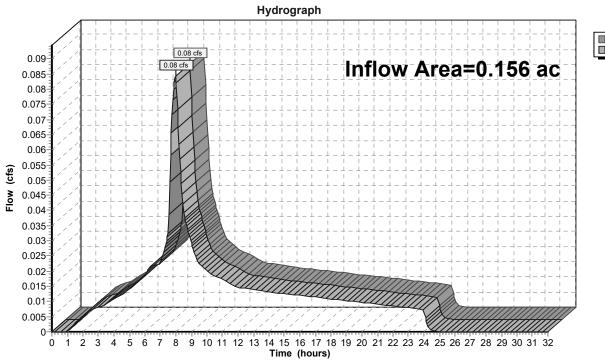
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 220

Summary for Reach 147R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.156 ac,100.00% Impervious, Inflow Depth = 2.24" for 02-2 Year event


Inflow = 0.08 cfs @ 7.98 hrs, Volume= 0.029 af

Outflow = 0.08 cfs @ 7.98 hrs, Volume= 0.029 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 146R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 147R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

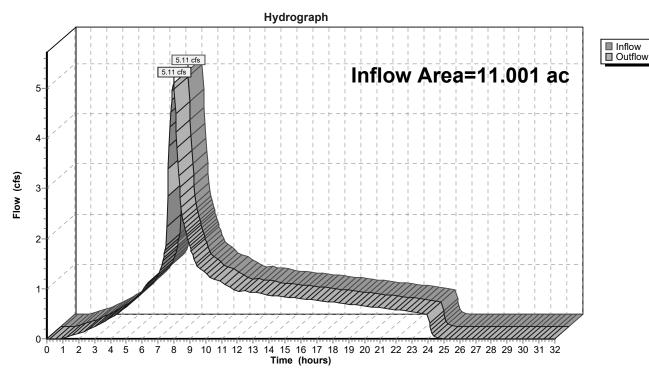
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 221

Summary for Reach 148R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 11.001 ac, 32.69% Impervious, Inflow Depth = 1.91" for 02-2 Year event


Inflow = 5.11 cfs @ 7.98 hrs, Volume= 1.752 af

Outflow = 5.11 cfs @ 7.98 hrs, Volume= 1.752 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 146R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 148R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

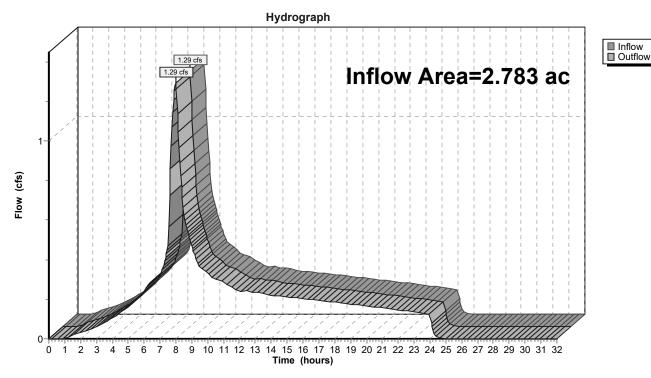
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 222

Summary for Reach 149R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.783 ac, 33.49% Impervious, Inflow Depth = 1.92" for 02-2 Year event


Inflow = 1.29 cfs @ 7.98 hrs, Volume= 0.444 af

Outflow = 1.29 cfs @ 7.98 hrs, Volume= 0.444 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 148R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 149R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

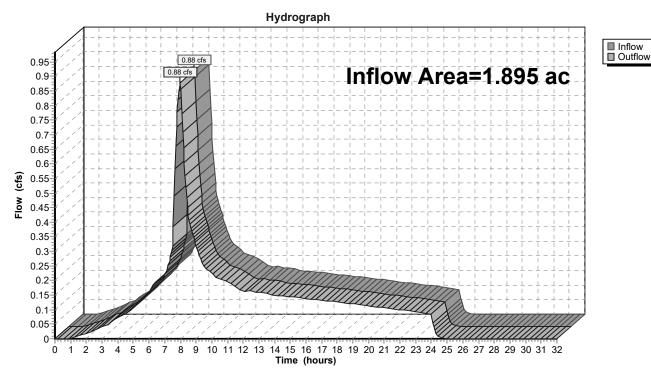
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 223

Summary for Reach 150R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.895 ac, 31.51% Impervious, Inflow Depth = 1.91" for 02-2 Year event


Inflow = 0.88 cfs @ 7.98 hrs, Volume= 0.301 af

Outflow = $0.88 \text{ cfs } \overline{\textcircled{0}}$ 7.98 hrs, Volume= 0.301 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 149R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 150R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

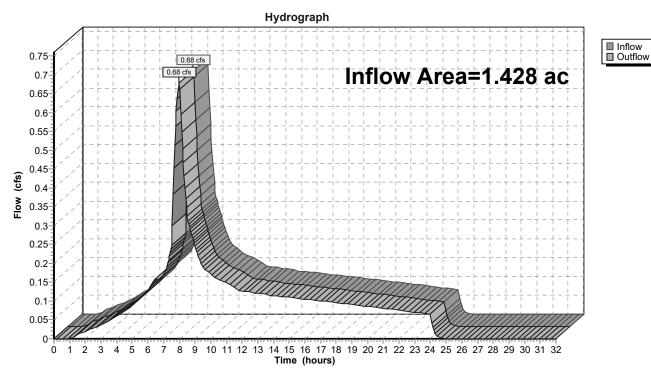
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 224

Summary for Reach 151R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.428 ac, 41.79% Impervious, Inflow Depth = 1.96" for 02-2 Year event


Inflow = 0.68 cfs @ 7.98 hrs, Volume= 0.233 af

Outflow = 0.68 cfs @ 7.98 hrs, Volume= 0.233 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 150R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 151R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

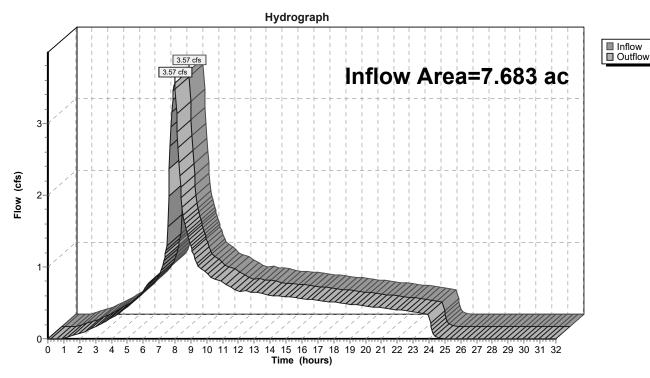
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 225

Summary for Reach 152R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 7.683 ac, 32.64% Impervious, Inflow Depth = 1.91" for 02-2 Year event


Inflow = 3.57 cfs @ 7.98 hrs, Volume= 1.224 af

Outflow = 3.57 cfs @ 7.98 hrs, Volume= 1.224 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 148R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 152R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

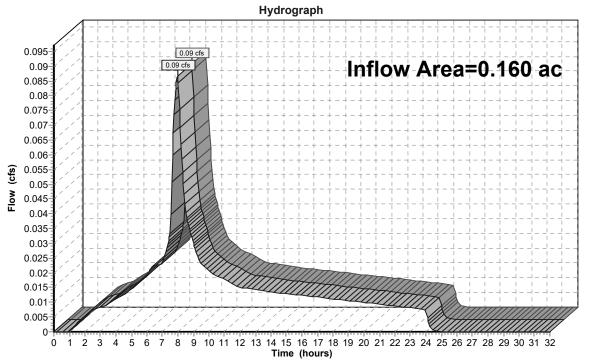
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 226

Summary for Reach 153R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.160 ac,100.00% Impervious, Inflow Depth = 2.24" for 02-2 Year event


Inflow = 0.09 cfs @ 7.98 hrs, Volume= 0.030 af

Outflow = 0.09 cfs @ 7.98 hrs, Volume= 0.030 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 152R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 153R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

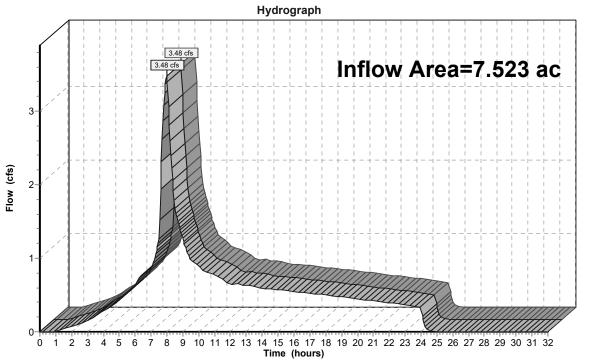
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 227

Summary for Reach 154R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 7.523 ac, 31.20% Impervious, Inflow Depth = 1.90" for 02-2 Year event


Inflow = 3.48 cfs @ 7.98 hrs, Volume= 1.194 af

Outflow = 3.48 cfs @ 7.98 hrs, Volume= 1.194 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 152R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 154R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

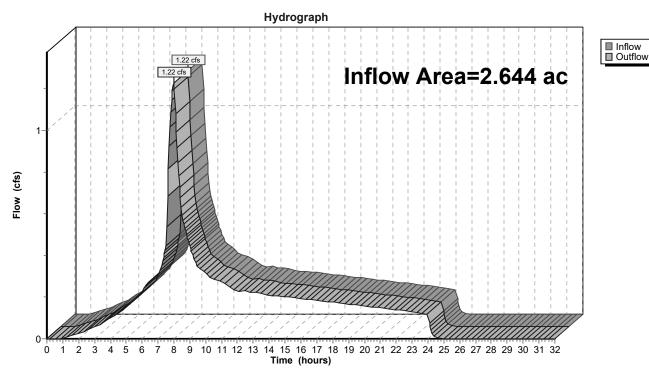
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 228

Summary for Reach 155R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.644 ac, 31.72% Impervious, Inflow Depth = 1.91" for 02-2 Year event


Inflow = 1.22 cfs @ 7.98 hrs, Volume= 0.420 af

Outflow = 1.22 cfs @ 7.98 hrs, Volume= 0.420 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 154R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 155R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

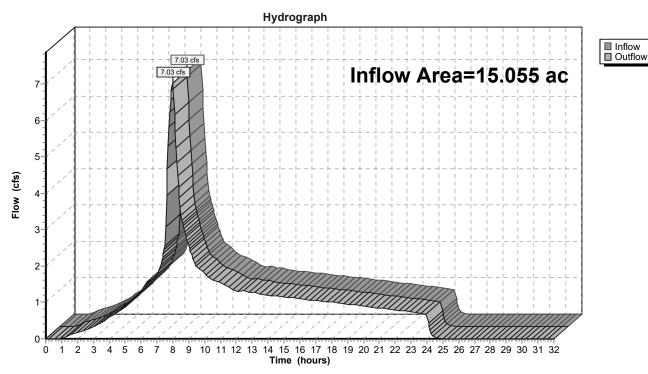
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 229

Summary for Reach 158R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 15.055 ac, 35.08% Impervious, Inflow Depth = 1.92" for 02-2 Year event


Inflow = 7.03 cfs @ 7.98 hrs, Volume= 2.413 af

Outflow = 7.03 cfs @ 7.98 hrs, Volume= 2.413 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 134R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 158R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

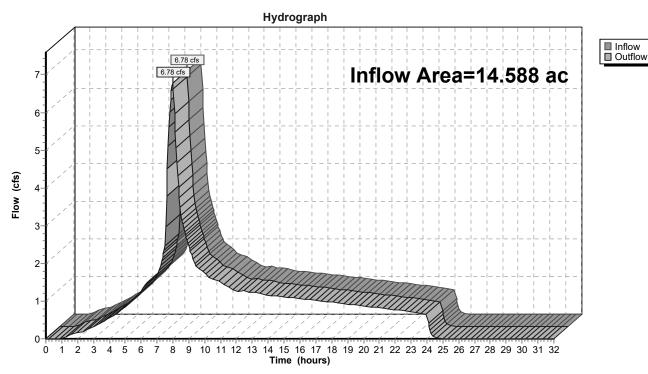
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 230

Summary for Reach 159R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.588 ac, 33.00% Impervious, Inflow Depth = 1.91" for 02-2 Year event


Inflow = 6.78 cfs @ 7.98 hrs, Volume= 2.325 af

Outflow = 6.78 cfs @ 7.98 hrs, Volume= 2.325 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 139R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 159R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

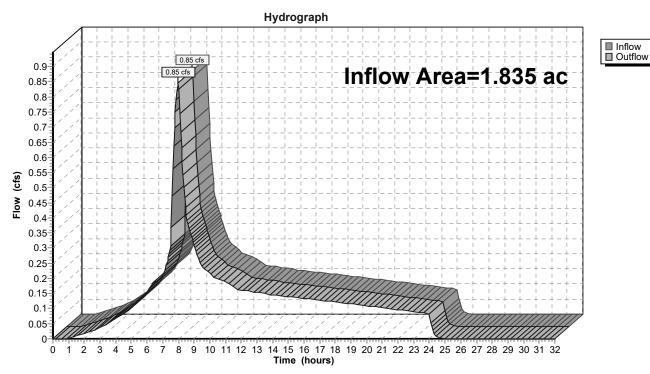
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 231

Summary for Reach 160R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.835 ac, 29.73% Impervious, Inflow Depth = 1.90" for 02-2 Year event


Inflow = 0.85 cfs @ 7.98 hrs, Volume= 0.290 af

Outflow = 0.85 cfs @ 7.98 hrs, Volume= 0.290 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 155R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 160R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

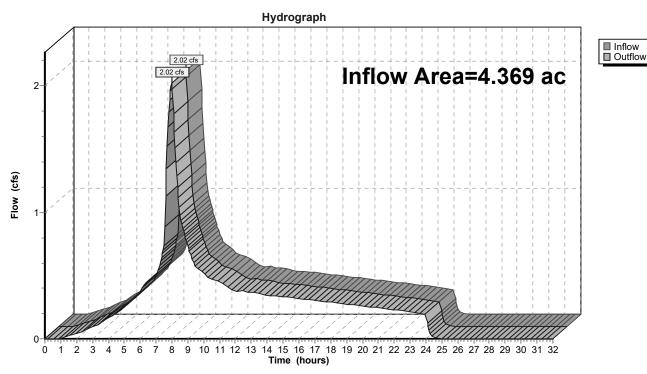
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 232

Summary for Reach 162R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.369 ac, 31.81% Impervious, Inflow Depth = 1.91" for 02-2 Year event


Inflow = 2.02 cfs @ 7.98 hrs, Volume= 0.694 af

Outflow = 2.02 cfs @ 7.98 hrs, Volume= 0.694 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 154R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 162R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

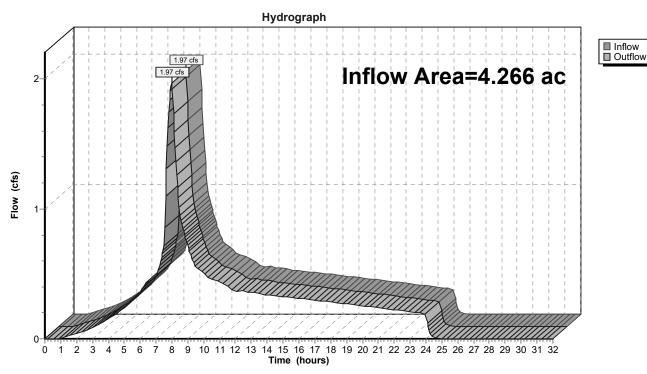
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 233

Summary for Reach 163R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.266 ac, 30.15% Impervious, Inflow Depth = 1.90" for 02-2 Year event


Inflow = 1.97 cfs @ 7.98 hrs, Volume= 0.675 af

Outflow = 1.97 cfs @ 7.98 hrs, Volume= 0.675 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 162R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 163R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

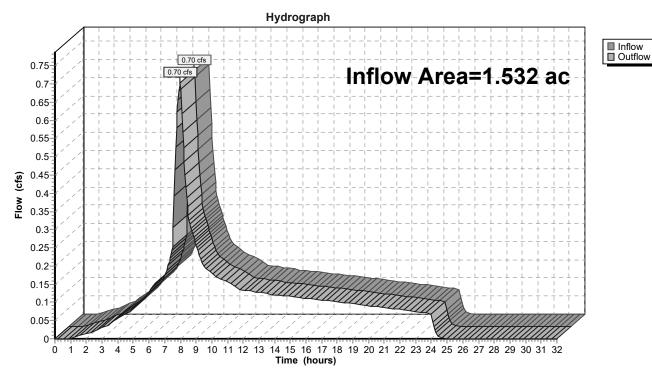
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 234

Summary for Reach 165R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.532 ac, 27.64% Impervious, Inflow Depth = 1.89" for 02-2 Year event


Inflow = 0.70 cfs @ 7.98 hrs, Volume= 0.241 af

Outflow = 0.70 cfs @ 7.98 hrs, Volume= 0.241 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 163R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 165R: 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

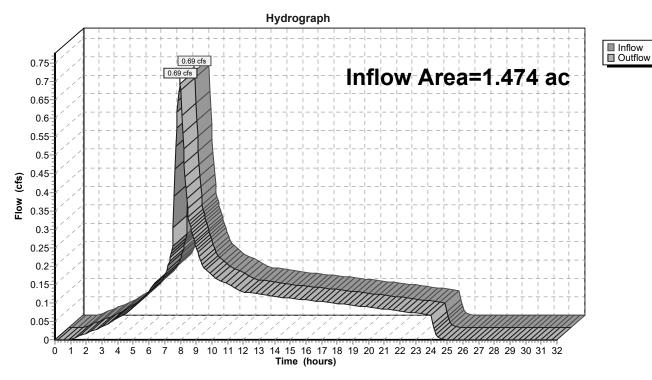
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 235

Summary for Reach 166R: Basin Future

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.474 ac, 37.85% Impervious, Inflow Depth = 1.94" for 02-2 Year event


Inflow = 0.69 cfs @ 7.98 hrs, Volume= 0.238 af

Outflow = 0.69 cfs @ 7.98 hrs, Volume= 0.238 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 163R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 166R: Basin Future

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 236

Summary for Pond 54P: Stormwater Swale 2

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=66)

Inflow Area = 0.082 ac,100.00% Impervious, Inflow Depth = 2.24" for 02-2 Year event

Inflow = 0.04 cfs @ 7.98 hrs, Volume= 0.015 af

Outflow = 0.04 cfs @ 7.99 hrs, Volume= 0.015 af, Atten= 0%, Lag= 0.6 min

Primary = 0.04 cfs @ 7.99 hrs, Volume= 0.015 af

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Peak Elev= 222.39' @ 7.99 hrs Surf.Area= 185 sf Storage= 31 cf

Flood Elev= 223.30' Surf.Area= 192 sf Storage= 88 cf

Plug-Flow detention time= 44.2 min calculated for 0.015 af (100% of inflow)

Center-of-Mass det. time= 44.3 min (723.3 - 679.0)

Volume	Inv	ert Avai	l.Storage	Storage Descript	ion			
#1 #2	222.3 220.8		63 cf 10 cf		rregular)Listed be			
#3	220.0		15 cf	101 cf Overall x Rock Chamber (Imported Soil (Irregular)Listed below (Recalc) 101 cf Overall x 10.0% Voids Rock Chamber (Irregular)Listed below (Recalc) 44 cf Overall x 35.0% Voids			
			88 cf	Total Available S				
Elevatior (feet		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
222.30)	59	33.0	0	0	59		
223.30)	67	34.0	63	63	93		
Elevatior (feet		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
220.80	,	67	34.0	0	0	67		
222.30)	67	34.0	101	101	118		
Elevatior (feet		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
220.05	_	58	33.0	0	0	58		
220.80)	58	33.0	44	44	83		
Device	Routing	In	vert Outl	et Devices				
	Primary	_		0 in/hr Perf Pipes				
#2	Primary	223)" Horiz. 4"Overflow Pipe C= 0.600 nited to weir flow at low heads				
#3	Primary	222	.30' 10.0	" Vert. 10" Outflo ted to weir flow at	w Pipe C= 0.600)		

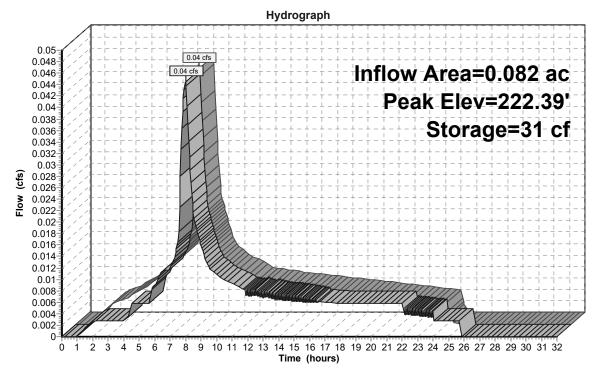
Primary OutFlow Max=0.04 cfs @ 7.99 hrs HW=222.39' TW=0.00' (Dynamic Tailwater)

—1=Perf Pipes (Exfiltration Controls 0.01 cfs)

-2=4"Overflow Pipe (Controls 0.00 cfs)

-3=10" Outflow Pipe (Orifice Controls 0.04 cfs @ 1.05 fps)

Type IA 24-hr 02-2 Year Rainfall=2.47"


Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 237

Pond 54P: Stormwater Swale 2

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 238

Summary for Pond 60P: Stormwater Swale 1

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=21)

Inflow Area = 0.085 ac,100.00% Impervious, Inflow Depth = 2.24" for 02-2 Year event

Inflow = 0.05 cfs @ 7.98 hrs, Volume= 0.016 af

Outflow = 0.05 cfs @ 7.99 hrs, Volume= 0.016 af, Atten= 1%, Lag= 0.6 min

Primary = 0.05 cfs @ 7.99 hrs, Volume= 0.016 af

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Peak Elev= 222.05' @ 7.99 hrs Surf.Area= 195 sf Storage= 33 cf

Flood Elev= 222.95' Surf.Area= 204 sf Storage= 93 cf

Plug-Flow detention time= 44.4 min calculated for 0.016 af (100% of inflow)

Center-of-Mass det. time= 44.5 min (723.5 - 679.0)

Volume	Inv	ert Avai	l.Storage	Storage Descripti	ion			
#1 #2	221.9 220.4		67 cf 11 cf	Open Storage (Irregular)Listed below (Recalc) Imported Soil (Irregular)Listed below (Recalc) 108 cf Overall x 10.0% Voids				
#3	219.7	70'	16 cf	Rock Chamber (Rock Chamber (Irregular)Listed below (Recalc) 45 cf Overall x 35.0% Voids			
			93 cf	Total Available S	torage			
Elevatior (feet)	-	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
221.95 222.95		62 72	34.0 36.0	0 67	0 67	62 99		
Elevation (feet		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
220.45 221.95		72 72	36.0 36.0	0 108	0 108	72 126		
Elevation (feet)		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
219.70 220.45		60 60	34.0 34.0	0 45	0 45	60 86		
Device	Routing	In	vert Outl	et Devices				
	Primary Primary	219 222	.70' 4.0"	0 in/hr Perf Pipes Horiz. 4"Overflow ted to weir flow at l	w Pipe C= 0.600	ea		
#3	Primary	221	.95' 10.0	0" Vert. 10" Outflow Pipe C= 0.600 iited to weir flow at low heads				

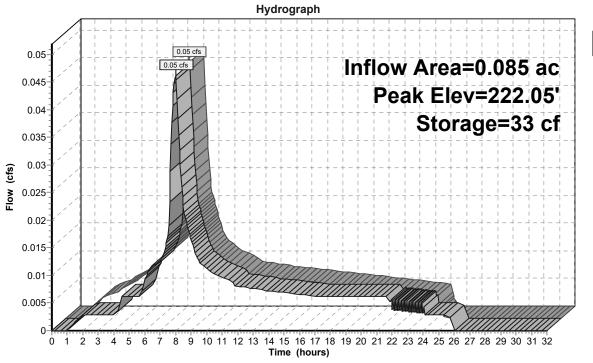
Primary OutFlow Max=0.05 cfs @ 7.99 hrs HW=222.05' TW=0.00' (Dynamic Tailwater)

—1=Perf Pipes (Exfiltration Controls 0.01 cfs)

—2=4"Overflow Pipe (Controls 0.00 cfs)

-3=10" Outflow Pipe (Orifice Controls 0.04 cfs @ 1.06 fps)

Type IA 24-hr 02-2 Year Rainfall=2.47"


Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 239

Pond 60P: Stormwater Swale 1

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 240

Summary for Pond 63P: Detention Pond

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=16)

Inflow Area = 23.038 ac, 36.38% Impervious, Inflow Depth = 1.93" for 02-2 Year event

Inflow = 10.80 cfs @ 7.98 hrs, Volume= 3.704 af

Outflow = 3.76 cfs @ 9.07 hrs, Volume= 3.703 af, Atten= 65%, Lag= 65.1 min

Primary = 3.76 cfs @ 9.07 hrs, Volume= 3.703 af

Routed to Reach 85R: 1

219.00

220.00

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Peak Elev= 222.87' @ 9.07 hrs Surf.Area= 44,950 sf Storage= 28,382 cf

Flood Elev= 225.50' Surf.Area= 48,838 sf Storage= 80,897 cf

Plug-Flow detention time= 88.4 min calculated for 3.697 af (100% of inflow)

Center-of-Mass det. time= 88.4 min (804.8 - 716.3)

5,000

5,000

Volume	Invert	Avail.Storage	Storage Description
#1	221.50'	75,859 cf	Open Storage (Irregular)Listed below (Recalc)
#2	220.00'	3,288 cf	Growing Medium (Irregular)Listed below (Recalc)
			32,879 cf Overall x 10.0% Voids
#3	219.00'	1,750 cf	Rock Chamber (Prismatic)Listed below (Recalc)
			5,000 cf Overall x 35.0% Voids
		80,897 cf	Total Available Storage

Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
221.50	16,108	696.8	0	0	16,108
222.50	17,511	717.0	16,805	16,805	18,488
223.50	18,943	738.5	18,222	35,027	21,082
224.50	20,410	754.7	19,672	54,699	23,147
225.50	21,919	770.9	21,160	75,859	25,257
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
220.00	21,919	770.9	0	0	21,919
221.50	21,919	770.9	32,879	32,879	23,075
Elevation	Surf.Area	Inc.St	ore Cum.S	tore	
(feet)	(sq-ft)	(cubic-fe	eet) (cubic-f	eet)	

0

5,000

0

5,000

Type IA 24-hr 02-2 Year Rainfall=2.47"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 241

Device	Routing	Invert	Outlet Devices
#1	Primary	219.00'	24.0" Round 24" Pipe
	•		L= 100.0' CPP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 219.00' / 218.80' S= 0.0020 '/' Cc= 0.900
			n= 0.010, Flow Area= 3.14 sf
#2	Device 1	219.00'	2.000 in/hr 4" Perf Pipes over Surface area
#3	Device 1	221.85'	6.0" Vert. 2x6" Orifice X 2.00 C= 0.600
			Limited to weir flow at low heads
#4	Device 1	222.78'	6.0" Vert. 6" Orifice C= 0.600 Limited to weir flow at low heads
#5	Device 1	222.95'	6.0" Vert. 6" Orifice C= 0.600 Limited to weir flow at low heads
#6	Device 1	223.25'	4.0" Vert. 4" Orifice C= 0.600 Limited to weir flow at low heads
#7	Device 1	223.55'	4.0" Vert. 4" Orifice C= 0.600 Limited to weir flow at low heads
#8	Device 1	223.77'	4.0" Vert. 2x4" Orifice X 2.00 C= 0.600
			Limited to weir flow at low heads
#9	Device 1	224.35'	48.0" x 48.0" Horiz. 48" Overflow C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=3.76 cfs @ 9.07 hrs HW=222.87' TW=0.00' (Dynamic Tailwater)

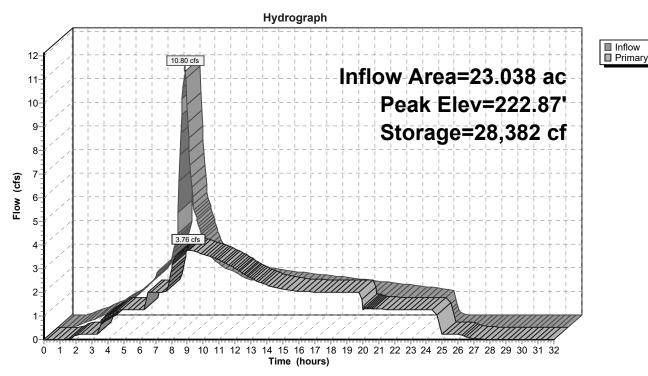
—1=24" Pipe (Passes 3.76 cfs of 22.60 cfs potential flow)

-2=4" Perf Pipes (Exfiltration Controls 2.08 cfs)

-3=2x6" Orifice (Orifice Controls 1.66 cfs @ 4.22 fps)

-4=6" Orifice (Orifice Controls 0.02 cfs @ 1.01 fps)

-5=6" Orifice (Controls 0.00 cfs)


-6=4" Orifice (Controls 0.00 cfs)

-7=4" Orifice (Controls 0.00 cfs)

-8=2x4" Orifice (Controls 0.00 cfs)

-9=48" Overflow (Controls 0.00 cfs)

Pond 63P: Detention Pond

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 242

Time span=0.00-32.00 hrs, dt=0.05 hrs, 641 points
Runoff by SBUH method, Split Pervious/Imperv.
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

0,,	0 1 1
Subcatchment64S: Home Basin 20	Runoff Area=9,940 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.12 cfs 0.040 af
Subcatchment65S: Single Pond Existin Flow Length=1,526'	g Runoff Area=23.038 ac 0.00% Impervious Runoff Depth>1.77" Slope=0.0076 '/' Tc=73.0 min CN=89/0 Runoff=4.82 cfs 3.405 af
Subcatchment67S: Home Basin 19	Runoff Area=17,197 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.21 cfs 0.070 af
Subcatchment68S: Home Basin 12	Runoff Area=18,133 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.22 cfs 0.074 af
Subcatchment69S: Home Basin 17	Runoff Area=16,661 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.20 cfs 0.068 af
Subcatchment70S: Home Basin 18	Runoff Area=11,596 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.14 cfs 0.047 af
Subcatchment71S: Home Basin 14	Runoff Area=16,444 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.20 cfs 0.067 af
Subcatchment72S: Home Basin 16	Runoff Area=20,310 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.24 cfs 0.082 af
Subcatchment73S: Home Basin 13	Runoff Area=10,807 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.13 cfs 0.044 af
Subcatchment74S: Swale Existing Flow Length=105'	Runoff Area=0.168 ac 0.00% Impervious Runoff Depth=1.77" Slope=0.0565 '/' Tc=10.0 min CN=89/0 Runoff=0.07 cfs 0.025 af
Subcatchment75S: Home Basin 11	Runoff Area=18,483 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.22 cfs 0.075 af
Subcatchment77S: Home Basin 15	Runoff Area=12,503 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.15 cfs 0.051 af
Subcatchment78S: Single Pond	Runoff Area=21,919 sf 100.00% Impervious Runoff Depth=2.63" Tc=0.0 min CN=0/98 Runoff=0.34 cfs 0.110 af
Subcatchment79S: Home Basin 30	Runoff Area=38,416 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.46 cfs 0.156 af
Subcatchment80S: Home Basin 10	Runoff Area=14,789 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.18 cfs 0.060 af
Subcatchment81S: Home Basin 9	Runoff Area=15,575 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.19 cfs 0.063 af

9-6-23 HydroCAD DOM Prepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 Hydro	Type IA 24-hr 05-5 Year Rainfall=2.86" Printed 9/6/2023 CAD Software Solutions LLC Page 243
Subcatchment82S: Home Basin 2	Runoff Area=20,667 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.25 cfs 0.084 af
Subcatchment83S: Home Basin 7	Runoff Area=17,032 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.20 cfs 0.069 af
Subcatchment84S: Home Basin 8	Runoff Area=11,668 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.14 cfs 0.047 af
Subcatchment85S: Home Basin 29	Runoff Area=25,118 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.30 cfs 0.102 af
Subcatchment86S: Home Basin 22	Runoff Area=16,159 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.19 cfs 0.066 af
Subcatchment87S: Home Basin 27	Runoff Area=24,839 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.30 cfs 0.101 af

Subcatchment88S: Home Basin 28 Runoff Area=25,318 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.30 cfs 0.103 af

Subcatchment89S: Home Basin 24 Runoff Area=20,676 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.25 cfs 0.084 af

Subcatchment90S: Home Basin 26 Runoff Area=14,135 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.17 cfs 0.057 af

Subcatchment91S: Home Basin 23 Runoff Area=12,271 sf 0.00% Impervious Runoff Depth=2.12"

Tc=10.0 min CN=93/0 Runoff=0.15 cfs 0.050 af

Subcatchment92S: Home Basin 21 Runoff Area=27,019 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.32 cfs 0.110 af

Subcatchment93S: Home Basin 25 Runoff Area=17,012 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.20 cfs 0.069 af

Subcatchment94S: Home Basin 4 Runoff Area=19,535 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.23 cfs 0.079 af

Subcatchment95S: Home Basin 31 Runoff Area=24,883 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.30 cfs 0.101 af

Subcatchment96S: Basin 1 Runoff Area=15,045 sf 100.00% Impervious Runoff Depth=2.63"

Tc=10.0 min CN=0/98 Runoff=0.22 cfs 0.076 af

Subcatchment97S: Basin 2 Runoff Area=19,824 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.29 cfs 0.100 af

Subcatchment98S: Basin 3 Runoff Area=23,416 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.34 cfs 0.118 af

Printed 9/6/2023

9-6-23 HydroCAD DOMPrepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Type IA 24-hr 05-5 Year Rainfall=2.86"

HydroCAD® 10.20-2g s/n 04993 © 2022 Hy	droCAD Software Solutions LLC Page 244
Subcatchment99S: Home Basin 6	Runoff Area=25,997 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.31 cfs 0.105 af
Subcatchment100S: Basin 4	Runoff Area=3,650 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.05 cfs 0.018 af
Subcatchment101S: Basin 5	Runoff Area=3,523 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.05 cfs 0.018 af
Subcatchment102S: Home Basin 3	Runoff Area=19,559 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.23 cfs 0.079 af
Subcatchment103S: Home Basin 1	Runoff Area=22,288 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.27 cfs 0.090 af
Subcatchment104S: Home Basin 5	Runoff Area=33,512 sf 0.00% Impervious Runoff Depth=2.12" Tc=10.0 min CN=93/0 Runoff=0.40 cfs 0.136 af
Subcatchment105S: Basin 6	Runoff Area=8,965 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.13 cfs 0.045 af
Subcatchment107S: Basin 8	Runoff Area=8,177 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.12 cfs 0.041 af
Subcatchment108S: Basin 9	Runoff Area=13,130 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.19 cfs 0.066 af
Subcatchment109S: Basin 10	Runoff Area=22,902 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.33 cfs 0.115 af
Subcatchment110S: Basin 11	Runoff Area=25,748 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.37 cfs 0.129 af
Subcatchment111S: Basin 12	Runoff Area=5,562 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.08 cfs 0.028 af
Subcatchment112S: Basin 13	Runoff Area=4,702 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.07 cfs 0.024 af
Subcatchment113S: Basin 14	Runoff Area=7,669 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.11 cfs 0.039 af
Subcatchment114S: Basin 15	Runoff Area=7,261 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.11 cfs 0.037 af
Subcatchment115S: Basin 16	Runoff Area=7,066 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.10 cfs 0.036 af
Subcatchment116S: Basin 17	Runoff Area=26,003 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.38 cfs 0.131 af

Printed 9/6/2023

Inflow=4.86 cfs 4.462 af Outflow=4.86 cfs 4.462 af

9-6-23 HydroCAD DOM	Type IA 2
Prepared by A&O Engineering LLC	
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software S	Solutions LLC

Reach 39R: Post-ConstructionPeak Flow

Type IA 24-hr 05-5 Year Rainfall=2.86"

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD®	droCAD Software Solutions LLC Page 245
Subcatchment117S: Basin 18	Runoff Area=23,761 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.34 cfs 0.119 af
Subcatchment118S: Basin 19	Runoff Area=7,309 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.11 cfs 0.037 af
Subcatchment119S: Basin 20	Runoff Area=7,535 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.11 cfs 0.038 af
Subcatchment120S: Basin 21	Runoff Area=6,846 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.10 cfs 0.034 af
Subcatchment121S: Basin 22	Runoff Area=5,182 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.08 cfs 0.026 af
Subcatchment122S: Basin 23	Runoff Area=5,456 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.08 cfs 0.027 af
Subcatchment123S: Basin 24	Runoff Area=4,510 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.07 cfs 0.023 af
Subcatchment124S: Basin 25	Runoff Area=13,271 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.19 cfs 0.067 af
Subcatchment125S: Basin 26	Runoff Area=18,452 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.27 cfs 0.093 af
Subcatchment126S: Alley Basin 1	Runoff Area=9,860 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.14 cfs 0.050 af
Subcatchment127S: Alley Basin 2	Runoff Area=7,461 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.11 cfs 0.038 af
Subcatchment 128S: Alley Basin 3	Runoff Area=6,782 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.10 cfs 0.034 af
Subcatchment129S: Alley Basin 4	Runoff Area=6,970 sf 100.00% Impervious Runoff Depth=2.63" Tc=10.0 min CN=0/98 Runoff=0.10 cfs 0.035 af
Subcatchment168S: Future Lots	Runoff Area=64,223 sf 37.85% Impervious Runoff Depth=2.31" Tc=10.0 min CN=93/98 Runoff=0.83 cfs 0.284 af
Subcatchment169S: Swale 2	Runoff Area=67 sf 100.00% Impervious Runoff Depth=2.63" Tc=0.0 min CN=0/98 Runoff=0.00 cfs 0.000 af
Subcatchment170S: Swale 1	Runoff Area=72 sf 100.00% Impervious Runoff Depth=2.63" Tc=0.0 min CN=0/98 Runoff=0.00 cfs 0.000 af

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC	Printed 9/6/2023 Page 246
Reach 42R: Pre-ConstructionPeak Flow	Inflow=4.87 cfs 3.430 af Outflow=4.87 cfs 3.430 af
Reach 58R: 1	Inflow=4.86 cfs 4.462 af Outflow=4.86 cfs 4.462 af
Reach 85R: 1	Inflow=4.82 cfs 4.425 af Outflow=4.82 cfs 4.425 af
Reach 130R: 1	Inflow=2.20 cfs 0.754 af Outflow=2.20 cfs 0.754 af
Reach 131R: 1	Inflow=2.20 cfs 0.754 af Outflow=2.20 cfs 0.754 af
Reach 132R: 1	Inflow=1.26 cfs 0.433 af Outflow=1.26 cfs 0.433 af
Reach 133R: 1	Inflow=0.22 cfs 0.076 af Outflow=0.22 cfs 0.076 af
Reach 134R: 1	Inflow=10.12 cfs 3.467 af Outflow=10.12 cfs 3.467 af
Reach 135R: 1	Inflow=1.70 cfs 0.583 af Outflow=1.70 cfs 0.583 af
Reach 136R: 1	Inflow=0.97 cfs 0.332 af Outflow=0.97 cfs 0.332 af
Reach 137R: 1	Inflow=0.60 cfs 0.206 af Outflow=0.60 cfs 0.206 af
Reach 138R: 1	Inflow=0.27 cfs 0.095 af Outflow=0.27 cfs 0.095 af
Reach 139R: 1	Inflow=8.23 cfs 2.819 af Outflow=8.23 cfs 2.819 af
Reach 140R: 1	Inflow=0.14 cfs 0.050 af Outflow=0.14 cfs 0.050 af
Reach 141R: 1	Inflow=0.11 cfs 0.038 af Outflow=0.11 cfs 0.038 af
Reach 142R: 1	Inflow=7.81 cfs 2.673 af Outflow=7.81 cfs 2.673 af
Reach 143R: 1	Inflow=1.59 cfs 0.543 af Outflow=1.59 cfs 0.543 af

9-6-23 HydroCAD DOMPrepared by A&O Engineering LLC

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC Printed 9/6/Page Reach 144R: 1 Inflow=1.14 cfs 0.3 Outflow=1.14 cfs 0.3 Outflow=1.	247 38 af
Reach 144R: 1 Inflow=1.14 cfs 0.3 Outflow=1.14 cfs 0.3 Reach 145R: 1 Inflow=1.14 cfs 0.3 Outflow=1.14 cfs 0.3	38 af
Reach 144R: 1 Inflow=1.14 cfs 0.3 Outflow=1.14 cfs 0.3 Reach 145R: 1 Inflow=1.14 cfs 0.3 Outflow=1.14 cfs 0.3	38 af
Outflow=1.14 cfs 0.3 Reach 145R: 1 Inflow=1.14 cfs 0.3 Outflow=1.14 cfs 0.3	
Outflow=1.14 cfs 0.3 Reach 145R: 1 Inflow=1.14 cfs 0.3 Outflow=1.14 cfs 0.3	
Reach 145R: 1 Inflow=1.14 cfs 0.3 Outflow=1.14 cfs 0.3	, o u.
Outflow=1.14 cfs 0.3	
Outflow=1.14 cfs 0.3	≀Q of
Decel 440D: 4	o ai
Reach 146R: 1 Inflow=6.22 cfs 2.1	
Outflow=6.22 cfs 2.1	30 af
Reach 147R: 1 Inflow=0.10 cfs 0.0	34 af
Outflow=0.10 cfs 0.0	34 af
Reach 148R: 1 Inflow=6.12 cfs 2.0)6 af
Outflow=6.12 cfs 2.0	
Oddiow-0.12 dis 2.0	io ai
Decale 440D: 4) 4 -£
Reach 149R: 1 Inflow=1.55 cfs 0.5	
Outflow=1.55 cfs 0.5	31 at
Reach 150R: 1 Inflow=1.05 cfs 0.3	30 af
Outflow=1.05 cfs 0.3	30 af
Reach 151R: 1 Inflow=0.81 cfs 0.2	'8 af
Outflow=0.81 cfs 0.2	
Gallon Clot Clo Cle	o a.
Reach 152R: 1 Inflow=4.28 cfs 1.4	\$4 of
Outflow=4.28 cfs 1.4	
Outilow-4.26 CIS 1.4)4 ai
Reach 153R: 1 Inflow=0.10 cfs 0.0	
Outflow=0.10 cfs 0.0	35 at
Reach 154R: 1 Inflow=4.17 cfs 1.4	29 af
Outflow=4.17 cfs 1.4	29 af
Reach 155R: 1 Inflow=1.47 cfs 0.5)3 af
Outflow=1.47 cfs 0.5)3 af
Poach 159P: 1	M of
Reach 158R: 1 Inflow=8.42 cfs 2.8	
Reach 158R: 1 Inflow=8.42 cfs 2.8 Outflow=8.42 cfs 2.8	
Outflow=8.42 cfs 2.8	34 af
Outflow=8.42 cfs 2.8 Reach 159R: 1 Inflow=8.12 cfs 2.7	34 af 32 af
Outflow=8.42 cfs 2.8	34 af 32 af
Outflow=8.42 cfs 2.8 Reach 159R: 1 Inflow=8.12 cfs 2.7 Outflow=8.12 cfs 2.7	34 af 32 af 32 af
Outflow=8.42 cfs 2.8 Reach 159R: 1 Inflow=8.12 cfs 2.7	34 af 32 af 32 af
Outflow=8.42 cfs 2.8 Reach 159R: 1 Inflow=8.12 cfs 2.7 Outflow=8.12 cfs 2.7	34 af 32 af 32 af 17 af
Outflow=8.42 cfs 2.8 Reach 159R: 1 Inflow=8.12 cfs 2.7 Outflow=8.12 cfs 2.7 Reach 160R: 1 Inflow=1.02 cfs 0.3	34 af 32 af 32 af 17 af
Outflow=8.42 cfs 2.8 Reach 159R: 1 Inflow=8.12 cfs 2.7 Outflow=8.12 cfs 2.7 Reach 160R: 1 Inflow=1.02 cfs 0.3 Outflow=1.02 cfs 0.3	34 af 32 af 32 af 17 af 17 af
Outflow=8.42 cfs 2.8 Reach 159R: 1 Inflow=8.12 cfs 2.7 Outflow=8.12 cfs 2.7 Reach 160R: 1 Inflow=1.02 cfs 0.3 Outflow=1.02 cfs 0.3 Reach 162R: 1	34 af 32 af 32 af 17 af 17 af 31 af
Outflow=8.42 cfs 2.8 Reach 159R: 1 Inflow=8.12 cfs 2.7 Outflow=8.12 cfs 2.7 Reach 160R: 1 Inflow=1.02 cfs 0.3 Outflow=1.02 cfs 0.3	34 af 32 af 32 af 17 af 17 af 31 af
Outflow=8.42 cfs 2.8 Reach 159R: 1 Inflow=8.12 cfs 2.7 Outflow=8.12 cfs 2.7 Reach 160R: 1 Inflow=1.02 cfs 0.3 Outflow=1.02 cfs 0.3 Coutflow=2.43 cfs 0.8 Outflow=2.43 cfs 0.8 Outflow=2.43 cfs 0.8	34 af 32 af 32 af 47 af 47 af 31 af
Outflow=8.42 cfs 2.8 Reach 159R: 1 Inflow=8.12 cfs 2.7 Outflow=8.12 cfs 2.7 Reach 160R: 1 Inflow=1.02 cfs 0.3 Outflow=1.02 cfs 0.3 Reach 162R: 1	34 af 32 af 32 af 47 af 47 af 31 af 31 af

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 248

Reach 165R: 1 Inflow=0.84 cfs 0.289 af

Outflow=0.84 cfs 0.289 af

Reach 166R: Basin Future Inflow=0.83 cfs 0.284 af

Outflow=0.83 cfs 0.284 af

Pond 54P: Stormwater Swale 2 Peak Elev=222.40' Storage=31 cf Inflow=0.05 cfs 0.018 af

Outflow=0.05 cfs 0.018 af

Pond 60P: Stormwater Swale 1 Peak Elev=222.06' Storage=33 cf Inflow=0.05 cfs 0.019 af

Outflow=0.05 cfs 0.019 af

Pond 63P: Detention Pond Peak Elev=223.25' Storage=35,410 cf Inflow=12.93 cfs 4.426 af

Outflow=4.82 cfs 4.425 af

Total Runoff Area = 46.412 ac Runoff Volume = 7.893 af Average Runoff Depth = 2.04" 81.58% Pervious = 37.863 ac 18.42% Impervious = 8.549 ac

Type IA 24-hr 05-5 Year Rainfall=2.86"

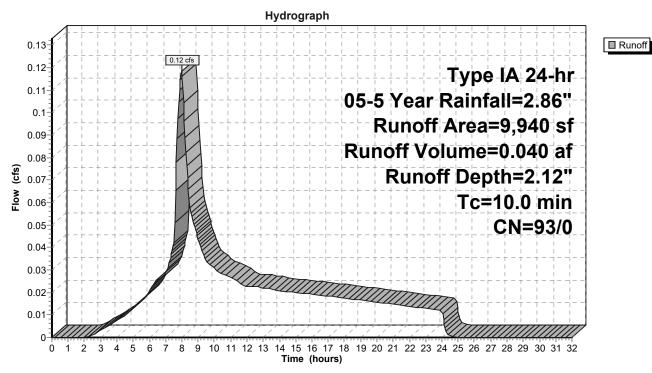
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 249

Summary for Subcatchment 64S: Home Basin 20


Runoff = 0.12 cfs @ 7.98 hrs, Volume= 0.040 af, Depth= 2.12"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN	Description		
*		9,940	93	70% Lot Co	verage We	eighted
		9,940	93	100.00% Pe	ervious Are	ea
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	10.0	(.501)	(10/10)	(.2000)	(010)	Direct Entry,

Subcatchment 64S: Home Basin 20

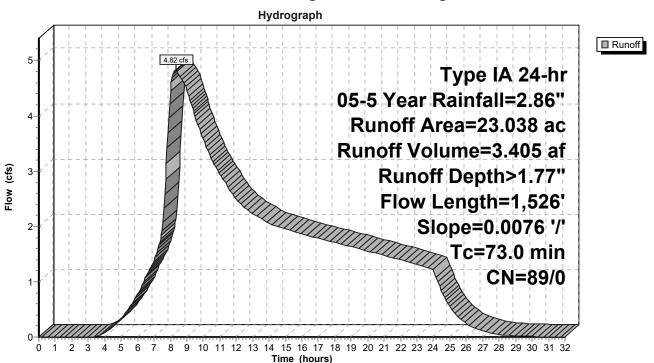
Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 250


Summary for Subcatchment 65S: Single Pond Existing Conditions

Runoff = 4.82 cfs @ 8.31 hrs, Volume= 3.405 af, Depth> 1.77" Routed to Reach 42R : Pre-Construction Peak Flow

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Area	(ac) C	N Desc	cription			
	23.	038 8	9 Past	ure/grassl	and/range,	Poor, HSG D	_
	23.	038 8	9 100.	00% Pervi	ous Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	39.5	300	0.0076	0.13	, ,	Sheet Flow,	_
	33.5	1,226	0.0076	0.61		Grass: Short n= 0.150 P2= 2.47" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	
	73.0	1.526	Total				

Subcatchment 65S: Single Pond Existing Conditions

Type IA 24-hr 05-5 Year Rainfall=2.86"

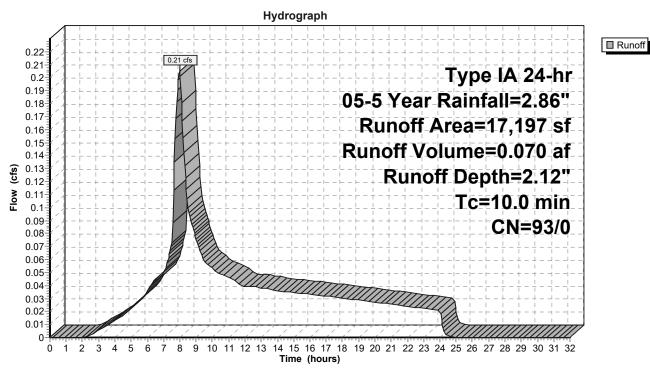
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 251

Summary for Subcatchment 67S: Home Basin 19


Runoff = 0.21 cfs @ 7.98 hrs, Volume= 0.070 af, Depth= 2.12"

Routed to Reach 159R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN	Description		
*		17,197	93	70% Lot Co	verage We	eighted
		17,197	93	100.00% Pe	ervious Are	ea
		Length	Slope	,	. ,	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.0					Direct Entry,

Subcatchment 67S: Home Basin 19

Type IA 24-hr 05-5 Year Rainfall=2.86"

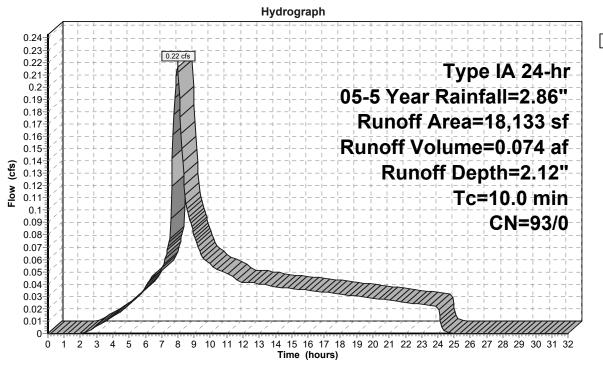
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 252

Summary for Subcatchment 68S: Home Basin 12


Runoff = 0.22 cfs @ 7.98 hrs, Volume= 0.074 af, Depth= 2.12"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN I	Description		
*		18,133	93	70% Lot Co	verage We	eighted
		18,133	93	100.00% Pe	ervious Are	ea
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	10.0	(ieet)	(IVIL)	(10360)	(CIS)	Direct Entry,

Subcatchment 68S: Home Basin 12

■ Runoff

Type IA 24-hr 05-5 Year Rainfall=2.86"

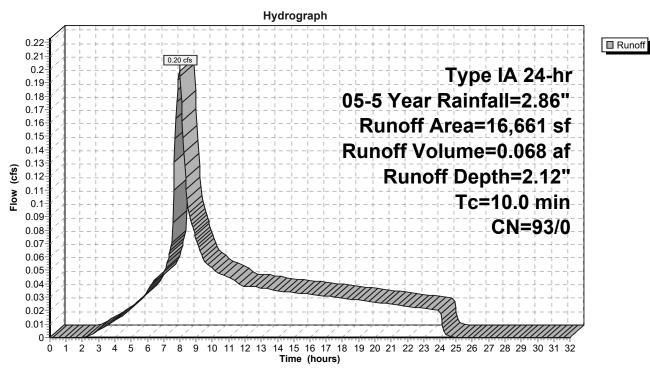
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 253

Summary for Subcatchment 69S: Home Basin 17


Runoff = 0.20 cfs @ 7.98 hrs, Volume= 0.068 af, Depth= 2.12"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN	Description		
*		16,661	93	70% Lot Co	verage We	eighted
		16,661	93	100.00% Pe	ervious Are	ea
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
_	10.0	, ,		,	, ,	Direct Entry,

Subcatchment 69S: Home Basin 17

Type IA 24-hr 05-5 Year Rainfall=2.86"

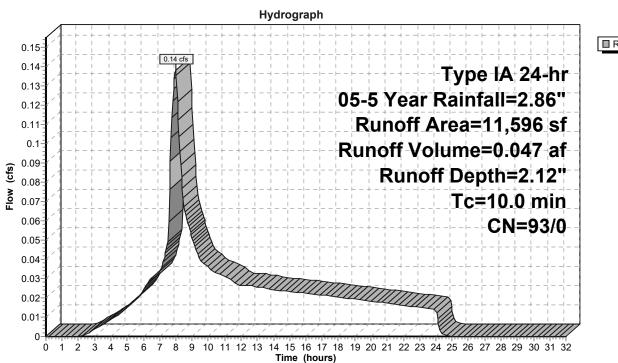
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 254

Summary for Subcatchment 70S: Home Basin 18


Runoff = 0.14 cfs @ 7.98 hrs, Volume= 0.047 af, Depth= 2.12"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN	Description		
3	k	11,596	93	70% Lot Co	verage We	eighted
-		11,596	93	100.00% Pe	ervious Are	ea e
	Tc	Length	Slope	Velocity	Canacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.0			•		Direct Entry

Subcatchment 70S: Home Basin 18

■ Runoff

Type IA 24-hr 05-5 Year Rainfall=2.86"

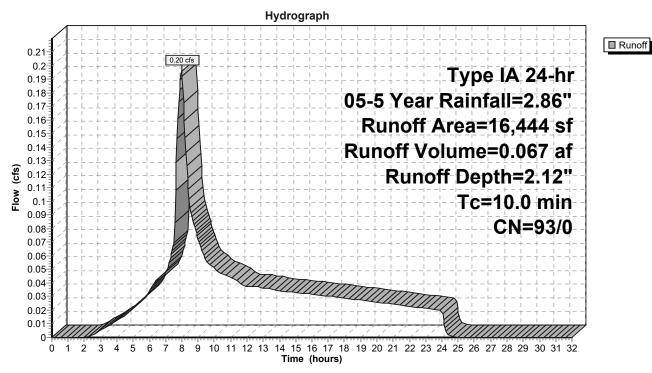
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 255

Summary for Subcatchment 71S: Home Basin 14


Runoff = 0.20 cfs @ 7.98 hrs, Volume= 0.067 af, Depth= 2.12"

Routed to Reach 148R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN	Description		
*		16,444	93	70% Lot Co	verage We	eighted
_		16,444	93	100.00% Pe	ervious Are	ea
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	10.0	(ICCI)	(1011)	(10300)	(013)	Direct Entry

Subcatchment 71S: Home Basin 14

Type IA 24-hr 05-5 Year Rainfall=2.86"

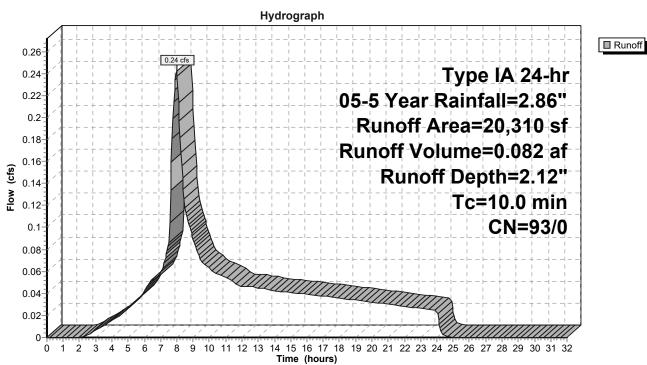
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 256

Summary for Subcatchment 72S: Home Basin 16


Runoff = 0.24 cfs @ 7.98 hrs, Volume= 0.082 af, Depth= 2.12"

Routed to Reach 150R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN I	Description		
	*	20,310	93	70% Lot Co	verage We	eighted
-		20,310	93	100.00% Pe	ervious Are	a
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
•	10.0			•		Direct Entry

Subcatchment 72S: Home Basin 16

Type IA 24-hr 05-5 Year Rainfall=2.86"

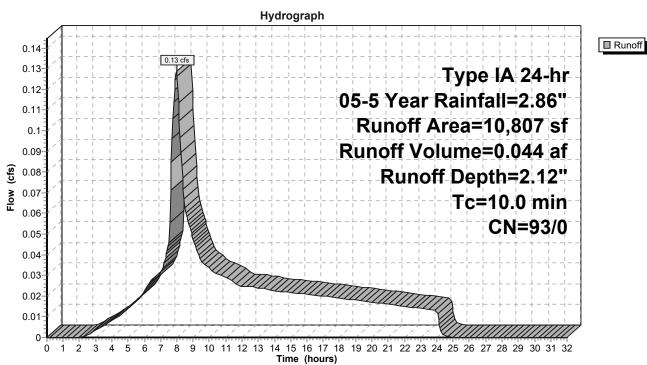
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 257

Summary for Subcatchment 73S: Home Basin 13


Runoff = 0.13 cfs @ 7.98 hrs, Volume= 0.044 af, Depth= 2.12"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN	Description		
3	k	10,807	93	70% Lot Co	verage We	eighted
-		10,807	93	100.00% Pe	ervious Are	a
	Tc	Length	Slone	Velocity	Canacity	Description
	(min)	(feet)	(ft/ft)	,	(cfs)	Description
	10.0					Direct Entry

Subcatchment 73S: Home Basin 13

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

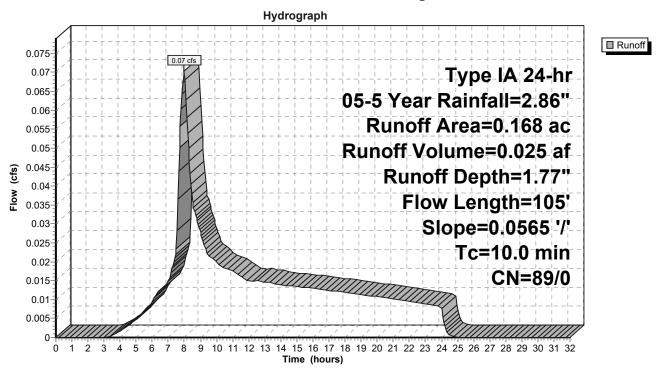
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 258

Summary for Subcatchment 74S: Swale Existing Conditions

Runoff = 0.07 cfs @ 7.99 hrs, Volume= 0.025 af, Depth= 1.77" Routed to Reach 42R : Pre-Construction Peak Flow


Nouted to Neach 4211. Fie-Constituction Feat Flow

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

Area	(ac) C	N Desc	cription					
0.	168 8	9 Past	ure/grassla	and/range,	Poor, HSG D			
0.	168 8	39 100.	00% Pervi	ous Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
7.7	105	0.0565	0.23		Sheet Flow, Grass: Short	n= 0.150	P2= 2.47"	

7.7 105 Total, Increased to minimum Tc = 10.0 min

Subcatchment 74S: Swale Existing Conditions

Type IA 24-hr 05-5 Year Rainfall=2.86"

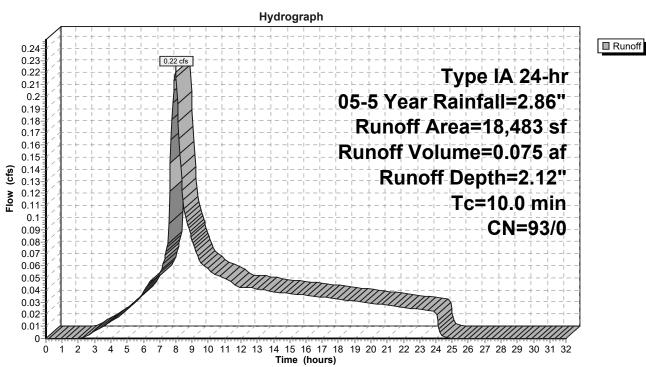
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 259

Summary for Subcatchment 75S: Home Basin 11


Runoff = 0.22 cfs @ 7.98 hrs, Volume= 0.075 af, Depth= 2.12"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

* 18,483 93 70% Lot Coverage Weighted	
40,400 00 400,000/ Parising Area	
18,483 93 100.00% Pervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
10.0 Direct Entry,	

Subcatchment 75S: Home Basin 11

Type IA 24-hr 05-5 Year Rainfall=2.86"

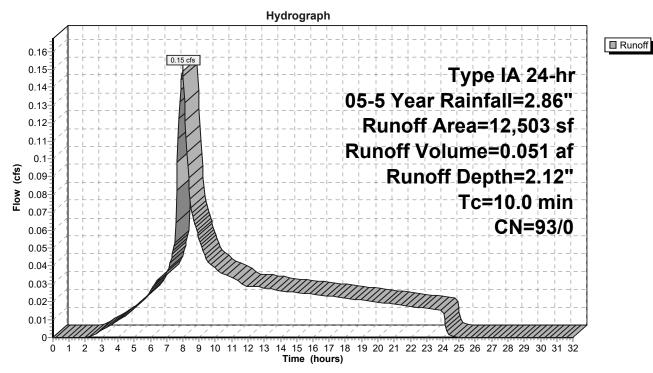
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 260

Summary for Subcatchment 77S: Home Basin 15


Runoff = 0.15 cfs @ 7.98 hrs, Volume= 0.051 af, Depth= 2.12"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	А	rea (sf)	CN [Description						
*	•	12,503	93 7	70% Lot Coverage Weighted						
		12,503	503 93 100.00% Pervious Area							
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 77S: Home Basin 15

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

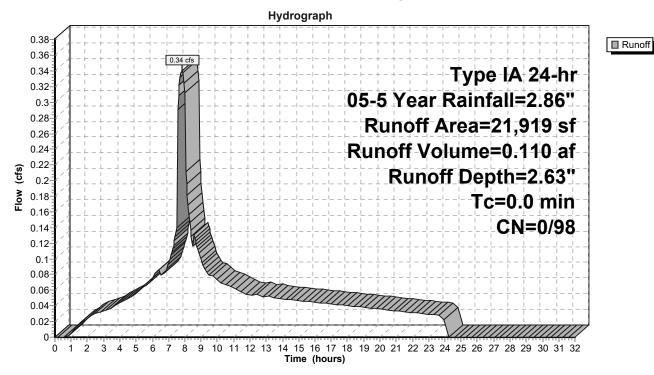
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 261

Summary for Subcatchment 78S: Single Pond

[46] Hint: Tc=0 (Instant runoff peak depends on dt)


Runoff = 0.34 cfs @ 7.81 hrs, Volume= 0.110 af, Depth= 2.63"

Routed to Pond 63P: Detention Pond

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Area (sf)	CN	Description	
	21,919	98	Water Surface, HSG D	
	21,919	98	100.00% Impervious Area	

Subcatchment 78S: Single Pond

Type IA 24-hr 05-5 Year Rainfall=2.86"

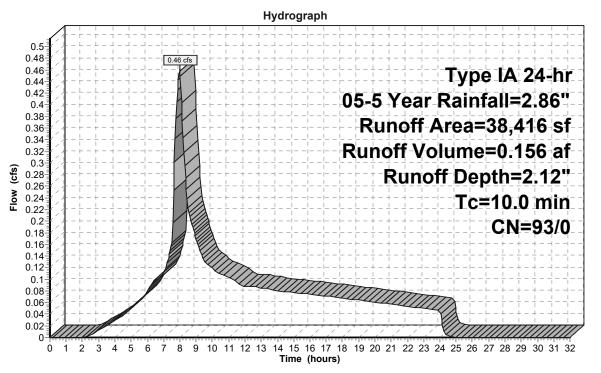
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 262

Summary for Subcatchment 79S: Home Basin 30


Runoff = 0.46 cfs @ 7.98 hrs, Volume= 0.156 af, Depth= 2.12"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN	Description					
3	+	38,416	93	70% Lot Coverage Weighted					
-		38,416	93	3 100.00% Pervious Area					
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'			
	10.0 Direct Entry					Direct Entry			

Subcatchment 79S: Home Basin 30

■ Runoff

Type IA 24-hr 05-5 Year Rainfall=2.86"

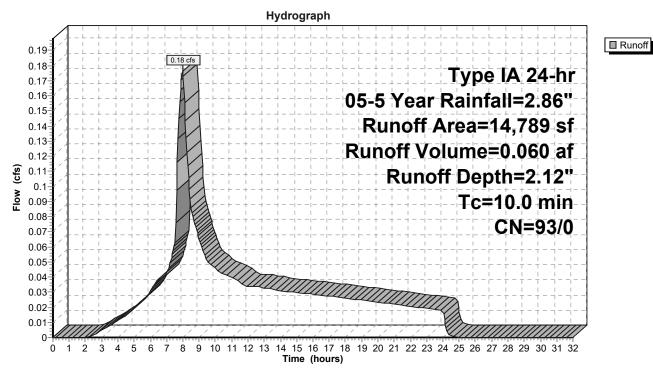
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 263

Summary for Subcatchment 80S: Home Basin 10


Runoff = 0.18 cfs @ 7.98 hrs, Volume= 0.060 af, Depth= 2.12"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN I	Description						
*		14,789	93	70% Lot Coverage Weighted						
_		14,789	93	100.00% Pervious Area						
		Length		,		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 80S: Home Basin 10

Type IA 24-hr 05-5 Year Rainfall=2.86"

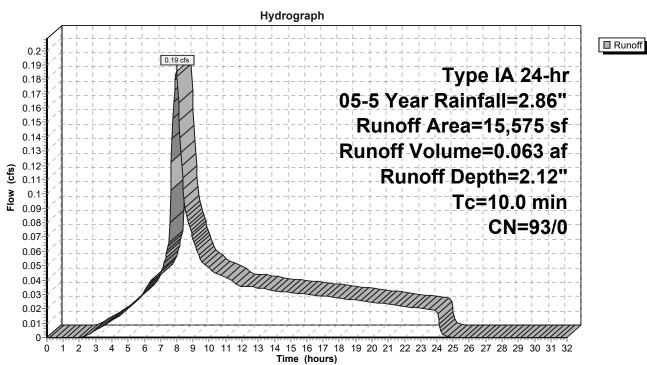
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 264

Summary for Subcatchment 81S: Home Basin 9


Runoff = 0.19 cfs @ 7.98 hrs, Volume= 0.063 af, Depth= 2.12"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN	Description					
3	ŧ	15,575	93	70% Lot Coverage Weighted					
		15,575	93	100.00% Pervious Area					
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'			
	10.0	•		•	•	Direct Entry			

Subcatchment 81S: Home Basin 9

Type IA 24-hr 05-5 Year Rainfall=2.86"

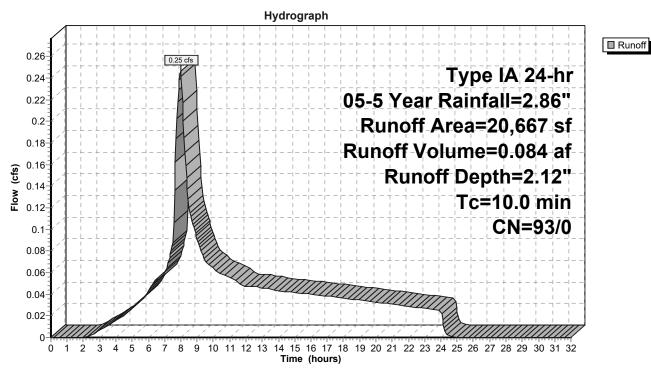
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 265

Summary for Subcatchment 82S: Home Basin 2


Runoff = 0.25 cfs @ 7.98 hrs, Volume= 0.084 af, Depth= 2.12"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN	Description					
	*	20,667	93	70% Lot Coverage Weighted					
-		20,667	67 93 100.00% Pervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
_	10.0					Direct Entry			

Subcatchment 82S: Home Basin 2

Type IA 24-hr 05-5 Year Rainfall=2.86"

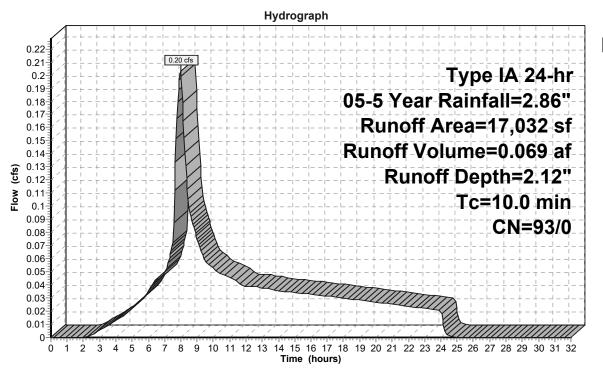
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 266

Summary for Subcatchment 83S: Home Basin 7


Runoff = 0.20 cfs @ 7.98 hrs, Volume= 0.069 af, Depth= 2.12"

Routed to Reach 154R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN	Description						
*		17,032	93	70% Lot Coverage Weighted						
		17,032	93	100.00% Pervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	•	(cfs)	•				
	10.0	•		•	•	Direct Entry				

Subcatchment 83S: Home Basin 7

■ Runoff

Type IA 24-hr 05-5 Year Rainfall=2.86"

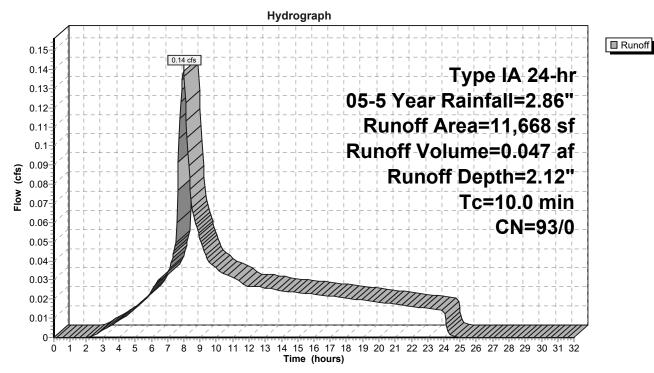
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 267

Summary for Subcatchment 84S: Home Basin 8


Runoff = 0.14 cfs @ 7.98 hrs, Volume= 0.047 af, Depth= 2.12"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN	Description						
*		11,668	93	70% Lot Coverage Weighted						
		11,668	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	10.0	(ICCI)	(1011)	(11/360)	(013)	Direct Entry				

Subcatchment 84S: Home Basin 8

Type IA 24-hr 05-5 Year Rainfall=2.86"

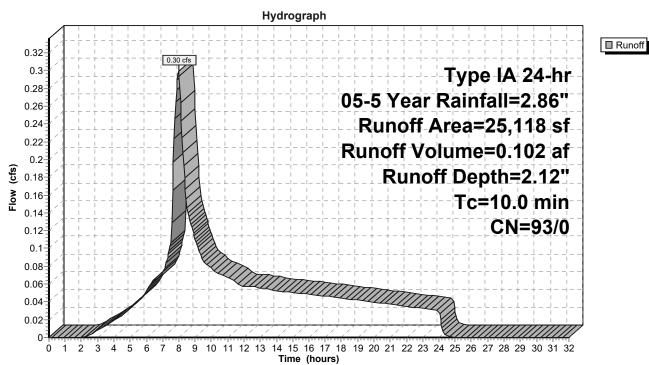
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 268

Summary for Subcatchment 85S: Home Basin 29


Runoff = 0.30 cfs @ 7.98 hrs, Volume= 0.102 af, Depth= 2.12"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN	Description						
*		25,118	93	70% Lot Coverage Weighted						
	25,118 93 100.00% Pervious Area									
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	10.0	(.551)	(10/10)	(.4000)	(010)	Direct Entry				

Subcatchment 85S: Home Basin 29

Type IA 24-hr 05-5 Year Rainfall=2.86"

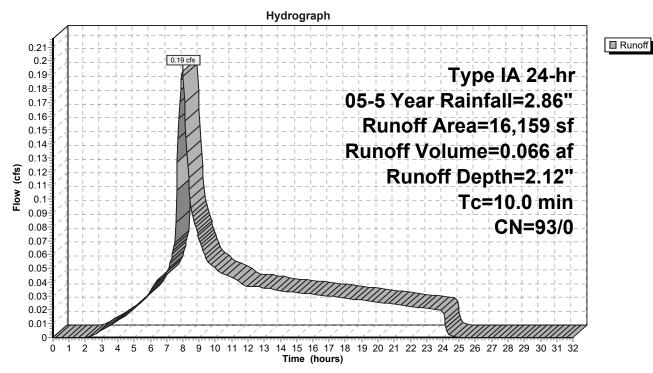
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 269

Summary for Subcatchment 86S: Home Basin 22


Runoff = 0.19 cfs @ 7.98 hrs, Volume= 0.066 af, Depth= 2.12"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN I	Description					
	*	16,159	93	70% Lot Coverage Weighted					
		16,159	93	100.00% Pervious Area					
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	· · · · · · · · · · · · · · ·			
10.0 Direct Entry						Direct Entry			

Subcatchment 86S: Home Basin 22

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 270

Summary for Subcatchment 87S: Home Basin 27

Runoff = 0.30 cfs @ 7.98 hrs, Volume= 0.101 af, Depth= 2.12"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN	Description						
*		24,839	93	70% Lot Coverage Weighted						
		24,839	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0					Direct Entry,				

Subcatchment 87S: Home Basin 27

Type IA 24-hr 05-5 Year Rainfall=2.86"

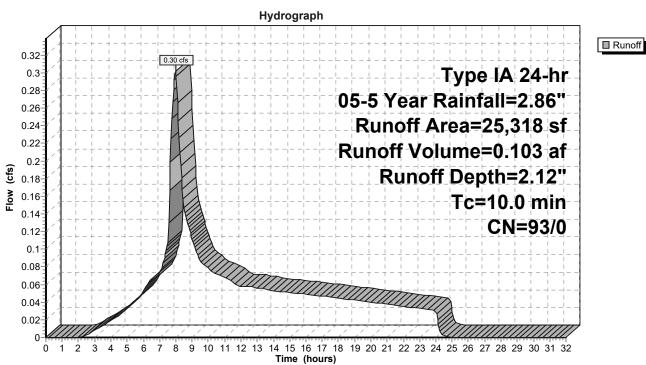
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 271

Summary for Subcatchment 88S: Home Basin 28


Runoff = 0.30 cfs @ 7.98 hrs, Volume= 0.103 af, Depth= 2.12"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN I	Description					
	*	25,318	93	70% Lot Coverage Weighted					
		25,318	5,318 93 100.00% Pervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
10.0 Direct Entry					Direct Entry				

Subcatchment 88S: Home Basin 28

Type IA 24-hr 05-5 Year Rainfall=2.86"

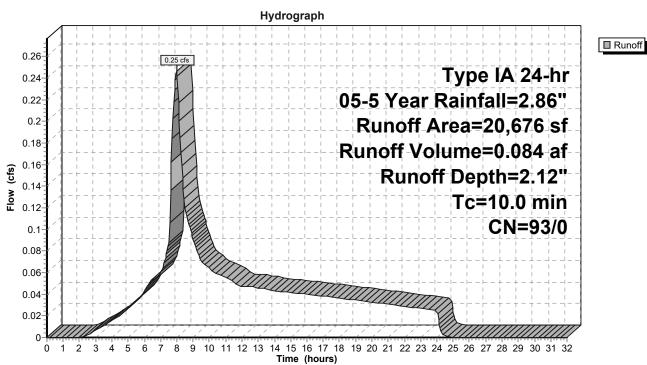
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 272

Summary for Subcatchment 89S: Home Basin 24


Runoff = 0.25 cfs @ 7.98 hrs, Volume= 0.084 af, Depth= 2.12"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN	Description						
*		20,676	93	70% Lot Coverage Weighted						
		20,676	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
-	10.0	(1001)	(14,11)	(1200)	(3.5)	Direct Entry				

Subcatchment 89S: Home Basin 24

Type IA 24-hr 05-5 Year Rainfall=2.86"

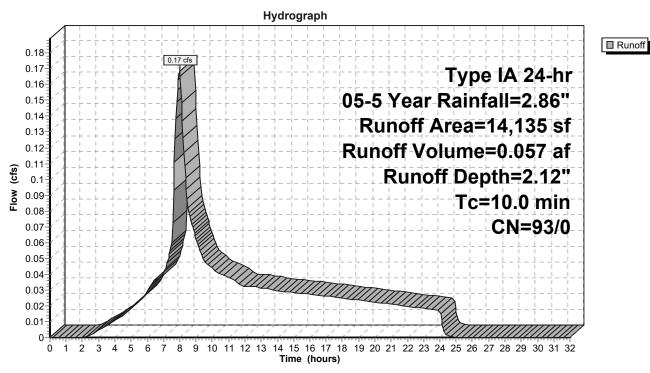
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 273

Summary for Subcatchment 90S: Home Basin 26


Runoff = 0.17 cfs @ 7.98 hrs, Volume= 0.057 af, Depth= 2.12"

Routed to Reach 136R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN	Description					
	*	14,135	93	70% Lot Coverage Weighted					
-		14,135	93	100.00% Pervious Area					
Tc Length Slope Velocity Capacity Description					Description				
	(min)	(feet)	(ft/ft)						
•	10.0	•		Direct Entry					

Subcatchment 90S: Home Basin 26

Type IA 24-hr 05-5 Year Rainfall=2.86"

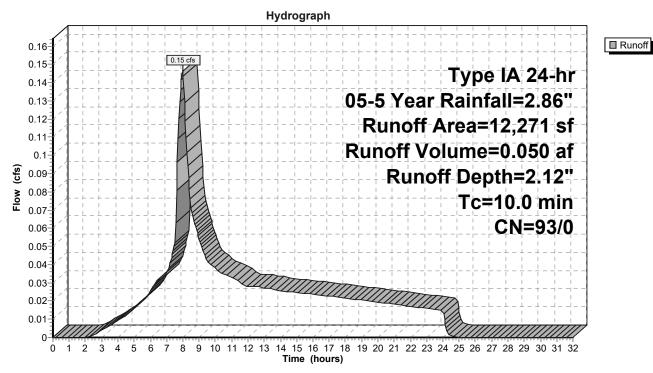
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 274

Summary for Subcatchment 91S: Home Basin 23


Runoff = 0.15 cfs @ 7.98 hrs, Volume= 0.050 af, Depth= 2.12"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN I	Description						
3	k	12,271	93	70% Lot Coverage Weighted						
-		12,271	93	100.00% Pervious Area						
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)							
	10.0	•		Direct Entry						

Subcatchment 91S: Home Basin 23

Type IA 24-hr 05-5 Year Rainfall=2.86"

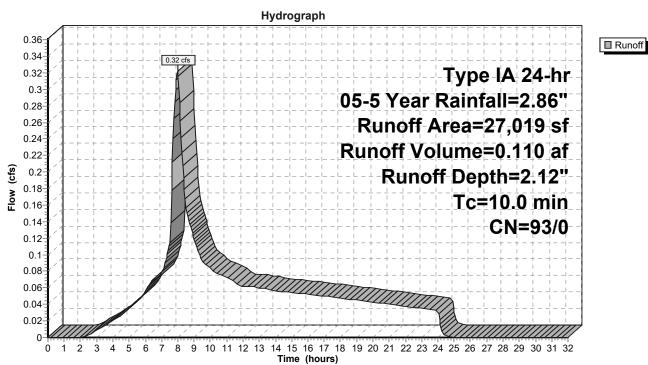
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 275

Summary for Subcatchment 92S: Home Basin 21


Runoff = 0.32 cfs @ 7.98 hrs, Volume= 0.110 af, Depth= 2.12"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN	Description						
*	,	27,019	93	70% Lot Coverage Weighted						
_		27,019	93	100.00% Pervious Area						
	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)				Description					
-	10.0	(ieet)	(1011)	ft) (ft/sec) (cfs) Direct Entry						

Subcatchment 92S: Home Basin 21

Type IA 24-hr 05-5 Year Rainfall=2.86"

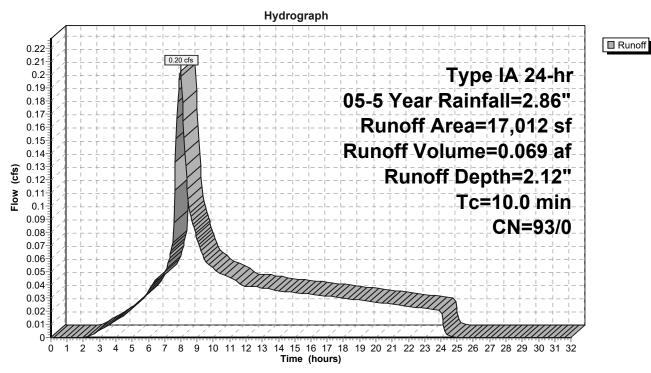
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 276

Summary for Subcatchment 93S: Home Basin 25


Runoff = 0.20 cfs @ 7.98 hrs, Volume= 0.069 af, Depth= 2.12"

Routed to Reach 136R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN	Description						
*		17,012	93	70% Lot Coverage Weighted						
		17,012	93	00.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description				
	10.0	•	•			Direct Entry,				

Subcatchment 93S: Home Basin 25

Type IA 24-hr 05-5 Year Rainfall=2.86"

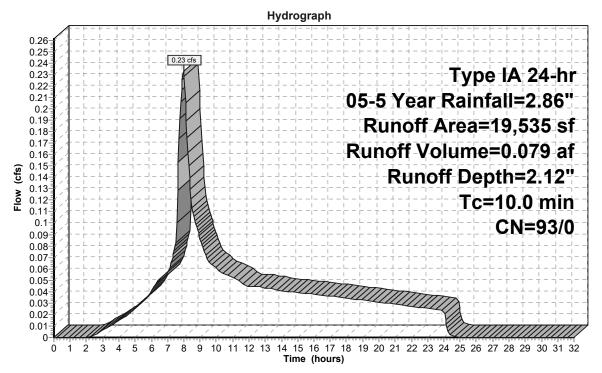
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 277

Summary for Subcatchment 94S: Home Basin 4


Runoff = 0.23 cfs @ 7.98 hrs, Volume= 0.079 af, Depth= 2.12"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

Α	rea (sf)	CN I	Description					
*	19,535	93	70% Lot Coverage Weighted					
	19,535	93	100.00% Pervious Area					
Tc	Length	Slone	Velocity	Canacity	Description			
(min)	(feet)	(ft/ft)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)					
10.0			Direct Entry					

Subcatchment 94S: Home Basin 4

■ Runoff

Type IA 24-hr 05-5 Year Rainfall=2.86"

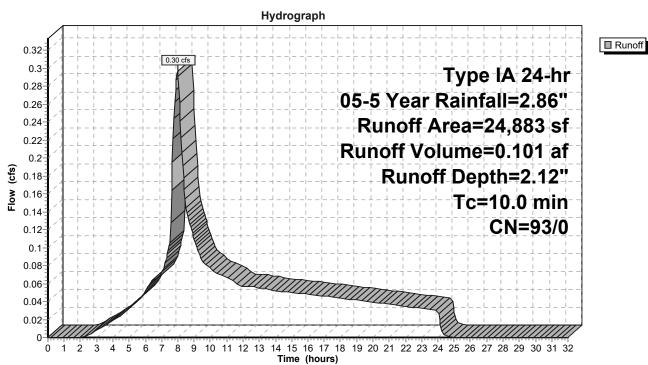
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 278

Summary for Subcatchment 95S: Home Basin 31


Runoff = 0.30 cfs @ 7.98 hrs, Volume= 0.101 af, Depth= 2.12"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN	Description					
3	ŧ	24,883	93	70% Lot Coverage Weighted					
-		24,883	93	100.00% Pervious Area					
Tc Length Slope Velocity Capacity Des					Capacity	Description			
	(min)	(feet)	(ft/ft)						
	10.0	•		Direct Entry					

Subcatchment 95S: Home Basin 31

Type IA 24-hr 05-5 Year Rainfall=2.86"

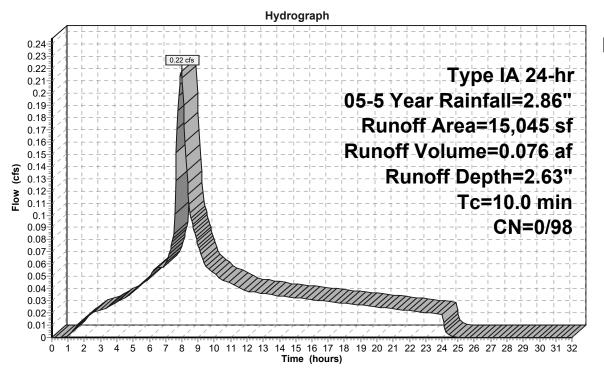
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 279

Summary for Subcatchment 96S: Basin 1


Runoff = 0.22 cfs @ 7.98 hrs, Volume= 0.076 af, Depth= 2.63"

Routed to Reach 133R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN	Description						
		15,045	98	Paved roads w/curbs & sewers, HSG D						
		15,045	,045 98 100.00% Impervious Area							
(m	Tc nin)	Length (feet)	Slope (ft/ft)							
1	0.0			Direct Entry,						

Subcatchment 96S: Basin 1

■ Runoff

Type IA 24-hr 05-5 Year Rainfall=2.86"

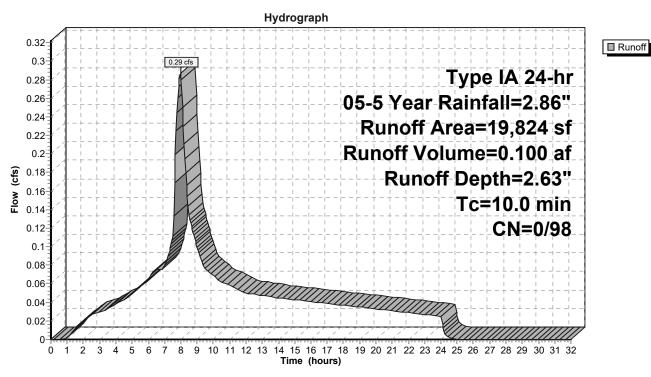
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 280

Summary for Subcatchment 97S: Basin 2


Runoff = 0.29 cfs @ 7.98 hrs, Volume= 0.100 af, Depth= 2.63"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN	Description						
		19,824	98	Paved roads w/curbs & sewers, HSG D						
_		19,824	,824 98 100.00% Impervious Area							
	Tc (min)	Length (feet)	Slope (ft/ft)	, - i , - i						
-	10.0			Direct Entry,						

Subcatchment 97S: Basin 2

Type IA 24-hr 05-5 Year Rainfall=2.86"

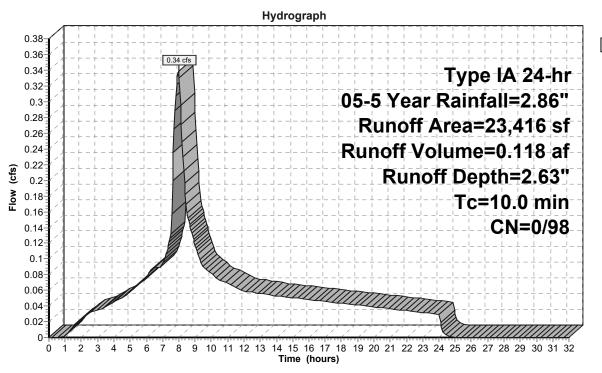
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 281

Summary for Subcatchment 98S: Basin 3


Runoff = 0.34 cfs @ 7.98 hrs, Volume= 0.118 af, Depth= 2.63"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN [Description						
		23,416	98 F	8 Paved roads w/curbs & sewers, HSG D						
_		23,416 98 100.00% Impervious Area								
	IC	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0		Direct Entry							

Subcatchment 98S: Basin 3

■ Runoff

Type IA 24-hr 05-5 Year Rainfall=2.86"

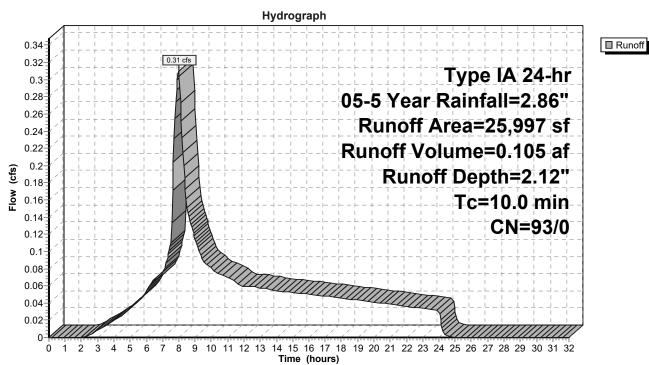
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 282

Summary for Subcatchment 99S: Home Basin 6


Runoff = 0.31 cfs @ 7.98 hrs, Volume= 0.105 af, Depth= 2.12"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN	Description						
4	•	25,997	93	70% Lot Coverage Weighted						
_		25,997	93	00.00% Pervious Area						
		c Length Slope Velocity Capacity Description				Description				
_	(min)	(feet)	(ft/ft)	t/ft) (ft/sec) (cfs)						
	10.0			Direct Entry.						

Subcatchment 99S: Home Basin 6

Type IA 24-hr 05-5 Year Rainfall=2.86"

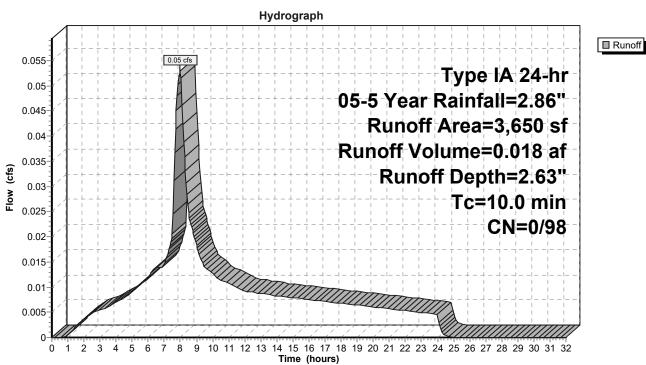
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 283

Summary for Subcatchment 100S: Basin 4


Runoff = 0.05 cfs @ 7.98 hrs, Volume= 0.018 af, Depth= 2.63"

Routed to Pond 60P: Stormwater Swale 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN	Description						
		3,650	98	Paved roads w/curbs & sewers, HSG D						
		3,650	98	100.00% Impervious Area						
					B					
		Length		,		Description				
_	(min)	(feet)	(ft/ft)	ft) (ft/sec) (cfs)						
	10.0			Direct Entry.						

Subcatchment 100S: Basin 4

Type IA 24-hr 05-5 Year Rainfall=2.86"

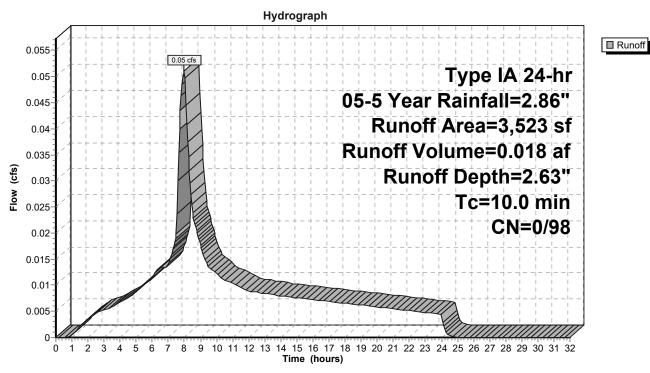
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 284

Summary for Subcatchment 101S: Basin 5


Runoff = 0.05 cfs @ 7.98 hrs, Volume= 0.018 af, Depth= 2.63"

Routed to Pond 54P: Stormwater Swale 2

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN	Description						
		3,523	98	Paved roads w/curbs & sewers, HSG D						
		3,523	98	100.00% Impervious Area						
	IC	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/ft) (ft/sec) (cfs)						
	10.0			Direct Entry.						

Subcatchment 101S: Basin 5

Type IA 24-hr 05-5 Year Rainfall=2.86"

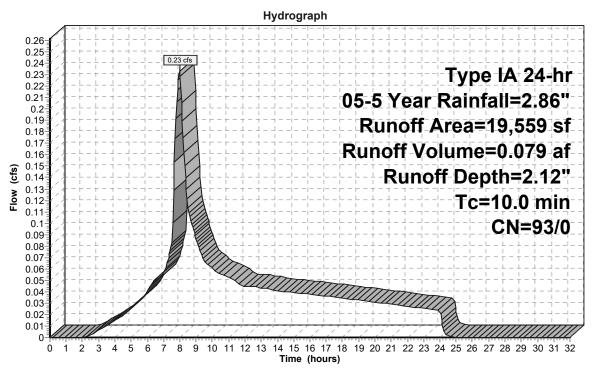
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 285

Summary for Subcatchment 102S: Home Basin 3


Runoff = 0.23 cfs @ 7.98 hrs, Volume= 0.079 af, Depth= 2.12"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN Description							
*		19,559	93	70% Lot Coverage Weighted						
		19,559	93	93 100.00% Pervious Area						
	Tc	9	Slope	,	. ,	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 102S: Home Basin 3

Type IA 24-hr 05-5 Year Rainfall=2.86"

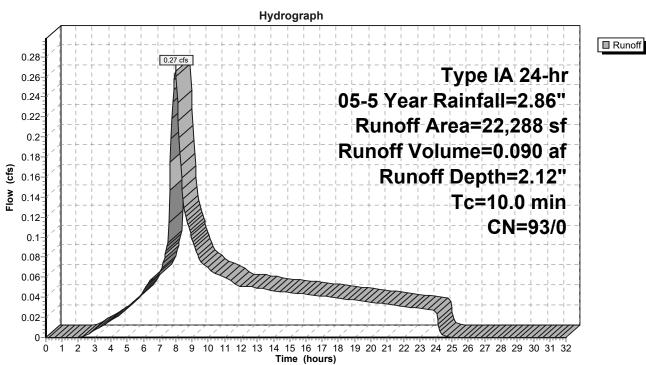
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 286

Summary for Subcatchment 103S: Home Basin 1


Runoff = 0.27 cfs @ 7.98 hrs, Volume= 0.090 af, Depth= 2.12"

Routed to Reach 137R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN I	Description						
3	k	22,288	93	70% Lot Coverage Weighted						
		22,288 93 100.00% Pervious Area								
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0		Direct Entry							

Subcatchment 103S: Home Basin 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

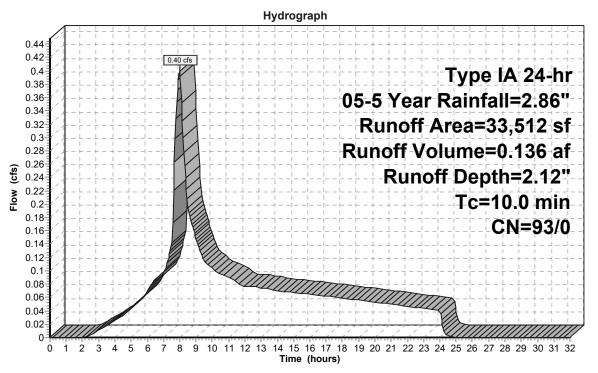
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 287

■ Runoff

Summary for Subcatchment 104S: Home Basin 5


Runoff = 0.40 cfs @ 7.98 hrs, Volume= 0.136 af, Depth= 2.12"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN [Description						
*		33,512	93 7	70% Lot Coverage Weighted						
		33,512	ea							
		Length		,		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 104S: Home Basin 5

Type IA 24-hr 05-5 Year Rainfall=2.86"

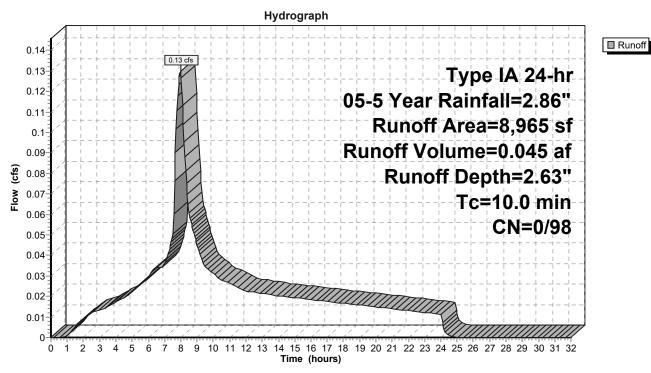
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 288

Summary for Subcatchment 105S: Basin 6


Runoff = 0.13 cfs @ 7.98 hrs, Volume= 0.045 af, Depth= 2.63"

Routed to Reach 138R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

A	rea (sf)	CN [Description					
	8,965	98 F	Paved road	& sewers, HSG D				
	8,965	98 1	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
10.0			Direct Entry,					

Subcatchment 105S: Basin 6

Type IA 24-hr 05-5 Year Rainfall=2.86"

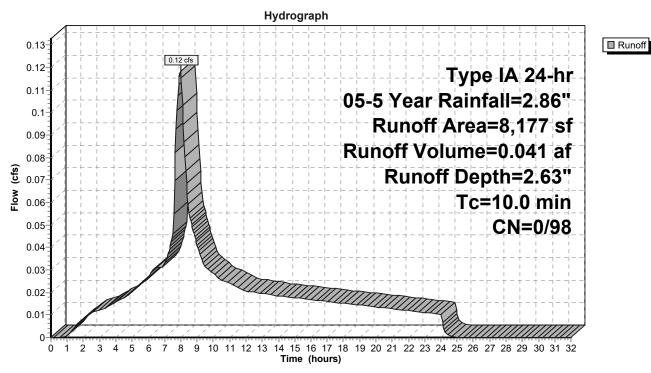
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 289

Summary for Subcatchment 107S: Basin 8


Runoff = 0.12 cfs @ 7.98 hrs, Volume= 0.041 af, Depth= 2.63"

Routed to Reach 158R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

A	rea (sf)	CN I	Description					
	8,177	98 F	Paved roads w/curbs & sewers, HSG D					
	8,177	98	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
10.0			Direct Entry,					

Subcatchment 107S: Basin 8

Type IA 24-hr 05-5 Year Rainfall=2.86"

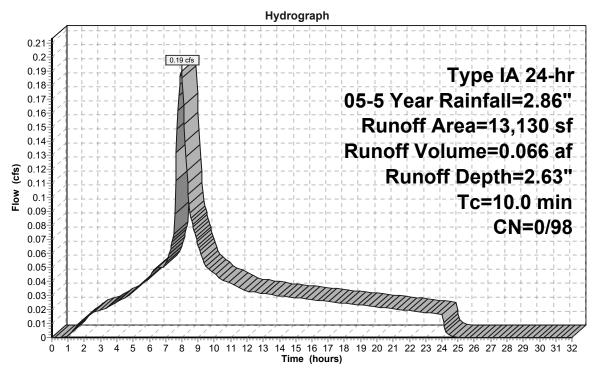
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 290

Summary for Subcatchment 108S: Basin 9


Runoff = 0.19 cfs @ 7.98 hrs, Volume= 0.066 af, Depth= 2.63"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN I	Description						
		13,130 98 Paved roads w/curbs & sewers, HSG D								
_		13,130 98 100.00% Impervious Area								
					_					
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0		Direct Entry							

Subcatchment 108S: Basin 9

Type IA 24-hr 05-5 Year Rainfall=2.86"

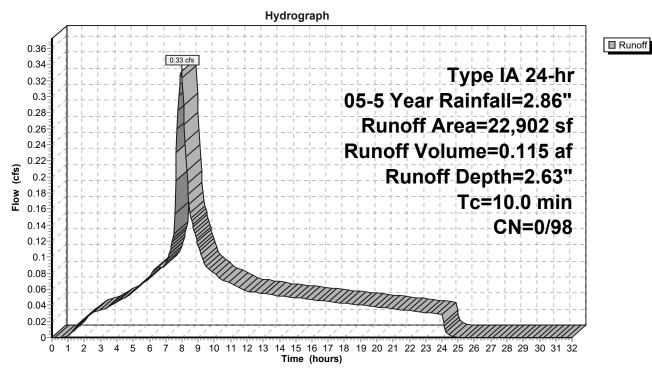
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 291

Summary for Subcatchment 109S: Basin 10


Runoff = 0.33 cfs @ 7.98 hrs, Volume= 0.115 af, Depth= 2.63"

Routed to Reach 137R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN	Description						
		22,902	98	Paved roads w/curbs & sewers, HSG D						
	22,902 98 100.00% Impervious Area									
	т.	1	01	. Valente Omentita		Describetton				
	IC	Length	•			Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0	•		•	•	Direct Entry				

Subcatchment 109S: Basin 10

Type IA 24-hr 05-5 Year Rainfall=2.86"

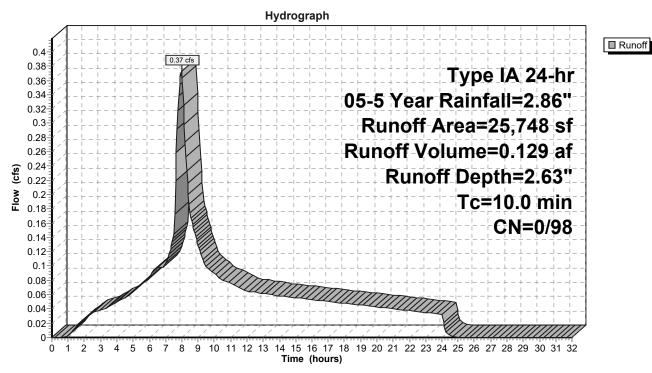
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 292

Summary for Subcatchment 110S: Basin 11


Runoff = 0.37 cfs @ 7.98 hrs, Volume= 0.129 af, Depth= 2.63"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

Are	ea (sf)	CN [Description						
25,748 98 Paved roads w/curbs & sewers, HSG D									
25,748 98 100.00% Impervious Area									
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0 Direct Entry,									

Subcatchment 110S: Basin 11

Type IA 24-hr 05-5 Year Rainfall=2.86"

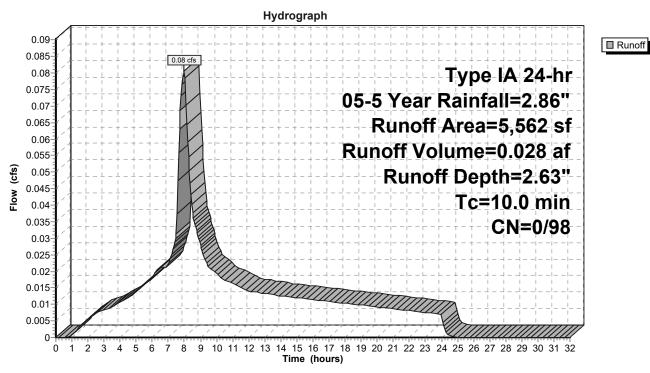
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 293

Summary for Subcatchment 111S: Basin 12


Runoff = 0.08 cfs @ 7.98 hrs, Volume= 0.028 af, Depth= 2.63"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

A	rea (sf)	CN [Description					
	5,562	98 F	Paved roads w/curbs & sewers, HSG D					
	5,562	98 1	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
10.0			Direct Entry,					

Subcatchment 111S: Basin 12

Type IA 24-hr 05-5 Year Rainfall=2.86"

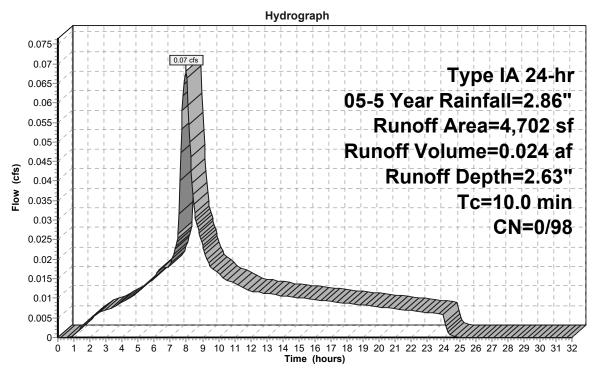
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 294

Summary for Subcatchment 112S: Basin 13


Runoff = 0.07 cfs @ 7.98 hrs, Volume= 0.024 af, Depth= 2.63"

Routed to Reach 158R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	A	rea (sf)	CN	Description							
		4,702	98	Paved roads w/curbs & sewers, HSG D							
		4,702	98	98 100.00% Impervious Area							
	Тс	Length	Slope	•	Capacity	Description					
	(min)	(feet)	(feet) (ft/ft) (ft/sec) (cfs)								
	10.0		Direct Entry.								

Subcatchment 112S: Basin 13

Type IA 24-hr 05-5 Year Rainfall=2.86"

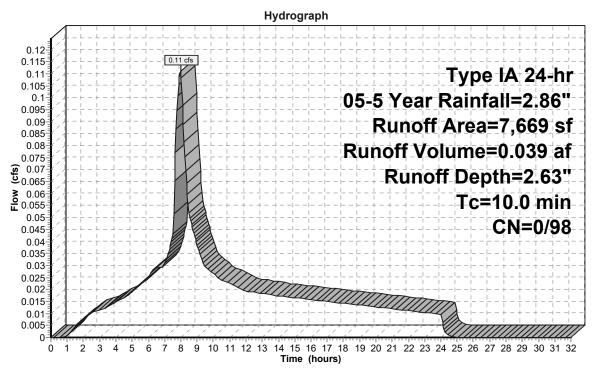
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 295

Summary for Subcatchment 113S: Basin 14


Runoff = 0.11 cfs @ 7.98 hrs, Volume= 0.039 af, Depth= 2.63"

Routed to Reach 159R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN	Description						
		7,669	98	Paved roads w/curbs & sewers, HSG D						
		7,669	98	3 100.00% Impervious Area						
	_		01							
	l C	Length		,	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
_	10.0		·			Direct Entry.				

Subcatchment 113S: Basin 14

Type IA 24-hr 05-5 Year Rainfall=2.86"

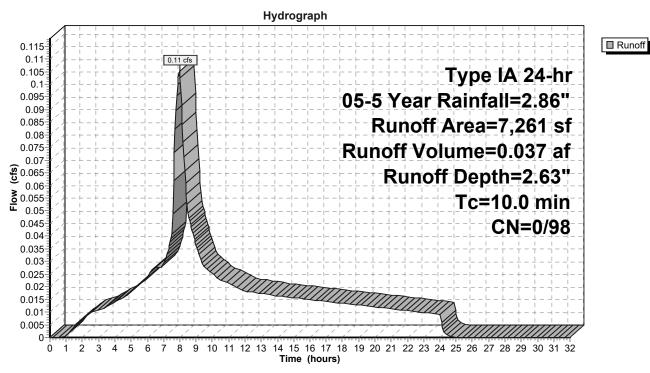
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 296

Summary for Subcatchment 114S: Basin 15


Runoff = 0.11 cfs @ 7.98 hrs, Volume= 0.037 af, Depth= 2.63"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

A	rea (sf)	CN [Description						
	7,261	98 F	Paved roads w/curbs & sewers, HSG D						
	7,261	98 1	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 114S: Basin 15

Type IA 24-hr 05-5 Year Rainfall=2.86"

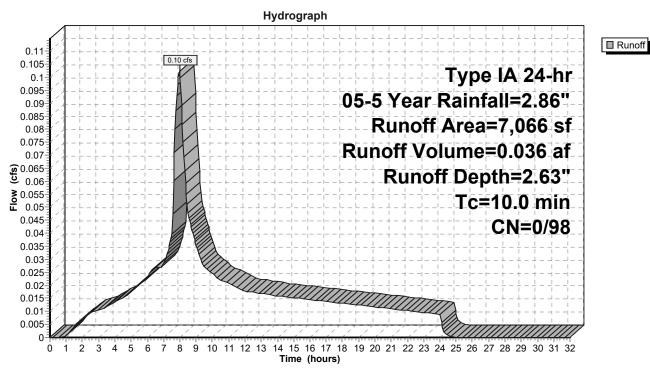
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 297

Summary for Subcatchment 115S: Basin 16


Runoff = 0.10 cfs @ 7.98 hrs, Volume= 0.036 af, Depth= 2.63"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

A	rea (sf)	CN [Description						
	7,066	98 F	Paved roads w/curbs & sewers, HSG D						
	7,066	98 1	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 115S: Basin 16

Type IA 24-hr 05-5 Year Rainfall=2.86"

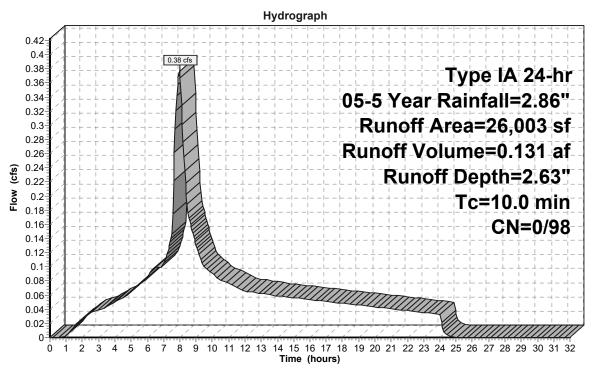
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 298

Summary for Subcatchment 116S: Basin 17


Runoff = 0.38 cfs @ 7.98 hrs, Volume= 0.131 af, Depth= 2.63"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	A	rea (sf)	CN	Description						
		26,003	98	Paved roads w/curbs & sewers, HSG D						
		26,003	003 98 100.00% Impervious Area							
	-		01							
		Length	Slope	,		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry.				

Subcatchment 116S: Basin 17

Type IA 24-hr 05-5 Year Rainfall=2.86"

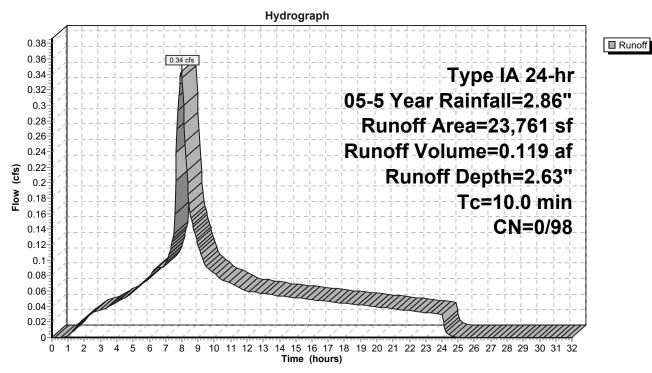
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 299

Summary for Subcatchment 117S: Basin 18


Runoff = 0.34 cfs @ 7.98 hrs, Volume= 0.119 af, Depth= 2.63"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

A	rea (sf)	CN I	Description						
	23,761	98 I	Paved roads w/curbs & sewers, HSG D						
	23,761	98	8 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 117S: Basin 18

Type IA 24-hr 05-5 Year Rainfall=2.86"

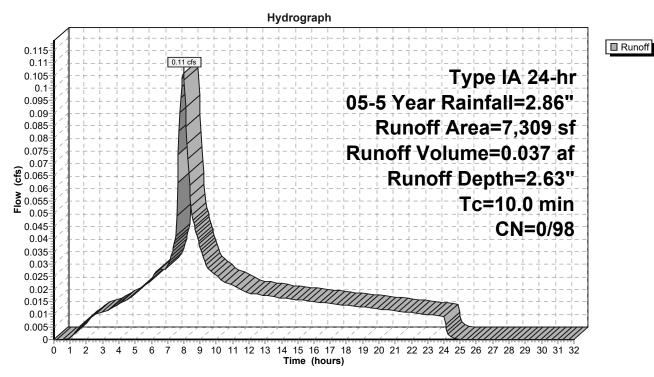
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 300

Summary for Subcatchment 118S: Basin 19


Runoff = 0.11 cfs @ 7.98 hrs, Volume= 0.037 af, Depth= 2.63"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN	Description						
		7,309	98	Paved roads w/curbs & sewers, HSG D						
_		7,309	98	3 100.00% Impervious Area						
_	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0		•			Direct Entry,				

Subcatchment 118S: Basin 19

Type IA 24-hr 05-5 Year Rainfall=2.86"

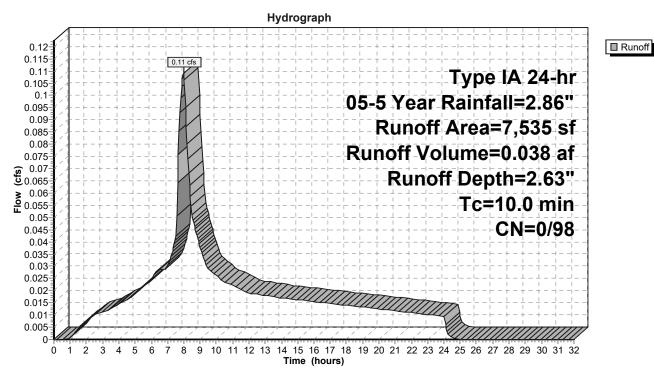
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 301

Summary for Subcatchment 119S: Basin 20


Runoff = 0.11 cfs @ 7.98 hrs, Volume= 0.038 af, Depth= 2.63"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN	Description							
		7,535	98	Paved roads w/curbs & sewers, HSG D							
		7,535	98	8 100.00% Impervious Area							
	Tc	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	10.0					Direct Entry					

Subcatchment 119S: Basin 20

Type IA 24-hr 05-5 Year Rainfall=2.86"

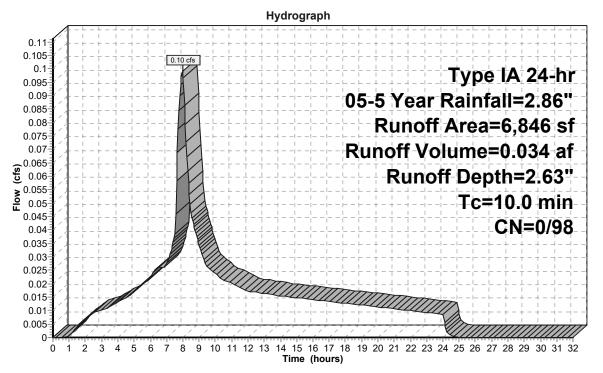
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 302

Summary for Subcatchment 120S: Basin 21


Runoff = 0.10 cfs @ 7.98 hrs, Volume= 0.034 af, Depth= 2.63"

Routed to Reach 148R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

A	rea (sf)	CN [Description						
	6,846	98 F	Paved roads w/curbs & sewers, HSG D						
	6,846	98 1	98 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 120S: Basin 21

Type IA 24-hr 05-5 Year Rainfall=2.86"

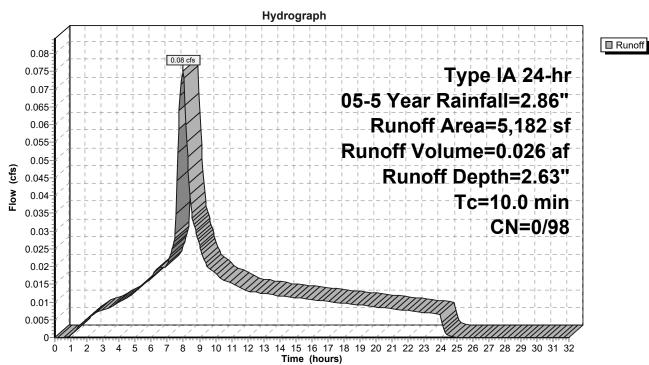
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 303

Summary for Subcatchment 121S: Basin 22


Runoff = 0.08 cfs @ 7.98 hrs, Volume= 0.026 af, Depth= 2.63"

Routed to Reach 154R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN I	Description						
		5,182	98 I	Paved roads w/curbs & sewers, HSG D						
		5,182	98	100.00% Impervious Area						
	_				_					
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
_	10.0					Direct Entry.				

Subcatchment 121S: Basin 22

Type IA 24-hr 05-5 Year Rainfall=2.86"

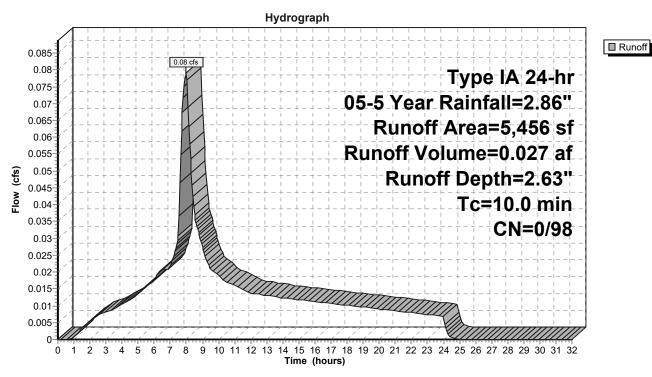
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 304

Summary for Subcatchment 122S: Basin 23


Runoff = 0.08 cfs @ 7.98 hrs, Volume= 0.027 af, Depth= 2.63"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN I	Description							
		5,456	98 I	Paved roads w/curbs & sewers, HSG D							
		5,456	98	100.00% Impervious Area							
	_										
	Tc	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	10.0					Direct Entry.					

Subcatchment 122S: Basin 23

Type IA 24-hr 05-5 Year Rainfall=2.86"

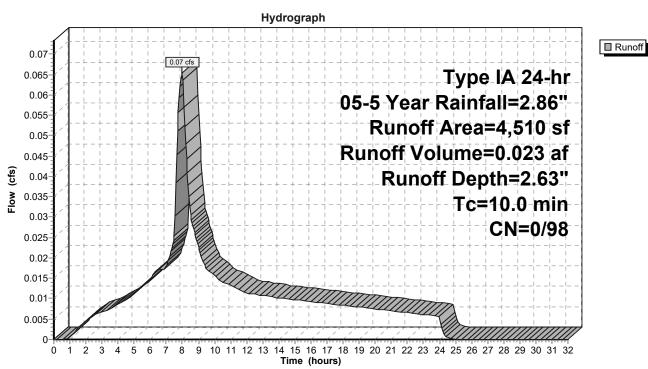
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 305

Summary for Subcatchment 123S: Basin 24


Runoff = 0.07 cfs @ 7.98 hrs, Volume= 0.023 af, Depth= 2.63"

Routed to Reach 162R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

A	rea (sf)	CN [Description						
	4,510	98 F	Paved roads w/curbs & sewers, HSG D						
	4,510	98 1	8 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 123S: Basin 24

Type IA 24-hr 05-5 Year Rainfall=2.86"

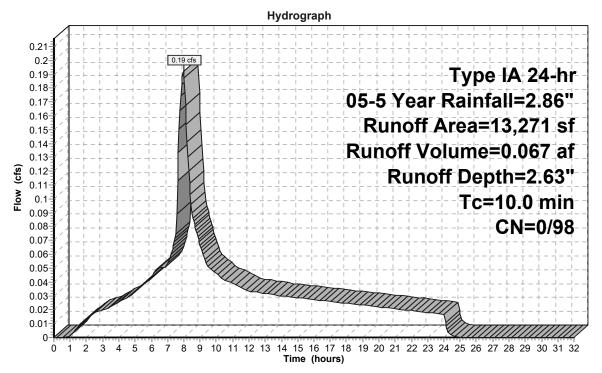
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 306

Summary for Subcatchment 124S: Basin 25


Runoff = 0.19 cfs @ 7.98 hrs, Volume= 0.067 af, Depth= 2.63"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

A	rea (sf)	CN I	Description						
	13,271	98 F	Paved roads w/curbs & sewers, HSG D						
	13,271	98 ′	8 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 124S: Basin 25

Type IA 24-hr 05-5 Year Rainfall=2.86"

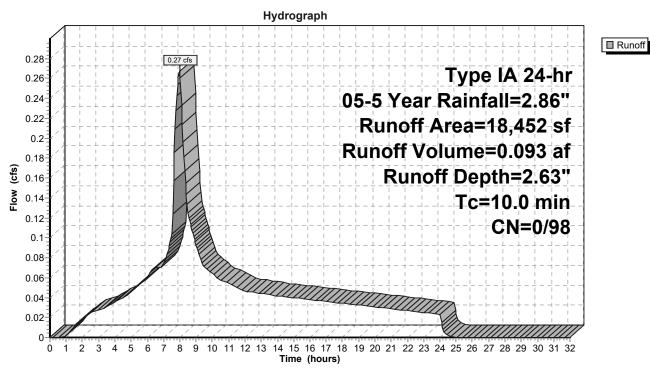
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 307

Summary for Subcatchment 125S: Basin 26


Runoff = 0.27 cfs @ 7.98 hrs, Volume= 0.093 af, Depth= 2.63"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

Area	(sf) CN	Description					
18,	452 98	98 Paved roads w/curbs & sewers, HSG D					
18,	452 98	100.00% In	npervious A	Area			
	ngth Slo feet) (ft	pe Velocity /ft) (ft/sec)	Capacity (cfs)	Description			
10.0				Direct Entry,			

Subcatchment 125S: Basin 26

Type IA 24-hr 05-5 Year Rainfall=2.86"

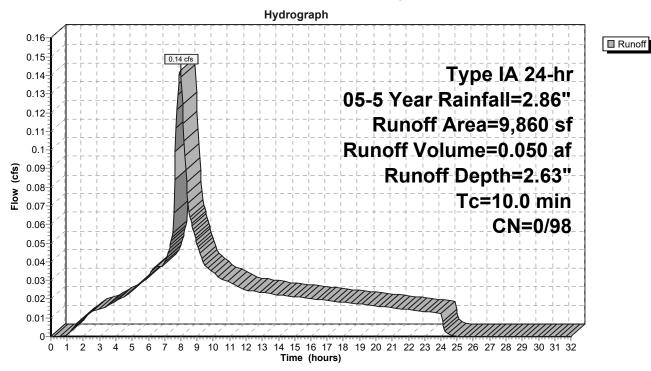
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 308

Summary for Subcatchment 126S: Alley Basin 1


Runoff = 0.14 cfs @ 7.98 hrs, Volume= 0.050 af, Depth= 2.63"

Routed to Reach 140R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

_	Α	rea (sf)	CN I	Description						
		9,860	98 I	98 Paved roads w/curbs & sewers, HSG D						
_		9,860	98	100.00% In	npervious A	rea				
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 126S: Alley Basin 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

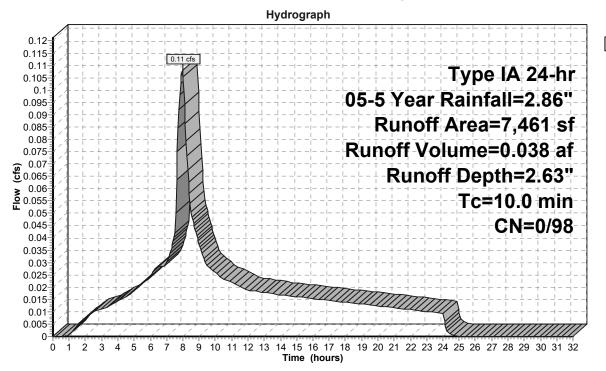
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 309

Summary for Subcatchment 127S: Alley Basin 2


Runoff = 0.11 cfs @ 7.98 hrs, Volume= 0.038 af, Depth= 2.63"

Routed to Reach 141R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Α	rea (sf)	CN [Description						
		7,461	98 F	98 Paved roads w/curbs & sewers, HSG D						
_		7,461	98 ′	00.00% Im	pervious A	ırea				
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 127S: Alley Basin 2

Type IA 24-hr 05-5 Year Rainfall=2.86"

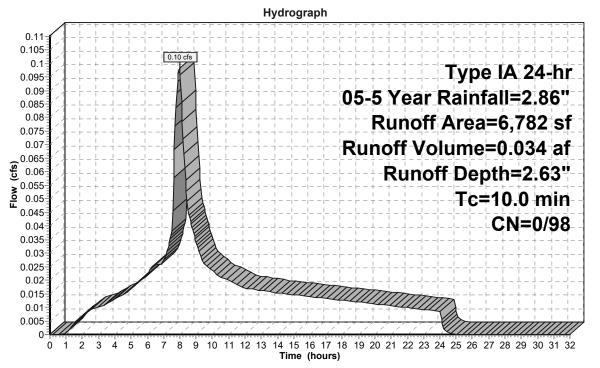
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 310

Summary for Subcatchment 128S: Alley Basin 3


Runoff = 0.10 cfs @ 7.98 hrs, Volume= 0.034 af, Depth= 2.63"

Routed to Reach 147R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

A	rea (sf)	CN [CN Description						
	6,782	98 F	98 Paved roads w/curbs & sewers, HSG D						
	6,782	98 ′	100.00% Im	pervious A	Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 128S: Alley Basin 3

Type IA 24-hr 05-5 Year Rainfall=2.86"

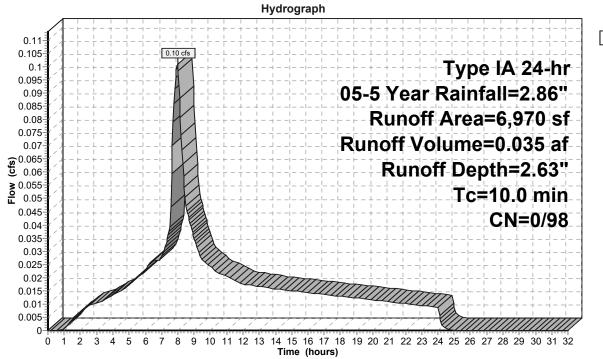
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 311

Summary for Subcatchment 129S: Alley Basin 4


Runoff = 0.10 cfs @ 7.98 hrs, Volume= 0.035 af, Depth= 2.63"

Routed to Reach 153R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

A	rea (sf)	CN [CN Description						
	6,970	98 F	98 Paved roads w/curbs & sewers, HSG D						
	6,970	98 ′	100.00% Im	pervious A	Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 129S: Alley Basin 4

Type IA 24-hr 05-5 Year Rainfall=2.86"

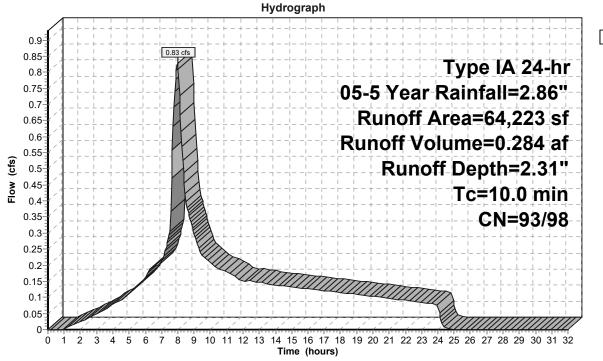
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 312

Summary for Subcatchment 168S: Future Lots


Runoff = 0.83 cfs @ 7.98 hrs, Volume= 0.284 af, Depth= 2.31"

Routed to Reach 166R: Basin Future

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

	Area (sf)	CN	Description		
1	39,915	93	70% Lot Co	verage We	eighted
	24,308	98	Paved roads	s w/curbs 8	& sewers, HSG D
	64,223	95	Weighted A	verage	
	39,915	93	62.15% Per	vious Area	a
	24,308	98	37.85% Imp	ervious Ar	rea
	Tc Length (min) (feet)	Slop (ft/	•	Capacity (cfs)	Description
	10.0				Direct Entry,

Subcatchment 168S: Future Lots

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

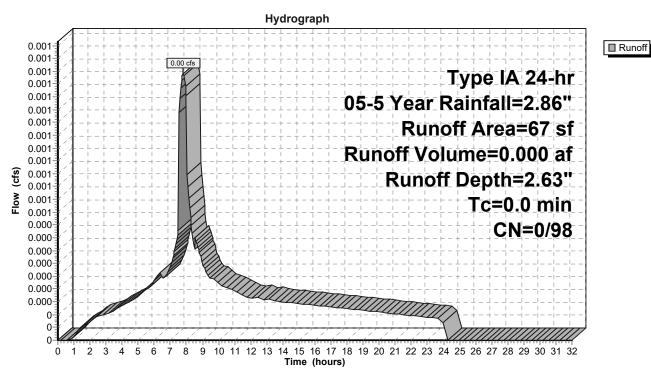
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 313

Summary for Subcatchment 169S: Swale 2

[46] Hint: Tc=0 (Instant runoff peak depends on dt)


7.81 hrs, Volume= Runoff 0.00 cfs @ Routed to Pond 54P: Stormwater Swale 2

0.000 af, Depth= 2.63"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

Area (sf)	CN	Description
67	98	Water Surface, HSG D
 67	98	100 00% Impervious Area

Subcatchment 169S: Swale 2

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

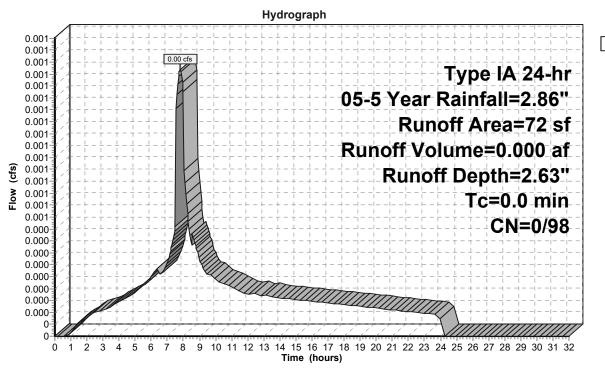
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 314

Summary for Subcatchment 170S: Swale 1

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 0.00 cfs @ 7.81 hrs, Volume=


0.000 af, Depth= 2.63"

Routed to Pond 60P: Stormwater Swale 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 05-5 Year Rainfall=2.86"

 Area (sf)	CN	Description					
72	98	Water Surface, HSG D					
72	98	100.00% Impervious Area					

Subcatchment 170S: Swale 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

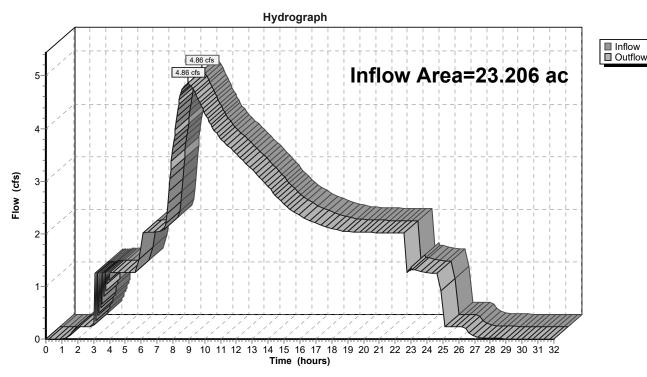
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 315

Summary for Reach 39R: Post-Construction Peak Flow

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 23.206 ac, 36.84% Impervious, Inflow Depth > 2.31" for 05-5 Year event

Inflow = 4.86 cfs @ 8.92 hrs, Volume= 4.462 af

Outflow = 4.86 cfs @ 8.92 hrs, Volume= 4.462 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 39R: Post-Construction Peak Flow

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 316

Summary for Reach 42R: Pre-Construction Peak Flow

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 23.206 ac, 0.00% Impervious, Inflow Depth > 1.77" for 05-5 Year event

Inflow = 4.87 cfs @ 8.29 hrs, Volume= 3.430 af

Outflow = 4.87 cfs @ 8.29 hrs, Volume= 3.430 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 42R: Pre-Construction Peak Flow

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

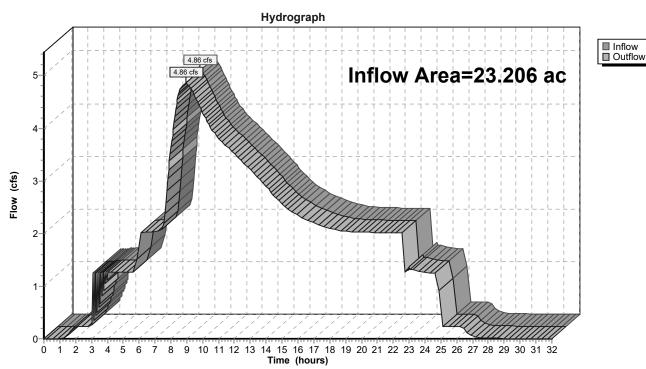
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 317

Summary for Reach 58R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 23.206 ac, 36.84% Impervious, Inflow Depth > 2.31" for 05-5 Year event


Inflow = 4.86 cfs @ 8.92 hrs, Volume= 4.462 af

Outflow = 4.86 cfs @ 8.92 hrs, Volume= 4.462 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 39R: Post-Construction Peak Flow

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 58R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

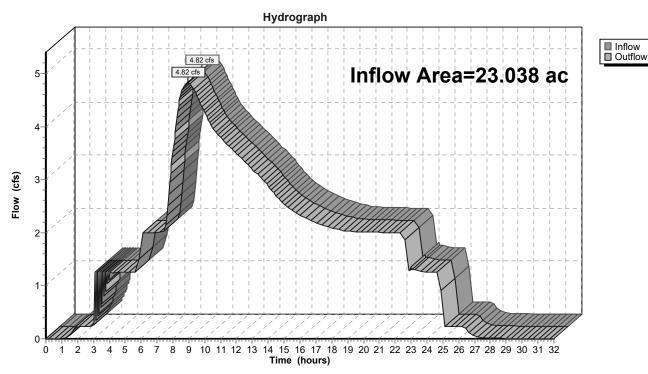
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 318

Summary for Reach 85R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 23.038 ac, 36.38% Impervious, Inflow Depth > 2.30" for 05-5 Year event


Inflow = 4.82 cfs @ 8.93 hrs, Volume= 4.425 af

Outflow = 4.82 cfs @ 8.93 hrs, Volume= 4.425 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 85R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

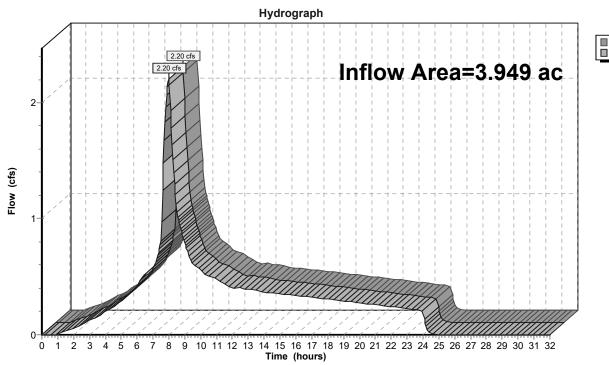
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 319

Summary for Reach 130R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.949 ac, 33.88% Impervious, Inflow Depth = 2.29" for 05-5 Year event


Inflow = 2.20 cfs @ 7.98 hrs, Volume= 0.754 af

Outflow = 2.20 cfs @ 7.98 hrs, Volume= 0.754 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 130R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

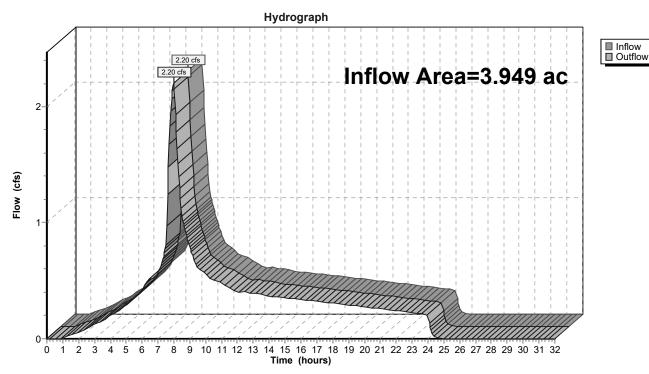
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 320

Summary for Reach 131R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.949 ac, 33.88% Impervious, Inflow Depth = 2.29" for 05-5 Year event


Inflow = 2.20 cfs @ 7.98 hrs, Volume= 0.754 af

Outflow = 2.20 cfs @ 7.98 hrs, Volume= 0.754 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 130R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 131R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

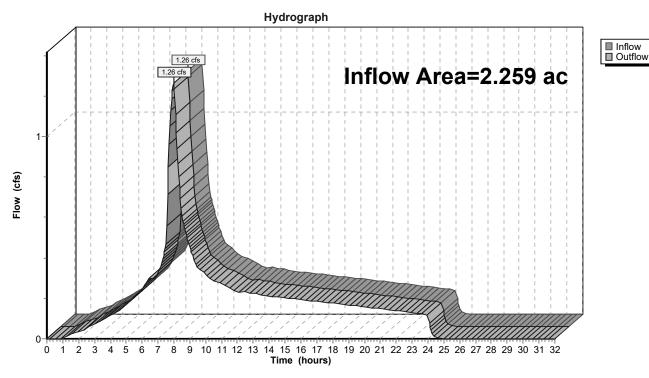
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 321

Summary for Reach 132R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.259 ac, 35.43% Impervious, Inflow Depth = 2.30" for 05-5 Year event


Inflow = 1.26 cfs @ 7.98 hrs, Volume= 0.433 af

Outflow = 1.26 cfs @ 7.98 hrs, Volume= 0.433 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 131R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 132R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

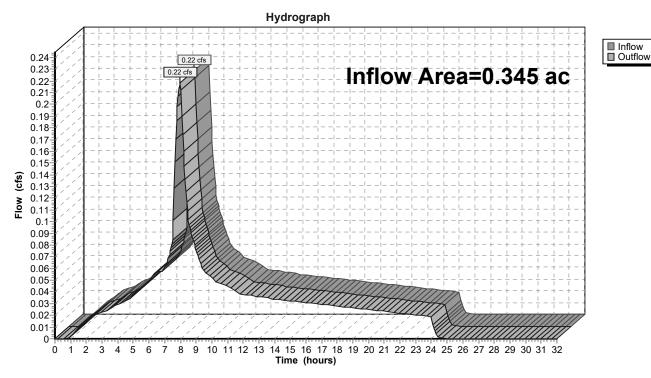
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 322

Summary for Reach 133R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.345 ac,100.00% Impervious, Inflow Depth = 2.63" for 05-5 Year event


Inflow = 0.22 cfs @ 7.98 hrs, Volume= 0.076 af

Outflow = 0.22 cfs @ 7.98 hrs, Volume= 0.076 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 132R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 133R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

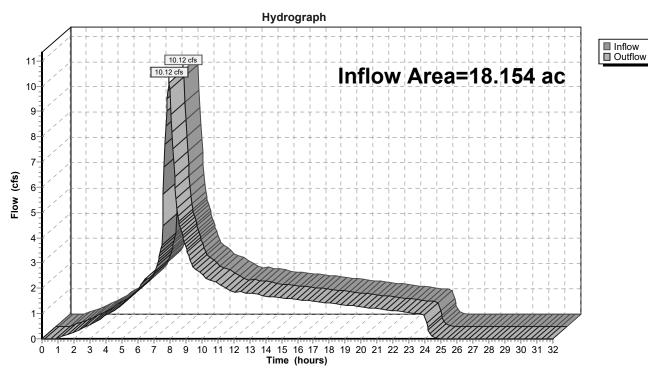
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 323

Summary for Reach 134R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 18.154 ac, 33.65% Impervious, Inflow Depth = 2.29" for 05-5 Year event


Inflow = 10.12 cfs @ 7.98 hrs, Volume= 3.467 af

Outflow = 10.12 cfs @ 7.98 hrs, Volume= 3.467 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 134R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

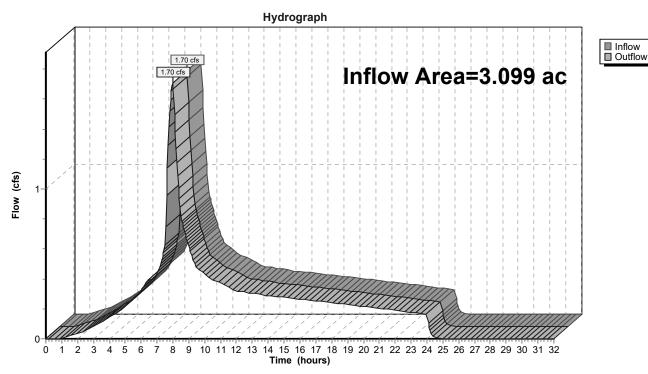
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 324

Summary for Reach 135R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.099 ac, 26.69% Impervious, Inflow Depth = 2.26" for 05-5 Year event


Inflow = 1.70 cfs @ 7.98 hrs, Volume= 0.583 af

Outflow = 1.70 cfs @ 7.98 hrs, Volume= 0.583 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 134R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 135R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

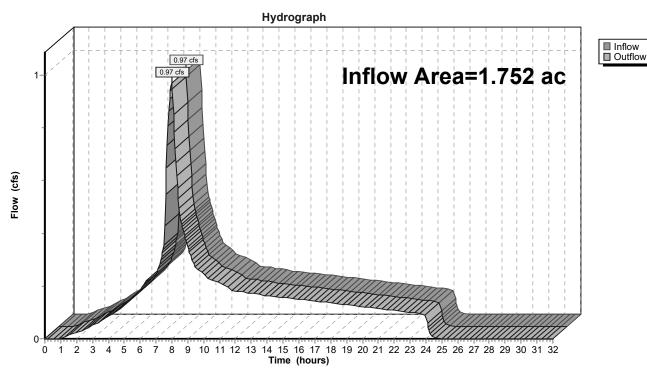
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 325

Summary for Reach 136R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.752 ac, 30.00% Impervious, Inflow Depth = 2.27" for 05-5 Year event


Inflow = 0.97 cfs @ 7.98 hrs, Volume= 0.332 af

Outflow = 0.97 cfs @ 7.98 hrs, Volume= 0.332 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 135R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 136R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

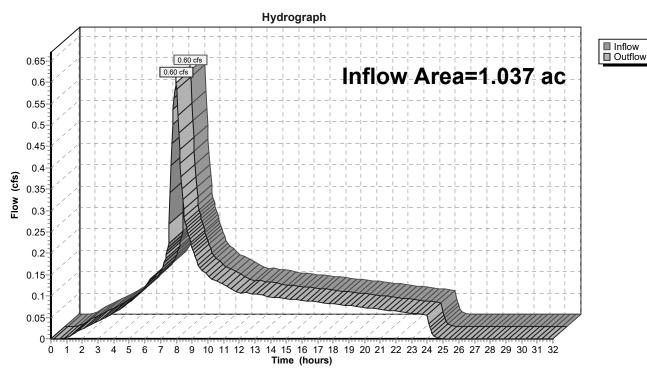
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 326

Summary for Reach 137R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.037 ac, 50.68% Impervious, Inflow Depth = 2.38" for 05-5 Year event


Inflow = 0.60 cfs @ 7.98 hrs, Volume= 0.206 af

Outflow = 0.60 cfs @ 7.98 hrs, Volume= 0.206 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 136R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 137R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

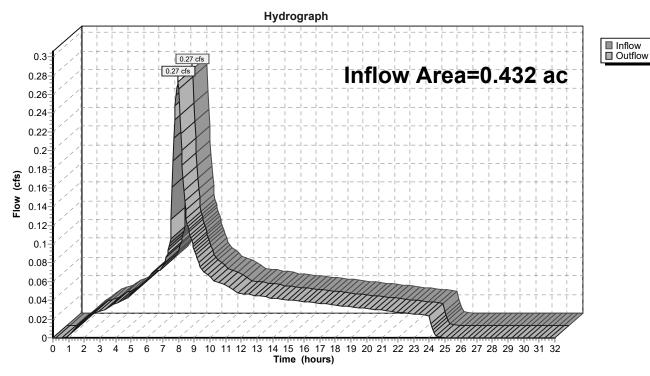
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 327

Summary for Reach 138R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.432 ac,100.00% Impervious, Inflow Depth = 2.63" for 05-5 Year event


Inflow = 0.27 cfs @ 7.98 hrs, Volume= 0.095 af

Outflow = 0.27 cfs @ 7.98 hrs, Volume= 0.095 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 138R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

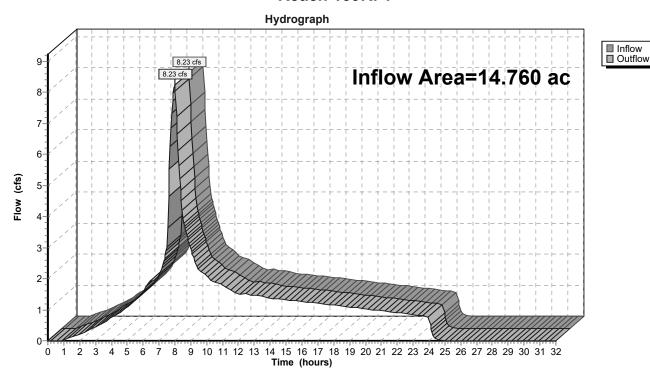
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 328

Summary for Reach 139R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.760 ac, 33.78% Impervious, Inflow Depth = 2.29" for 05-5 Year event


Inflow = 8.23 cfs @ 7.98 hrs, Volume= 2.819 af

Outflow = 8.23 cfs @ 7.98 hrs, Volume= 2.819 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 158R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 139R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

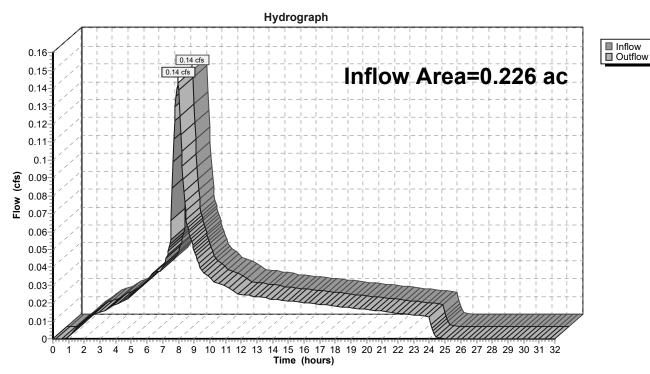
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 329

Summary for Reach 140R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.226 ac,100.00% Impervious, Inflow Depth = 2.63" for 05-5 Year event


Inflow = 0.14 cfs @ 7.98 hrs, Volume= 0.050 af

Outflow = $0.14 \text{ cfs } \overline{\textcircled{0}}$ 7.98 hrs, Volume= 0.050 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 138R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 140R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

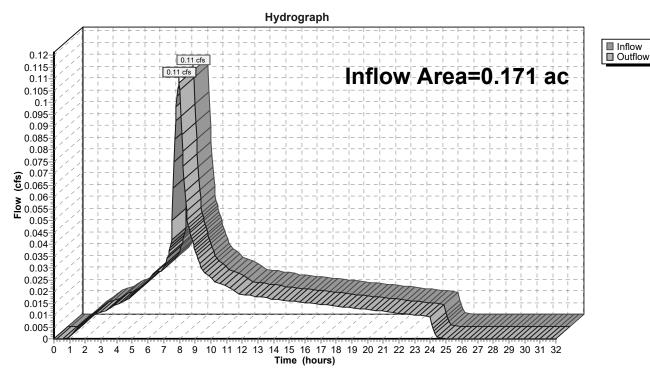
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 330

Summary for Reach 141R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.171 ac,100.00% Impervious, Inflow Depth = 2.63" for 05-5 Year event


Inflow = 0.11 cfs @ 7.98 hrs, Volume= 0.038 af

Outflow = $0.11 \text{ cfs } \overline{\textcircled{0}}$ 7.98 hrs, Volume= 0.038 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 139R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 141R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

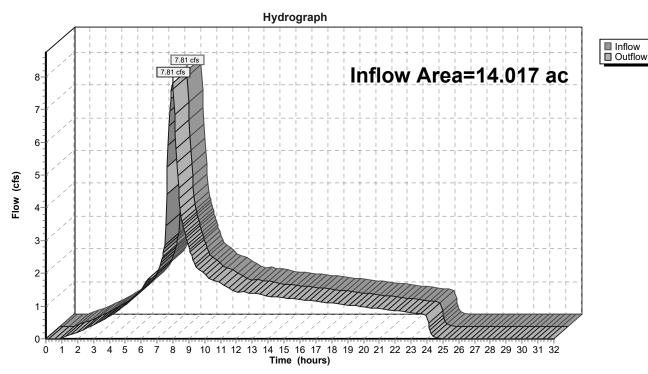
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 331

Summary for Reach 142R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.017 ac, 33.09% Impervious, Inflow Depth = 2.29" for 05-5 Year event


Inflow = 7.81 cfs @ 7.98 hrs, Volume= 2.673 af

Outflow = 7.81 cfs @ 7.98 hrs, Volume= 2.673 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 159R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 142R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

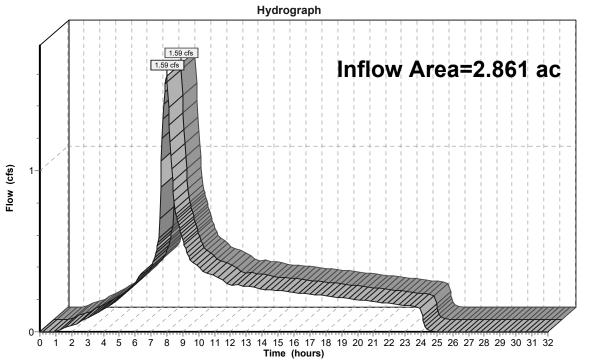
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 332

Summary for Reach 143R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.861 ac, 30.95% Impervious, Inflow Depth = 2.28" for 05-5 Year event


Inflow = 1.59 cfs @ 7.98 hrs, Volume= 0.543 af

Outflow = 1.59 cfs @ 7.98 hrs, Volume= 0.543 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 142R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 143R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

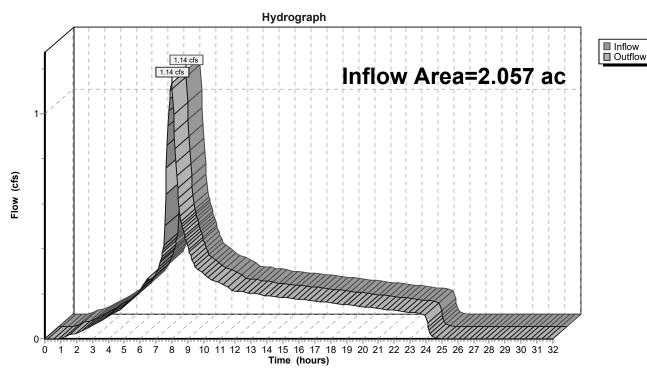
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 333

Summary for Reach 144R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.057 ac, 28.74% Impervious, Inflow Depth = 2.27" for 05-5 Year event


Inflow = 1.14 cfs @ 7.98 hrs, Volume= 0.388 af

Outflow = 1.14 cfs @ 7.98 hrs, Volume= 0.388 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 143R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 144R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

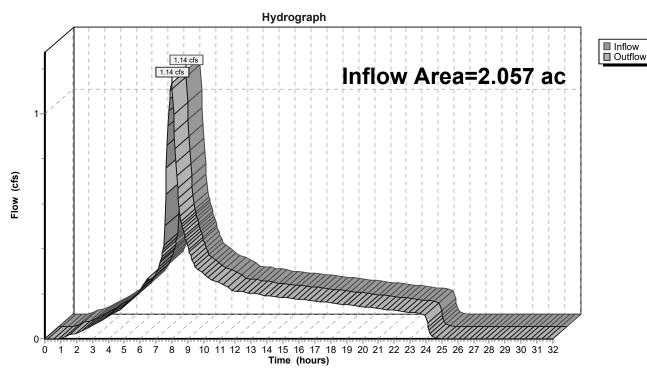
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 334

Summary for Reach 145R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.057 ac, 28.74% Impervious, Inflow Depth = 2.27" for 05-5 Year event


Inflow = 1.14 cfs @ 7.98 hrs, Volume= 0.388 af

Outflow = 1.14 cfs @ 7.98 hrs, Volume= 0.388 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 144R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 145R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

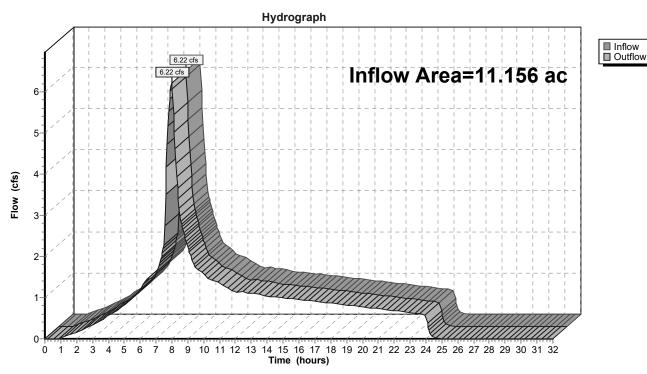
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 335

Summary for Reach 146R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 11.156 ac, 33.63% Impervious, Inflow Depth = 2.29" for 05-5 Year event


Inflow = 6.22 cfs @ 7.98 hrs, Volume= 2.130 af

Outflow = 6.22 cfs @ 7.98 hrs, Volume= 2.130 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 142R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 146R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

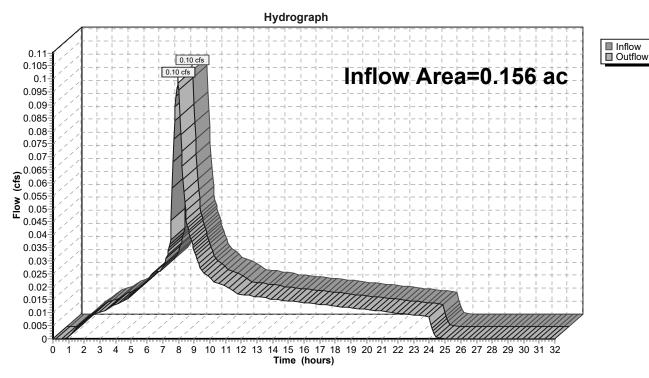
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 336

Summary for Reach 147R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.156 ac,100.00% Impervious, Inflow Depth = 2.63" for 05-5 Year event


Inflow = 0.10 cfs @ 7.98 hrs, Volume= 0.034 af

Outflow = 0.10 cfs @ 7.98 hrs, Volume= 0.034 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 146R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 147R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

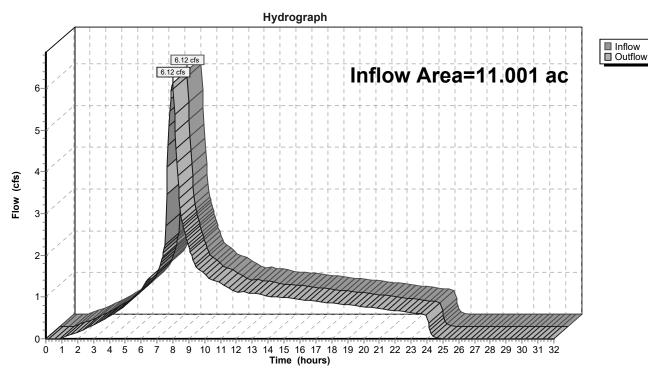
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 337

Summary for Reach 148R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 11.001 ac, 32.69% Impervious, Inflow Depth = 2.29" for 05-5 Year event


Inflow = 6.12 cfs @ 7.98 hrs, Volume= 2.096 af

Outflow = 6.12 cfs @ 7.98 hrs, Volume= 2.096 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 146R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 148R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

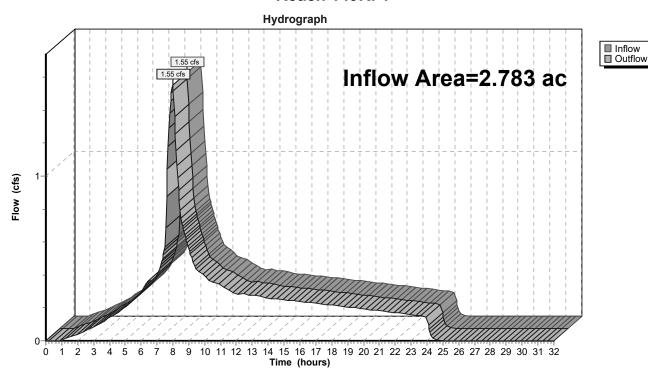
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 338

Summary for Reach 149R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.783 ac, 33.49% Impervious, Inflow Depth = 2.29" for 05-5 Year event


Inflow = 1.55 cfs @ 7.98 hrs, Volume= 0.531 af

Outflow = 1.55 cfs @ 7.98 hrs, Volume= 0.531 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 148R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 149R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

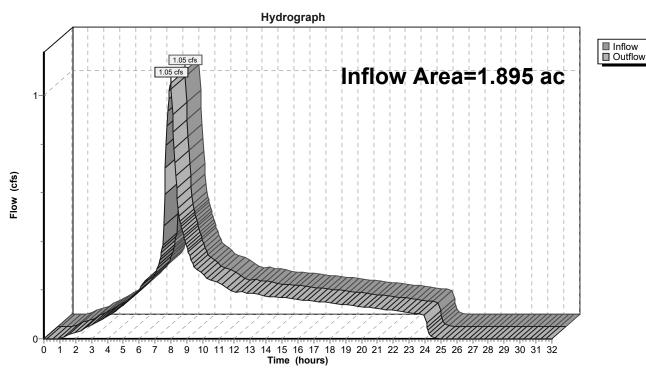
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 339

Summary for Reach 150R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.895 ac, 31.51% Impervious, Inflow Depth = 2.28" for 05-5 Year event


Inflow = 1.05 cfs @ 7.98 hrs, Volume= 0.360 af

Outflow = 1.05 cfs @ 7.98 hrs, Volume= 0.360 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 149R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 150R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

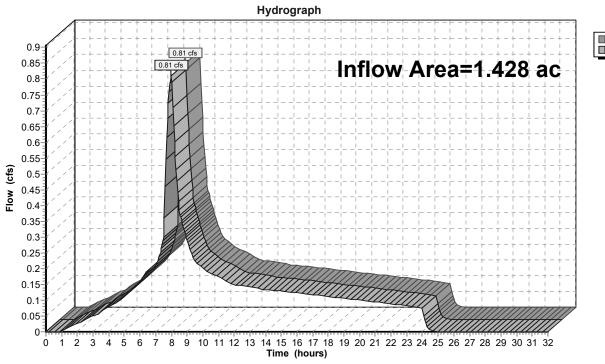
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 340

Summary for Reach 151R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.428 ac, 41.79% Impervious, Inflow Depth = 2.33" for 05-5 Year event


Inflow = 0.81 cfs @ 7.98 hrs, Volume= 0.278 af

Outflow = 0.81 cfs @ 7.98 hrs, Volume= 0.278 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 150R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 151R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

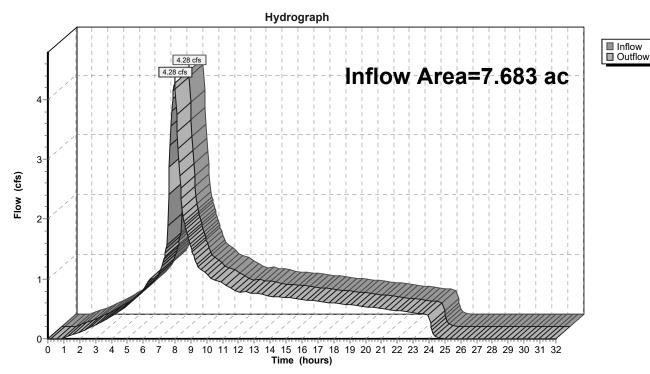
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 341

Summary for Reach 152R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 7.683 ac, 32.64% Impervious, Inflow Depth = 2.29" for 05-5 Year event


Inflow = 4.28 cfs @ 7.98 hrs, Volume= 1.464 af

Outflow = 4.28 cfs @ 7.98 hrs, Volume= 1.464 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 148R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 152R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

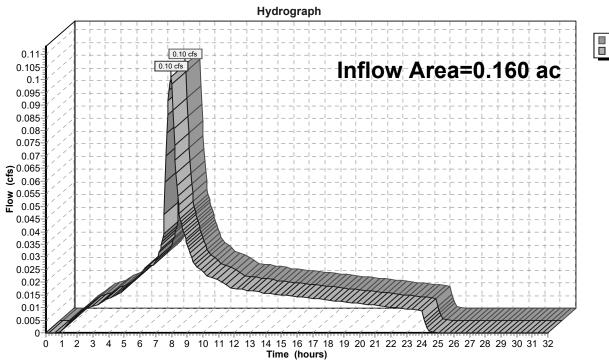
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 342

Summary for Reach 153R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.160 ac,100.00% Impervious, Inflow Depth = 2.63" for 05-5 Year event


Inflow = 0.10 cfs @ 7.98 hrs, Volume= 0.035 af

Outflow = 0.10 cfs @ 7.98 hrs, Volume= 0.035 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 152R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 153R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

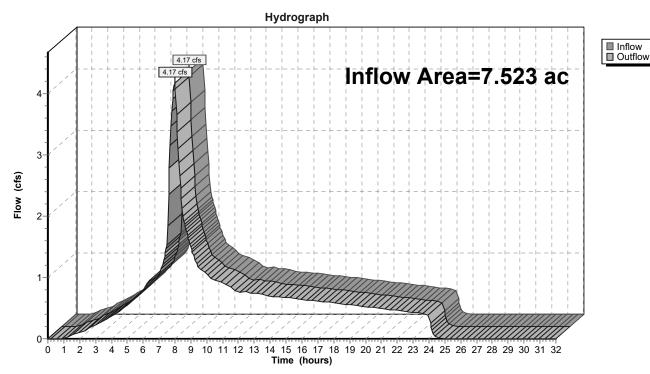
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 343

Summary for Reach 154R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 7.523 ac, 31.20% Impervious, Inflow Depth = 2.28" for 05-5 Year event


Inflow = 4.17 cfs @ 7.98 hrs, Volume= 1.429 af

Outflow = 4.17 cfs @ 7.98 hrs, Volume= 1.429 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 152R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 154R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

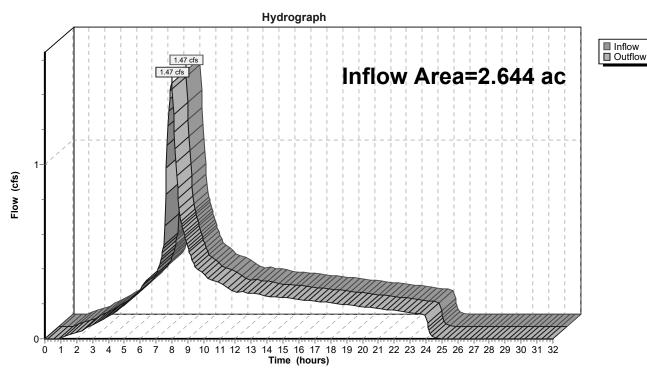
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 344

Summary for Reach 155R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.644 ac, 31.72% Impervious, Inflow Depth = 2.28" for 05-5 Year event


Inflow = 1.47 cfs @ 7.98 hrs, Volume= 0.503 af

Outflow = 1.47 cfs @ 7.98 hrs, Volume= 0.503 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 154R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 155R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

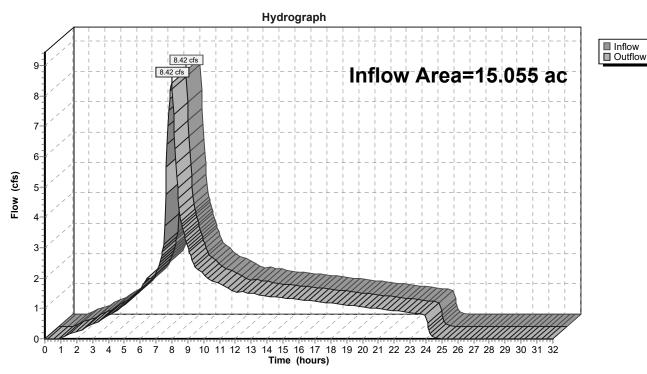
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 345

Summary for Reach 158R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 15.055 ac, 35.08% Impervious, Inflow Depth = 2.30" for 05-5 Year event


Inflow = 8.42 cfs @ 7.98 hrs, Volume= 2.884 af

Outflow = 8.42 cfs @ 7.98 hrs, Volume= 2.884 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 134R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 158R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

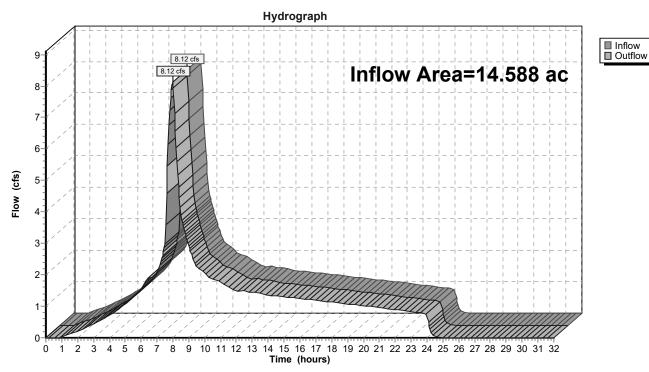
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 346

Summary for Reach 159R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.588 ac, 33.00% Impervious, Inflow Depth = 2.29" for 05-5 Year event


Inflow = 8.12 cfs @ 7.98 hrs, Volume= 2.782 af

Outflow = 8.12 cfs @ 7.98 hrs, Volume= 2.782 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 139R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 159R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

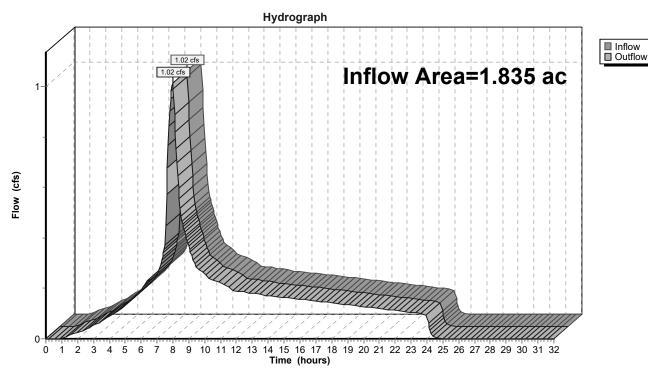
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 347

Summary for Reach 160R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.835 ac, 29.73% Impervious, Inflow Depth = 2.27" for 05-5 Year event


Inflow = 1.02 cfs @ 7.98 hrs, Volume= 0.347 af

Outflow = 1.02 cfs @ 7.98 hrs, Volume= 0.347 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 155R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 160R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 348

Summary for Reach 162R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.369 ac, 31.81% Impervious, Inflow Depth = 2.28" for 05-5 Year event


Inflow = 2.43 cfs @ 7.98 hrs, Volume= 0.831 af

Outflow = 2.43 cfs @ 7.98 hrs, Volume= 0.831 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 154R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 162R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

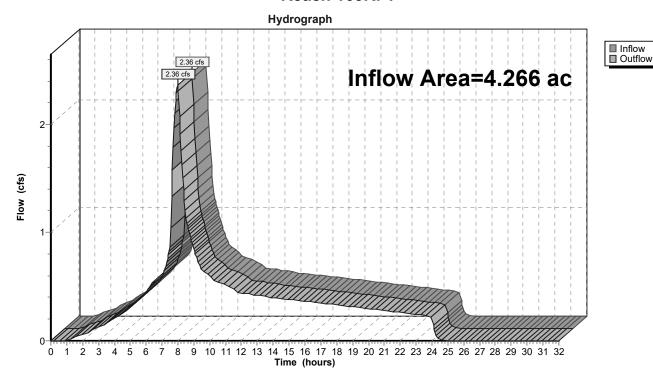
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 349

Summary for Reach 163R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.266 ac, 30.15% Impervious, Inflow Depth = 2.27" for 05-5 Year event


Inflow = 2.36 cfs @ 7.98 hrs, Volume= 0.808 af

Outflow = 2.36 cfs @ 7.98 hrs, Volume= 0.808 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 162R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 163R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

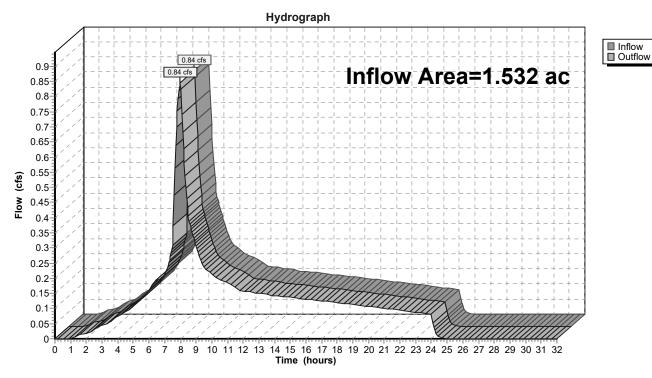
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 350

Summary for Reach 165R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.532 ac, 27.64% Impervious, Inflow Depth = 2.26" for 05-5 Year event


Inflow = 0.84 cfs @ 7.98 hrs, Volume= 0.289 af

Outflow = 0.84 cfs @ 7.98 hrs, Volume= 0.289 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 163R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 165R: 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

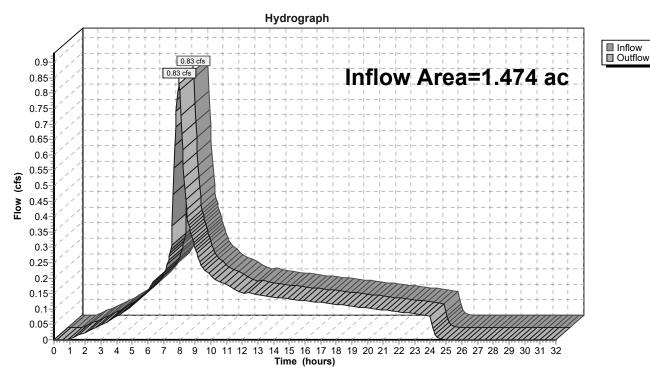
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 351

Summary for Reach 166R: Basin Future

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.474 ac, 37.85% Impervious, Inflow Depth = 2.31" for 05-5 Year event


Inflow = 0.83 cfs @ 7.98 hrs, Volume= 0.284 af

Outflow = 0.83 cfs @ 7.98 hrs, Volume= 0.284 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 163R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 166R: Basin Future

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 352

Summary for Pond 54P: Stormwater Swale 2

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=56)

Inflow Area = 0.082 ac,100.00% Impervious, Inflow Depth = 2.63" for 05-5 Year event

Inflow = 0.05 cfs @ 7.98 hrs, Volume= 0.018 af

Outflow = 0.05 cfs @ 7.98 hrs, Volume= 0.018 af, Atten= 0%, Lag= 0.5 min

Primary = 0.05 cfs @ 7.98 hrs, Volume= 0.018 af

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Peak Elev= 222.40' @ 7.98 hrs Surf.Area= 185 sf Storage= 31 cf

Flood Elev= 223.30' Surf.Area= 192 sf Storage= 88 cf

Plug-Flow detention time= 41.1 min calculated for 0.018 af (100% of inflow)

Center-of-Mass det. time= 41.3 min (715.8 - 674.4)

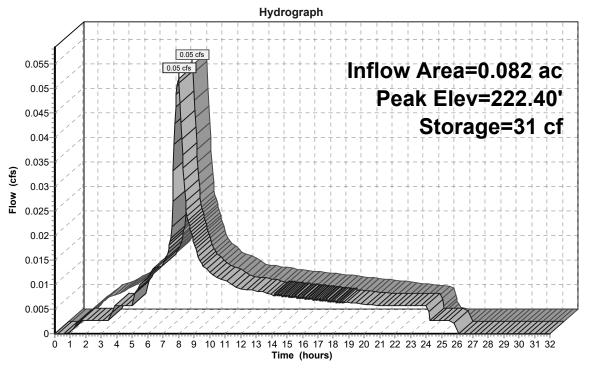
Volume	Inv	ert Avai	l.Storage	Storage Descripti	on				
#1	222.	30'	63 cf	Open Storage (Irregular)Listed below (Recalc)					
#2	220.8	80'	10 cf		regular)Listed bel	ow (Recalc)			
				101 cf Overall x	10.0% Voids				
#3	220.0	05'	15 cf		Irregular)Listed be	elow (Recalc)			
				44 cf Overall x 35.0% Voids					
			88 cf	Total Available Storage					
Elevation		Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
222.30		59	33.0	0	0	59			
223.30	0	67	34.0	63	63	93			
Elevation		Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet	:)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
220.80	-	67	34.0	0	0	67			
222.30	0	67	34.0	101	101	118			
Elevation		Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area			
(feet	:)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)			
220.0	5	58	33.0	0	0	58			
220.80	0	58	33.0	44	44	83			
Device	Routing	In	vert Outl	et Devices					
#1	Primary	220	.05' 2.00	0 in/hr Perf Pipes	over Surface are	ea			
#2	Primary	223		4.0" Horiz. 4"Overflow Pipe C= 0.600					
Limited to weir flow at low heads									
#3	Primary	222		" Vert. 10" Outflo					
Limited to weir flow at low heads									

Primary OutFlow Max=0.05 cfs @ 7.98 hrs HW=222.40' TW=0.00' (Dynamic Tailwater)

—1=Perf Pipes (Exfiltration Controls 0.01 cfs)

-2=4"Overflow Pipe (Controls 0.00 cfs)

-3=10" Outflow Pipe (Orifice Controls 0.04 cfs @ 1.10 fps)


Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Printed 9/6/2023

Page 353

Pond 54P: Stormwater Swale 2

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 354

Summary for Pond 60P: Stormwater Swale 1

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=44)

Inflow Area = 0.085 ac,100.00% Impervious, Inflow Depth = 2.63" for 05-5 Year event

Inflow = 0.05 cfs @ 7.98 hrs, Volume= 0.019 af

Outflow = 0.05 cfs @ 7.99 hrs, Volume= 0.019 af, Atten= 0%, Lag= 0.5 min

Primary = 0.05 cfs @ 7.99 hrs, Volume= 0.019 af

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Peak Elev= 222.06' @ 7.99 hrs Surf.Area= 195 sf Storage= 33 cf

Flood Elev= 222.95' Surf.Area= 204 sf Storage= 93 cf

Plug-Flow detention time= 41.3 min calculated for 0.019 af (100% of inflow)

Center-of-Mass det. time= 41.4 min (715.8 - 674.4)

Volume	Inv	ert Avai	.Storage	Storage Descripti	on				
#1 #2	221.9 220.4		67 cf 11 cf		rregular)Listed be regular)Listed bel 10.0% Voids				
#3	219.7	70'	16 cf	Rock Chamber (Irregular)Listed below (Recalc) 45 cf Overall x 35.0% Voids					
			93 cf	Total Available St	torage				
Elevatior (feet		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
221.95 222.95		62 72	34.0 36.0	0 67	0 67	62 99			
Elevation (feet)		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
220.45 221.95		72 72	36.0 36.0	0 108	0 108	72 126			
Elevatior (feet		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
219.70 220.45		60 60	34.0 34.0	0 45	0 45	60 86			
Device	Routing	Inv	vert Outle	et Devices					
	Primary Primary	219 222	.70' 4.0"	0 in/hr Perf Pipes over Surface area Horiz. 4"Overflow Pipe C= 0.600 ted to weir flow at low heads					
#3	Primary	221		" Vert. 10" Outflo ted to weir flow at l					

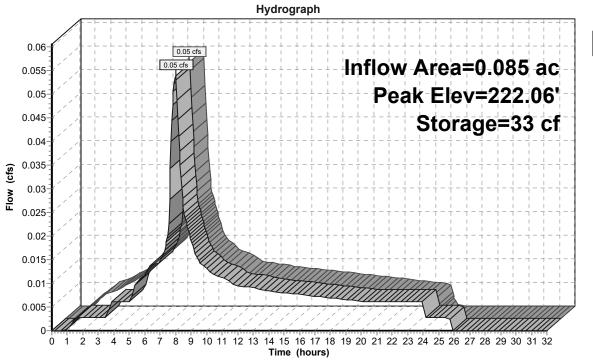
Primary OutFlow Max=0.05 cfs @ 7.99 hrs HW=222.06' TW=0.00' (Dynamic Tailwater)

—1=Perf Pipes (Exfiltration Controls 0.01 cfs)

-2=4"Overflow Pipe (Controls 0.00 cfs)

-3=10" Outflow Pipe (Orifice Controls 0.04 cfs @ 1.11 fps)

Type IA 24-hr 05-5 Year Rainfall=2.86"


Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 355

Pond 60P: Stormwater Swale 1

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 356

Summary for Pond 63P: Detention Pond

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=10)

Inflow Area = 23.038 ac, 36.38% Impervious, Inflow Depth = 2.31" for 05-5 Year event

Inflow = 12.93 cfs @ 7.98 hrs, Volume= 4.426 af

Outflow = 4.82 cfs @ 8.93 hrs, Volume= 4.425 af, Atten= 63%, Lag= 57.3 min

Primary = 4.82 cfs @ 8.93 hrs, Volume= 4.425 af

Routed to Reach 85R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Peak Elev= 223.25' @ 8.93 hrs Surf.Area= 45,502 sf Storage= 35,410 cf

Flood Elev= 225.50' Surf.Area= 48,838 sf Storage= 80,897 cf

Plug-Flow detention time= 96.9 min calculated for 4.418 af (100% of inflow)

Center-of-Mass det. time= 96.9 min (806.1 - 709.2)

Volume	Invert	Avail.Storage	ge Storage Description						
#1	221.50'	75,859 cf	Open Storage (Irregular)Listed below (Recalc)	_					
#2	220.00'	3,288 cf	Growing Medium (Irregular)Listed below (Recalc) 32,879 cf Overall x 10.0% Voids						
#3	219.00'	1,750 cf	Rock Chamber (Prismatic)Listed below (Recalc) 5,000 cf Overall x 35.0% Voids						
		80,897 cf	Total Available Storage						
Elevation	Surf.Aı	rea Perim.	Inc.Store Cum.Store Wet.Area						
(feet)	(sq	-ft) (feet)	(cubic-feet) (cubic-feet) (sq-ft)						

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
221.50	16,108	696.8	0	Ô	16,108
222.50	17,511	717.0	16,805	16,805	18,488
223.50	18,943	738.5	18,222	35,027	21,082
224.50	20,410	754.7	19,672	54,699	23,147
225.50	21,919	770.9	21,160	75,859	25,257
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
220.00	21,919	770.9	0	0	21,919
221.50	21,919	770.9	32,879	32,879	23,075
Elevation	Surf.Area	Inc.St	ore Cum.S	tore	
(feet)	(sq-ft)	(cubic-fe	eet) (cubic-fe	eet)	
219.00	5,000		0	0	
220.00	5,000	5,0	000 5,	000	

Type IA 24-hr 05-5 Year Rainfall=2.86"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 357

Device	Routing	Invert	Outlet Devices			
#1	Primary	219.00'	24.0" Round 24" Pipe			
	•		L= 100.0' CPP, mitered to conform to fill, Ke= 0.700			
			Inlet / Outlet Invert= 219.00' / 218.80' S= 0.0020 '/' Cc= 0.900			
			n= 0.010, Flow Area= 3.14 sf			
#2	Device 1	219.00'	2.000 in/hr 4" Perf Pipes over Surface area			
#3	Device 1	221.85'	6.0" Vert. 2x6" Orifice X 2.00 C= 0.600			
			Limited to weir flow at low heads			
#4	Device 1	222.78'	6.0" Vert. 6" Orifice C= 0.600 Limited to weir flow at low heads			
#5	Device 1	222.95'	6.0" Vert. 6" Orifice C= 0.600 Limited to weir flow at low heads			
#6	Device 1	223.25'	4.0" Vert. 4" Orifice C= 0.600 Limited to weir flow at low heads			
#7	Device 1	223.55'	4.0" Vert. 4" Orifice C= 0.600 Limited to weir flow at low heads			
#8	Device 1	223.77'	4.0" Vert. 2x4" Orifice X 2.00 C= 0.600			
			Limited to weir flow at low heads			
#9	Device 1	224.35'	48.0" x 48.0" Horiz. 48" Overflow C= 0.600			
			Limited to weir flow at low heads			

Primary OutFlow Max=4.82 cfs @ 8.93 hrs HW=223.25' TW=0.00' (Dynamic Tailwater)

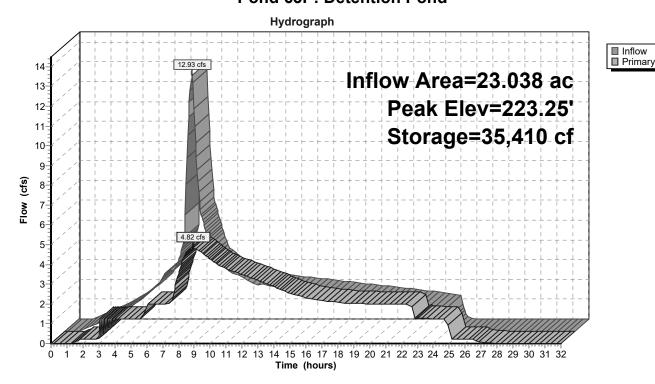
-1=24" Pipe (Passes 4.82 cfs of 24.07 cfs potential flow)

-2=4" Perf Pipes (Exfiltration Controls 2.11 cfs)

-3=2x6" Orifice (Orifice Controls 2.03 cfs @ 5.17 fps)

-4=6" Orifice (Orifice Controls 0.45 cfs @ 2.34 fps)

-5=6" Orifice (Orifice Controls 0.23 cfs @ 1.87 fps)


-6=4" Orifice (Orifice Controls 0.00 cfs @ 0.14 fps)

-7=4" Orifice (Controls 0.00 cfs)

-8=2x4" Orifice (Controls 0.00 cfs)

-9=48" Overflow (Controls 0.00 cfs)

Pond 63P: Detention Pond

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Printed 9/6/2023

Page 358

Time span=0.00-32.00 hrs, dt=0.05 hrs, 641 points
Runoff by SBUH method, Split Pervious/Imperv.
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Reden	rodding by byn-otor-i	nd method - 1 ond rodding by byn-otol-ind method
Subcatchment64S	Home Basin 20	Runoff Area=9,940 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.15 cfs 0.050 af
Subcatchment65S	Single Pond Existin Flow Length=1,526'	g Runoff Area=23.038 ac 0.00% Impervious Runoff Depth>2.24" Slope=0.0076 '/' Tc=73.0 min CN=89/0 Runoff=6.26 cfs 4.295 af
Subcatchment67S	Home Basin 19	Runoff Area=17,197 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.25 cfs 0.086 af
Subcatchment68S	Home Basin 12	Runoff Area=18,133 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.27 cfs 0.091 af
Subcatchment69S:	: Home Basin 17	Runoff Area=16,661 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.25 cfs 0.083 af
Subcatchment70S:	: Home Basin 18	Runoff Area=11,596 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.17 cfs 0.058 af
Subcatchment71S:	: Home Basin 14	Runoff Area=16,444 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.24 cfs 0.082 af
Subcatchment72S:	: Home Basin 16	Runoff Area=20,310 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.30 cfs 0.101 af
Subcatchment73S:	: Home Basin 13	Runoff Area=10,807 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.16 cfs 0.054 af
Subcatchment74S	Swale Existing Flow Length=105'	Runoff Area=0.168 ac
Subcatchment75S	Home Basin 11	Runoff Area=18,483 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.27 cfs 0.092 af
Subcatchment77S	Home Basin 15	Runoff Area=12,503 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.18 cfs 0.062 af
Subcatchment78S:	: Single Pond	Runoff Area=21,919 sf 100.00% Impervious Runoff Depth=3.14" Tc=0.0 min CN=0/98 Runoff=0.40 cfs 0.132 af
Subcatchment79S:	: Home Basin 30	Runoff Area=38,416 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.57 cfs 0.192 af
Subcatchment80S	Home Basin 10	Runoff Area=14,789 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.22 cfs 0.074 af
Subcatchment81S:	Home Basin 9	Runoff Area=15,575 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.23 cfs 0.078 af

Printed 9/6/2023

9-6-23 HydroCAD DOMPrepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Type IA 24-hr 10-10 Year Rainfall=3.37"

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD®	droCAD Software Solutions LLC Page 359
Subcatchment82S: Home Basin 2	Runoff Area=20,667 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.30 cfs 0.103 af
Subcatchment83S: Home Basin 7	Runoff Area=17,032 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.25 cfs 0.085 af
Subcatchment84S: Home Basin 8	Runoff Area=11,668 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.17 cfs 0.058 af
Subcatchment85S: Home Basin 29	Runoff Area=25,118 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.37 cfs 0.125 af
Subcatchment86S: Home Basin 22	Runoff Area=16,159 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.24 cfs 0.081 af
Subcatchment87S: Home Basin 27	Runoff Area=24,839 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.37 cfs 0.124 af
Subcatchment88S: Home Basin 28	Runoff Area=25,318 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.37 cfs 0.126 af
Subcatchment89S: Home Basin 24	Runoff Area=20,676 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.30 cfs 0.103 af
Subcatchment90S: Home Basin 26	Runoff Area=14,135 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.21 cfs 0.071 af
Subcatchment91S: Home Basin 23	Runoff Area=12,271 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.18 cfs 0.061 af
Subcatchment92S: Home Basin 21	Runoff Area=27,019 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.40 cfs 0.135 af
Subcatchment93S: Home Basin 25	Runoff Area=17,012 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.25 cfs 0.085 af
Subcatchment94S: Home Basin 4	Runoff Area=19,535 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.29 cfs 0.098 af
Subcatchment95S: Home Basin 31	Runoff Area=24,883 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.37 cfs 0.124 af
Subcatchment96S: Basin 1	Runoff Area=15,045 sf 100.00% Impervious Runoff Depth=3.14" Tc=10.0 min CN=0/98 Runoff=0.26 cfs 0.090 af
Subcatchment97S: Basin 2	Runoff Area=19,824 sf 100.00% Impervious Runoff Depth=3.14" Tc=10.0 min CN=0/98 Runoff=0.34 cfs 0.119 af
Subcatchment98S: Basin 3	Runoff Area=23,416 sf 100.00% Impervious Runoff Depth=3.14" Tc=10.0 min CN=0/98 Runoff=0.40 cfs 0.141 af

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC
HydroCAD® 10.20-2g s/n 04993 © 2022 Hydro

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 360

Subcatchment99S: Home Basin 6

Runoff Area=25,997 sf 0.00% Impervious Runoff Depth=2.61"

Tc=10.0 min CN=93/0 Runoff=0.38 cfs 0.130 af

Subcatchment100S: Basin 4

Runoff Area=3,650 sf 100.00% Impervious Runoff Depth=3.14"

Tc=10.0 min CN=0/98 Runoff=0.06 cfs 0.022 af

Subcatchment101S: Basin 5 Runoff Area=3,523 sf 100.00% Impervious Runoff Depth=3.14" Tc=10.0 min CN=0/98 Runoff=0.06 cfs 0.021 af

Subcatchment102S: Home Basin 3 Runoff Area=19,559 sf 0.00% Impervious Runoff Depth=2.61" Tc=10.0 min CN=93/0 Runoff=0.29 cfs 0.098 af

Subcatchment103S: Home Basin 1 Runoff Area=22,288 sf 0.00% Impervious Runoff Depth=2.61"

Tc=10.0 min CN=93/0 Runoff=0.33 cfs 0.111 af

Subcatchment104S: Home Basin 5Runoff Area=33,512 sf 0.00% Impervious Runoff Depth=2.61"
Tc=10.0 min CN=93/0 Runoff=0.49 cfs 0.167 af

Subcatchment105S: Basin 6 Runoff Area=8,965 sf 100.00% Impervious Runoff Depth=3.14"

Tc=10.0 min CN=0/98 Runoff=0.15 cfs 0.054 af

Subcatchment107S: Basin 8 Runoff Area=8,177 sf 100.00% Impervious Runoff Depth=3.14"

Tc=10.0 min CN=0/98 Runoff=0.14 cfs 0.049 af

Subcatchment108S: Basin 9 Runoff Area=13,130 sf 100.00% Impervious Runoff Depth=3.14" Tc=10.0 min CN=0/98 Runoff=0.23 cfs 0.079 af

Subcatchment109S: Basin 10 Runoff Area=22,902 sf 100.00% Impervious Runoff Depth=3.14"

Tc=10.0 min CN=0/98 Runoff=0.39 cfs 0.137 af

Subcatchment110S: Basin 11 Runoff Area=25,748 sf 100.00% Impervious Runoff Depth=3.14" Tc=10.0 min CN=0/98 Runoff=0.44 cfs 0.155 af

Subcatchment111S: Basin 12 Runoff Area=5,562 sf 100.00% Impervious Runoff Depth=3.14" Tc=10.0 min CN=0/98 Runoff=0.10 cfs 0.033 af

Subcatchment112S: Basin 13 Runoff Area=4,702 sf 100.00% Impervious Runoff Depth=3.14" Tc=10.0 min CN=0/98 Runoff=0.08 cfs 0.028 af

Subcatchment113S: Basin 14 Runoff Area=7,669 sf 100.00% Impervious Runoff Depth=3.14" Tc=10.0 min CN=0/98 Runoff=0.13 cfs 0.046 af

Subcatchment114S: Basin 15Runoff Area=7,261 sf 100.00% Impervious Runoff Depth=3.14"

Tc=10.0 min CN=0/98 Runoff=0.12 cfs 0.044 af

Subcatchment115S: Basin 16 Runoff Area=7,066 sf 100.00% Impervious Runoff Depth=3.14"

Tc=10.0 min CN=0/98 Runoff=0.12 cfs 0.042 af

Subcatchment116S: Basin 17 Runoff Area=26,003 sf 100.00% Impervious Runoff Depth=3.14" Tc=10.0 min CN=0/98 Runoff=0.45 cfs 0.156 af

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Printed 9/6/2023

Page 361

Subcatchment117S: Basin 18 Runoff Area=23,761 sf 100.00% Impervious Runoff Depth=3.14" Tc=10.0 min CN=0/98 Runoff=0.41 cfs 0.143 af

Subcatchment118S: Basin 19 Runoff Area=7,309 sf 100.00% Impervious Runoff Depth=3.14" Tc=10.0 min CN=0/98 Runoff=0.13 cfs 0.044 af

Subcatchment119S: Basin 20Runoff Area=7,535 sf 100.00% Impervious Runoff Depth=3.14"

Tc=10.0 min CN=0/98 Runoff=0.13 cfs 0.045 af

Subcatchment120S: Basin 21 Runoff Area=6,846 sf 100.00% Impervious Runoff Depth=3.14"

Tc=10.0 min CN=0/98 Runoff=0.12 cfs 0.041 af

Subcatchment121S: Basin 22 Runoff Area=5,182 sf 100.00% Impervious Runoff Depth=3.14"

Tc=10.0 min CN=0/98 Runoff=0.09 cfs 0.031 af

Subcatchment122S: Basin 23 Runoff Area=5,456 sf 100.00% Impervious Runoff Depth=3.14" Tc=10.0 min CN=0/98 Runoff=0.09 cfs 0.033 af

Subcatchment123S: Basin 24Runoff Area=4,510 sf 100.00% Impervious Runoff Depth=3.14"

Tc=10.0 min CN=0/98 Runoff=0.08 cfs 0.027 af

Subcatchment124S: Basin 25Runoff Area=13,271 sf 100.00% Impervious Runoff Depth=3.14"

Tc=10.0 min CN=0/98 Runoff=0.23 cfs 0.080 af

Subcatchment125S: Basin 26 Runoff Area=18,452 sf 100.00% Impervious Runoff Depth=3.14" Tc=10.0 min CN=0/98 Runoff=0.32 cfs 0.111 af

Subcatchment126S: Alley Basin 1 Runoff Area=9,860 sf 100.00% Impervious Runoff Depth=3.14"

Tc=10.0 min CN=0/98 Runoff=0.17 cfs 0.059 af

Subcatchment127S: Alley Basin 2 Runoff Area=7,461 sf 100.00% Impervious Runoff Depth=3.14" Tc=10.0 min CN=0/98 Runoff=0.13 cfs 0.045 af

Subcatchment128S: Alley Basin 3 Runoff Area=6,782 sf 100.00% Impervious Runoff Depth=3.14" Tc=10.0 min CN=0/98 Runoff=0.12 cfs 0.041 af

Subcatchment129S: Alley Basin 4 Runoff Area=6,970 sf 100.00% Impervious Runoff Depth=3.14" Tc=10.0 min CN=0/98 Runoff=0.12 cfs 0.042 af

Subcatchment168S: Future Lots

Runoff Area=64,223 sf 37.85% Impervious Runoff Depth=2.81"

Tc=10.0 min CN=93/98 Runoff=1.01 cfs 0.345 af

Subcatchment169S: Swale 2 Runoff Area=67 sf 100.00% Impervious Runoff Depth=3.14"

Tc=0.0 min CN=0/98 Runoff=0.00 cfs 0.000 af

Subcatchment170S: Swale 1 Runoff Area=72 sf 100.00% Impervious Runoff Depth=3.14"

Tc=0.0 min CN=0/98 Runoff=0.00 cfs 0.000 af

Reach 39R: Post-ConstructionPeak Flow Inflow=6.31 cfs 5.421 af Outflow=6.31 cfs 5.421 af

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC	Printed 9/6/2023 Page 362
Reach 42R: Pre-ConstructionPeak Flow	Inflow=6.32 cfs 4.326 af Outflow=6.32 cfs 4.326 af
Reach 58R: 1	Inflow=6.31 cfs 5.421 af Outflow=6.31 cfs 5.421 af
Reach 85R: 1	Inflow=6.26 cfs 5.377 af Outflow=6.26 cfs 5.377 af
Reach 130R: 1	Inflow=2.68 cfs 0.918 af Outflow=2.68 cfs 0.918 af
Reach 131R: 1	Inflow=2.68 cfs 0.918 af Outflow=2.68 cfs 0.918 af
Reach 132R: 1	Inflow=1.54 cfs 0.526 af Outflow=1.54 cfs 0.526 af
Reach 133R: 1	Inflow=0.26 cfs 0.090 af Outflow=0.26 cfs 0.090 af
Reach 134R: 1	Inflow=12.32 cfs 4.216 af Outflow=12.32 cfs 4.216 af
Reach 135R: 1	Inflow=2.08 cfs 0.710 af Outflow=2.08 cfs 0.710 af
Reach 136R: 1	Inflow=1.18 cfs 0.404 af Outflow=1.18 cfs 0.404 af
Reach 137R: 1	Inflow=0.72 cfs 0.249 af Outflow=0.72 cfs 0.249 af
Reach 138R: 1	Inflow=0.32 cfs 0.113 af Outflow=0.32 cfs 0.113 af
Reach 139R: 1	Inflow=10.02 cfs 3.429 af Outflow=10.02 cfs 3.429 af
Reach 140R: 1	Inflow=0.17 cfs 0.059 af Outflow=0.17 cfs 0.059 af
Reach 141R: 1	Inflow=0.13 cfs 0.045 af Outflow=0.13 cfs 0.045 af
Reach 142R: 1	Inflow=9.50 cfs 3.252 af Outflow=9.50 cfs 3.252 af
Reach 143R: 1	Inflow=1.93 cfs 0.661 af Outflow=1.93 cfs 0.661 af

9-6-23 HydroCAD DOMPrepared by A&O Engineering LLC

Type IA 24-hr 10-10 Year Rainfall=3.37"

9-6-23 HydroCAD DOM	Type IA 24-fir TO-TO Year Rainfall=3.37
Prepared by A&O Engineering LLC	Printed 9/6/2023
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Sc	olutions LLC Page 363
	_
Reach 144R: 1	Inflow=1.38 cfs 0.473 af
	Outflow=1.38 cfs 0.473 af
Reach 145R: 1	Inflow=1.38 cfs 0.473 af
	Outflow=1.38 cfs 0.473 af
Reach 146R: 1	Inflow=7.57 cfs 2.591 af
	Outflow=7.57 cfs 2.591 af
Reach 147R: 1	Inflow=0.12 cfs 0.041 af
	Outflow=0.12 cfs 0.041 af
	Oddinom 0.12 010 0.011 di
Reach 148R: 1	Inflow=7.45 cfs 2.550 af
Neach 14011. 1	Outflow=7.45 cfs 2.550 af
	Odtilow-7.43 613 2.330 al
Reach 149R: 1	Inflow=1.89 cfs 0.646 af
Reach 145K. I	Outflow=1.89 cfs 0.646 af
	Outhow-1.09 cis 0.040 at
Decel 450D: 4	Inflow=1,28 cfs 0,438 af
Reach 150R: 1	
	Outflow=1.28 cfs 0.438 af
D b 454D. 4	Inflame 0.00 at . 0.007 at
Reach 151R: 1	Inflow=0.98 cfs 0.337 af
	Outflow=0.98 cfs 0.337 af
D 1 450D 4	
Reach 152R: 1	Inflow=5.20 cfs 1.781 af
	Outflow=5.20 cfs 1.781 af
Reach 153R: 1	Inflow=0.12 cfs 0.042 af
	Outflow=0.12 cfs 0.042 af
Reach 154R: 1	Inflow=5.08 cfs 1.739 af
	Outflow=5.08 cfs 1.739 af
Reach 155R: 1	Inflow=1.79 cfs 0.612 af
	Outflow=1.79 cfs 0.612 af
Reach 158R: 1	Inflow=10.24 cfs 3.506 af
	Outflow=10.24 cfs 3.506 af
Reach 159R: 1	Inflow=9.89 cfs 3.384 af
	Outflow=9.89 cfs 3.384 af
Reach 160R: 1	Inflow=1.24 cfs 0.423 af
	Outflow=1.24 cfs 0.423 af
Reach 162R: 1	Inflow=2.96 cfs 1.011 af
	Outflow=2.96 cfs 1.011 af
Reach 163R: 1	Inflow=2.88 cfs 0.984 af
	Outflow=2.88 cfs 0.984 af

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 364

Reach 165R: 1 Inflow=1.03 cfs 0.352 af

Outflow=1.03 cfs 0.352 af

Reach 166R: Basin Future Inflow=1.01 cfs 0.345 af

Outflow=1.01 cfs 0.345 af

Pond 54P: Stormwater Swale 2 Peak Elev=222.42' Storage=32 cf Inflow=0.06 cfs 0.022 af

Outflow=0.06 cfs 0.022 af

Pond 60P: Stormwater Swale 1 Peak Elev=222.07' Storage=34 cf Inflow=0.06 cfs 0.022 af

Outflow=0.06 cfs 0.022 af

Pond 63P: Detention Pond Peak Elev=223.70' Storage=43,960 cf Inflow=15.71 cfs 5.378 af

Outflow=6.26 cfs 5.377 af

Total Runoff Area = 46.412 ac Runoff Volume = 9.748 af Average Runoff Depth = 2.52" 81.58% Pervious = 37.863 ac 18.42% Impervious = 8.549 ac

Type IA 24-hr 10-10 Year Rainfall=3.37"

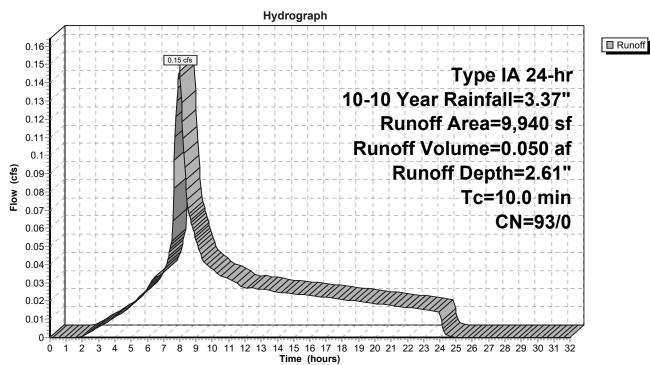
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 365

Summary for Subcatchment 64S: Home Basin 20


Runoff = 0.15 cfs @ 7.98 hrs, Volume= 0.050 af, Depth= 2.61"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

	Α	rea (sf)	CN	Description	Pescription					
*		9,940	93	70% Lot Coverage Weighted						
		9,940	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	10.0	(.501)	(10/10)	(.2000)	(010)	Direct Entry,				

Subcatchment 64S: Home Basin 20

Type IA 24-hr 10-10 Year Rainfall=3.37"

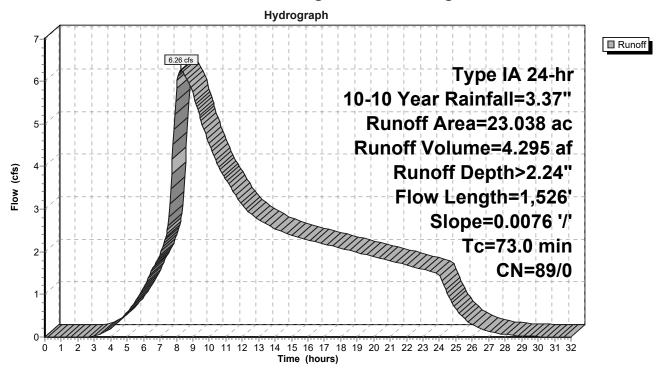
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 366

Summary for Subcatchment 65S: Single Pond Existing Conditions


Runoff = 6.26 cfs @ 8.29 hrs, Volume= 4.295 af, Depth> 2.24"

Routed to Reach 42R: Pre-Construction Peak Flow

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Area	(ac) C	N Des	cription		
23.038 89 Pasture/grassland/range, Poor, HSG D						
23.038 89 100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	39.5	300	0.0076	0.13	, ,	Sheet Flow,
	33.5	1,226	0.0076	0.61		Grass: Short n= 0.150 P2= 2.47" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	73.0	1,526	Total			

Subcatchment 65S: Single Pond Existing Conditions

Type IA 24-hr 10-10 Year Rainfall=3.37"

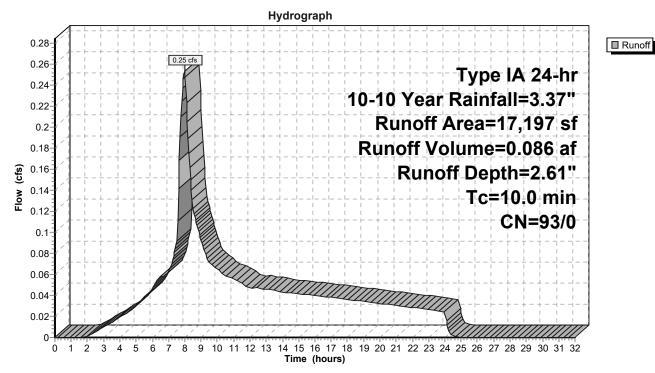
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 367

Summary for Subcatchment 67S: Home Basin 19


Runoff = 0.25 cfs @ 7.98 hrs, Volume= 0.086 af, Depth= 2.61"

Routed to Reach 159R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description					
*		17,197	93	70% Lot Coverage Weighted					
		17,197	93	100.00% Pervious Area					
		Length	Slope	,	. ,	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 67S: Home Basin 19

Type IA 24-hr 10-10 Year Rainfall=3.37"

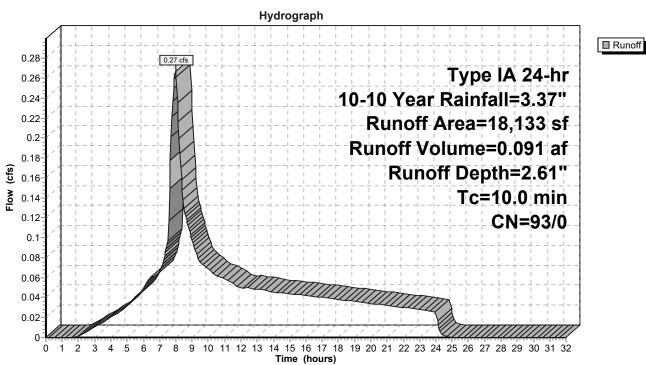
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 368

Summary for Subcatchment 68S: Home Basin 12


Runoff = 0.27 cfs @ 7.98 hrs, Volume= 0.091 af, Depth= 2.61"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

Α	rea (sf)	CN I	Description					
*	18,133	93	70% Lot Coverage Weighted					
	18,133	93	100.00% Pervious Area					
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)						
10.0	•				Direct Entry			

Subcatchment 68S: Home Basin 12

Type IA 24-hr 10-10 Year Rainfall=3.37"

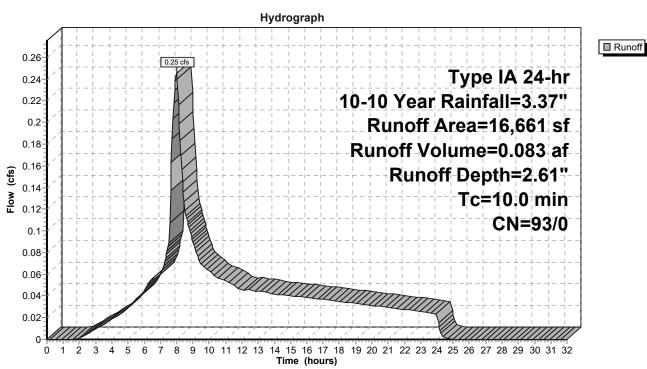
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 369

Summary for Subcatchment 69S: Home Basin 17


Runoff = 0.25 cfs @ 7.98 hrs, Volume= 0.083 af, Depth= 2.61"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN [Description						
*		16,661	93 7	70% Lot Coverage Weighted						
		16,661	93 1	100.00% Pervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 69S: Home Basin 17

Type IA 24-hr 10-10 Year Rainfall=3.37"

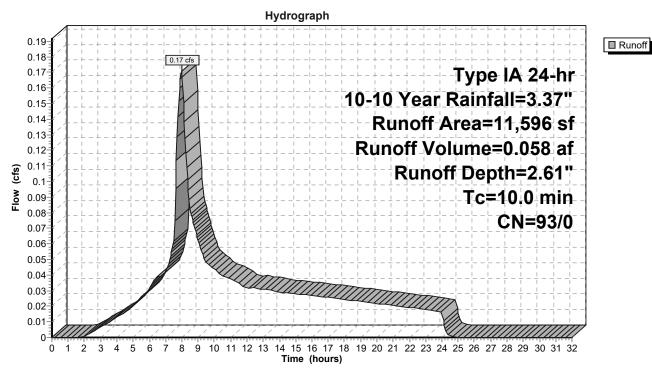
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 370

Summary for Subcatchment 70S: Home Basin 18


Runoff = 0.17 cfs @ 7.98 hrs, Volume= 0.058 af, Depth= 2.61"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description					
*		11,596	93	70% Lot Coverage Weighted					
		11,596	93	100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
	10.0					Direct Entry,			

Subcatchment 70S: Home Basin 18

Type IA 24-hr 10-10 Year Rainfall=3.37"

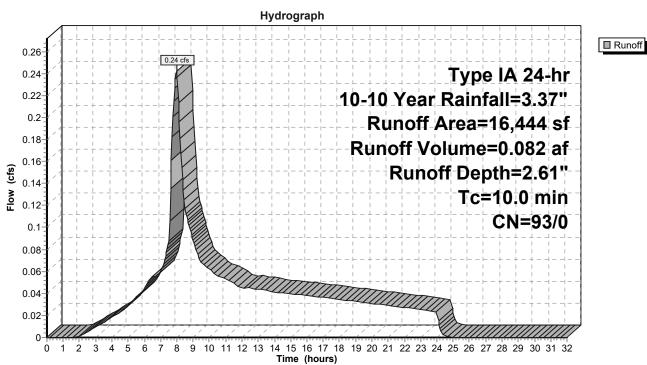
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 371

Summary for Subcatchment 71S: Home Basin 14


Runoff = 0.24 cfs @ 7.98 hrs, Volume= 0.082 af, Depth= 2.61"

Routed to Reach 148R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description					
*		16,444	93	70% Lot Coverage Weighted					
		16,444	93	100.00% Pervious Area					
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 71S: Home Basin 14

Type IA 24-hr 10-10 Year Rainfall=3.37"

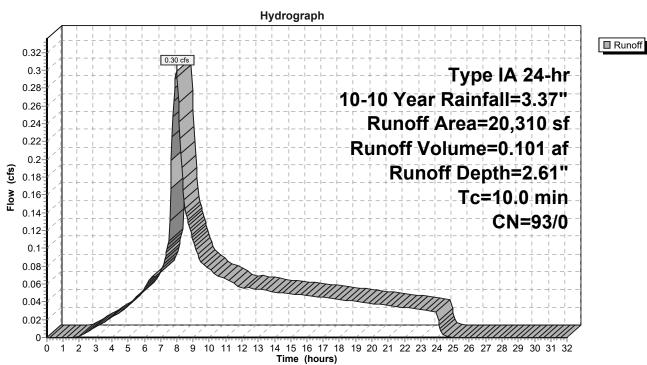
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 372

Summary for Subcatchment 72S: Home Basin 16


Runoff = 0.30 cfs @ 7.98 hrs, Volume= 0.101 af, Depth= 2.61"

Routed to Reach 150R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description					
*		20,310	93	70% Lot Coverage Weighted					
_		20,310	93	100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
_	10.0	•	•			Direct Entry,			

Subcatchment 72S: Home Basin 16

Type IA 24-hr 10-10 Year Rainfall=3.37"

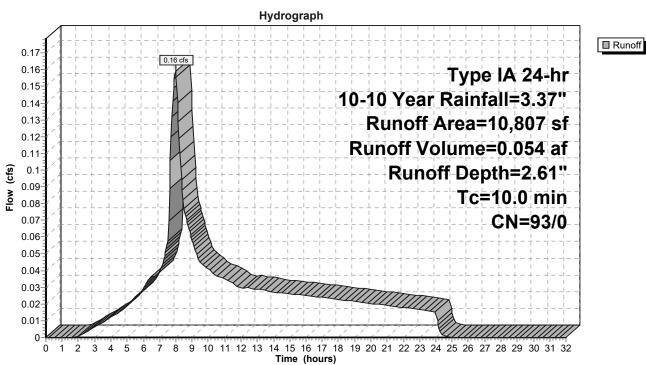
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 373

Summary for Subcatchment 73S: Home Basin 13


Runoff = 0.16 cfs @ 7.98 hrs, Volume= 0.054 af, Depth= 2.61"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description					
*		10,807	93	70% Lot Coverage Weighted					
_		10,807	93	100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
_	10.0	•	•			Direct Entry,			

Subcatchment 73S: Home Basin 13

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

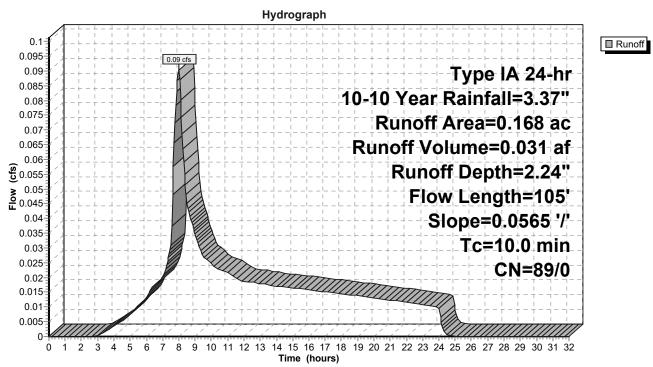
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 374

Summary for Subcatchment 74S: Swale Existing Conditions

Runoff = 0.09 cfs @ 7.99 hrs, Volume= 0.031 af, Depth= 2.24"


Routed to Reach 42R: Pre-Construction Peak Flow

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

Area (ac) CN Description								
0.	168 8	9 Past	ure/grassla	and/range,	Poor, HSG D			
0.168 89 100.00% Pervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
7.7	105	0.0565	0.23		Sheet Flow, Grass: Short	n= 0.150	P2= 2.47"	

7.7 105 Total, Increased to minimum Tc = 10.0 min

Subcatchment 74S: Swale Existing Conditions

Type IA 24-hr 10-10 Year Rainfall=3.37"

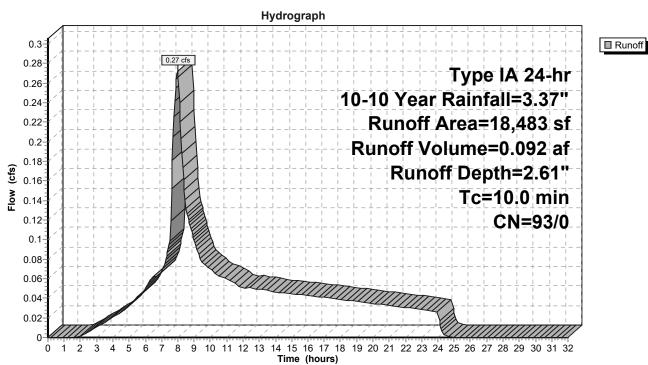
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 375

Summary for Subcatchment 75S: Home Basin 11


Runoff = 0.27 cfs @ 7.98 hrs, Volume= 0.092 af, Depth= 2.61"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description					
*		18,483	93	70% Lot Coverage Weighted					
		18,483	93	100.00% Pervious Area					
	Тс	3	Slope	•		Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 75S: Home Basin 11

Type IA 24-hr 10-10 Year Rainfall=3.37"

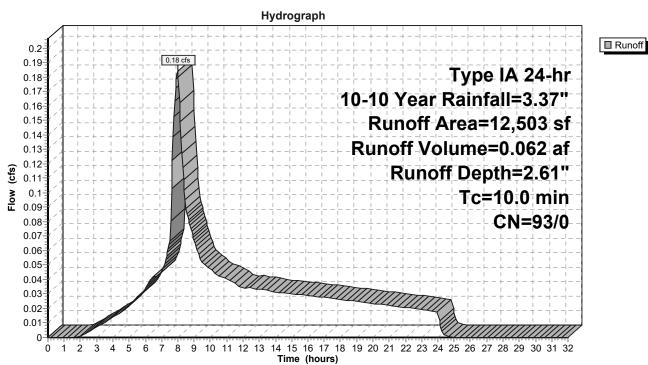
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 376

Summary for Subcatchment 77S: Home Basin 15


Runoff = 0.18 cfs @ 7.98 hrs, Volume= 0.062 af, Depth= 2.61"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description					
*		12,503	93	70% Lot Coverage Weighted					
		12,503	93	100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
_	10.0	, ,	, ,	, ,	, ,	Direct Entry,			

Subcatchment 77S: Home Basin 15

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

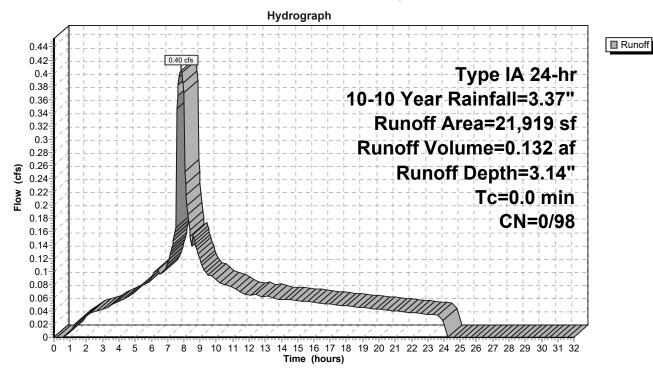
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 377

Summary for Subcatchment 78S: Single Pond

[46] Hint: Tc=0 (Instant runoff peak depends on dt)


Runoff = 0.40 cfs @ 7.80 hrs, Volume= 0.132 af, Depth= 3.14"

Routed to Pond 63P: Detention Pond

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

 Area (sf)	CN	Description
21,919	98	Water Surface, HSG D
21,919	98	100.00% Impervious Area

Subcatchment 78S: Single Pond

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 378

Summary for Subcatchment 79S: Home Basin 30


Runoff = 0.57 cfs @ 7.98 hrs, Volume= 0.192 af, Depth= 2.61"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description					
*		38,416	93	70% Lot Coverage Weighted					
		38,416	93 100.00% Pervious Area						
	Тс	Length	Slope	•		Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 79S: Home Basin 30

Type IA 24-hr 10-10 Year Rainfall=3.37"

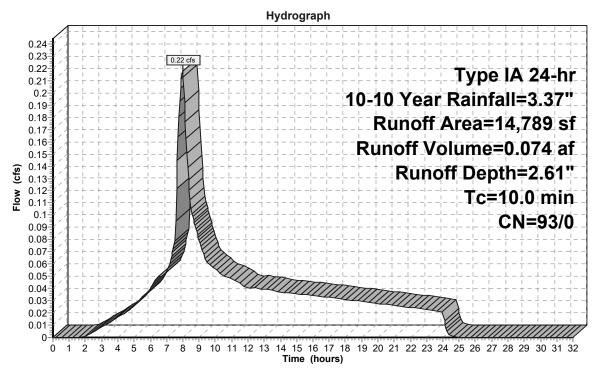
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 379

Summary for Subcatchment 80S: Home Basin 10


Runoff = 0.22 cfs @ 7.98 hrs, Volume= 0.074 af, Depth= 2.61"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

	Α	rea (sf)	CN	Description					
*		14,789	93	70% Lot Coverage Weighted					
		14,789	93	100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description			
_	10.0	,	, ,	,	, ,	Direct Entry,			

Subcatchment 80S: Home Basin 10

■ Runoff

Type IA 24-hr 10-10 Year Rainfall=3.37"

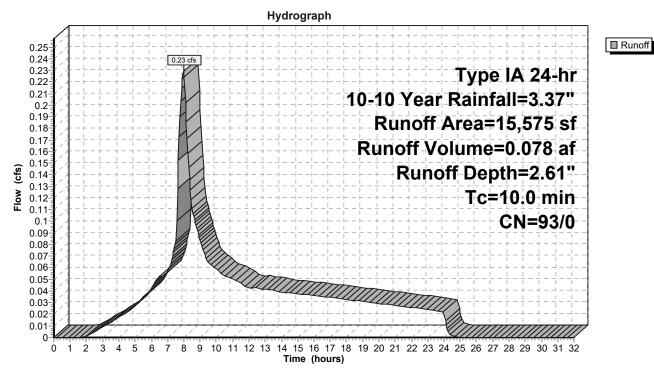
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 380

Summary for Subcatchment 81S: Home Basin 9


Runoff = 0.23 cfs @ 7.98 hrs, Volume= 0.078 af, Depth= 2.61"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description					
*		15,575	93	70% Lot Coverage Weighted					
		15,575	93	100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
	10.0	-				Direct Entry,			

Subcatchment 81S: Home Basin 9

Type IA 24-hr 10-10 Year Rainfall=3.37"

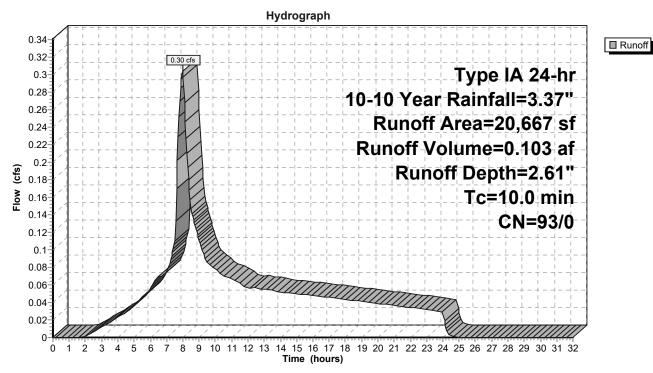
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 381

Summary for Subcatchment 82S: Home Basin 2


Runoff = 0.30 cfs @ 7.98 hrs, Volume= 0.103 af, Depth= 2.61"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description					
*	•	20,667	93	70% Lot Coverage Weighted					
_		20,667	93	100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
_	10.0					Direct Entry,			

Subcatchment 82S: Home Basin 2

Type IA 24-hr 10-10 Year Rainfall=3.37"

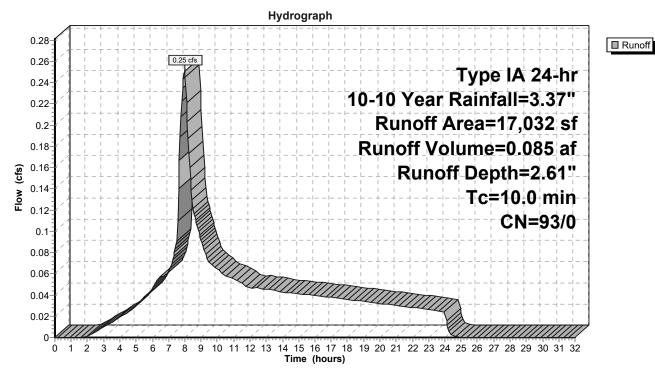
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 382

Summary for Subcatchment 83S: Home Basin 7


Runoff = 0.25 cfs @ 7.98 hrs, Volume= 0.085 af, Depth= 2.61"

Routed to Reach 154R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description						
*		17,032	93	70% Lot Coverage Weighted						
		17,032	93	100.00% Pervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0	•		•	•	Direct Entry				

Subcatchment 83S: Home Basin 7

Type IA 24-hr 10-10 Year Rainfall=3.37"

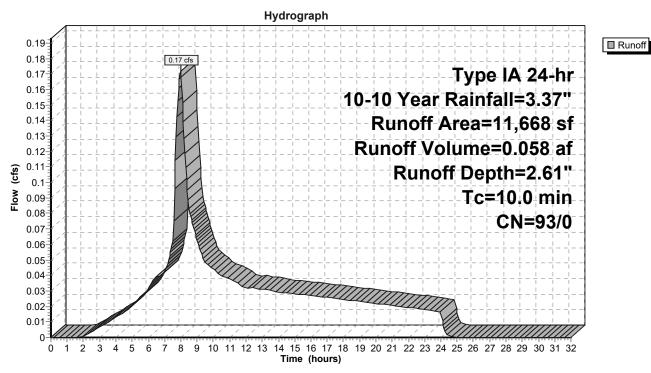
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 383

Summary for Subcatchment 84S: Home Basin 8


Runoff = 0.17 cfs @ 7.98 hrs, Volume= 0.058 af, Depth= 2.61"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description						
*		11,668	93	70% Lot Co	70% Lot Coverage Weighted					
_		11,668	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
_	10.0		•			Direct Entry,				

Subcatchment 84S: Home Basin 8

Type IA 24-hr 10-10 Year Rainfall=3.37"

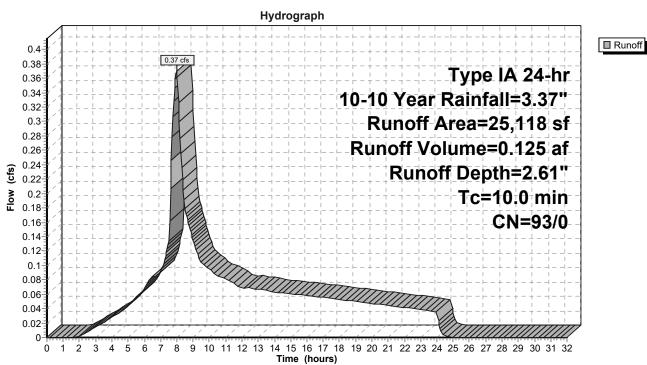
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 384

Summary for Subcatchment 85S: Home Basin 29


Runoff = 0.37 cfs @ 7.98 hrs, Volume= 0.125 af, Depth= 2.61"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

Α	rea (sf)	CN I	Description					
*	25,118	93	70% Lot Coverage Weighted					
	25,118	5,118 93 100.00% Pervious Area						
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/ft) (ft/sec) (cfs)					
10.0					Direct Entry			

Subcatchment 85S: Home Basin 29

Type IA 24-hr 10-10 Year Rainfall=3.37"

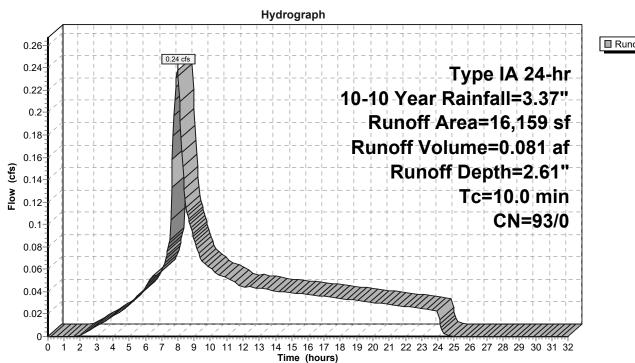
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 385

Summary for Subcatchment 86S: Home Basin 22


Runoff 0.24 cfs @ 7.98 hrs, Volume= 0.081 af, Depth= 2.61"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN I	Description					
*		16,159	93	70% Lot Coverage Weighted					
		16,159	93	100.00% Pervious Area					
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 86S: Home Basin 22

■ Runoff

Type IA 24-hr 10-10 Year Rainfall=3.37"

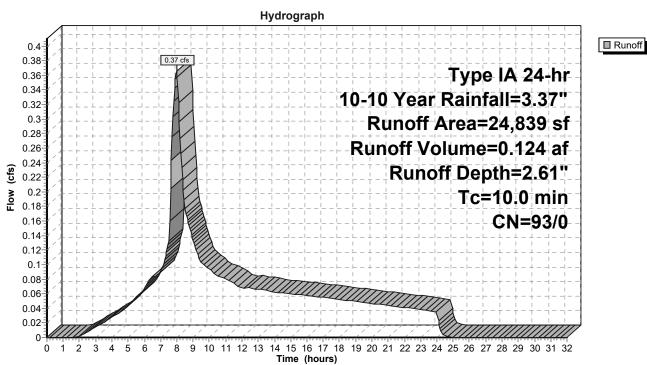
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 386

Summary for Subcatchment 87S: Home Basin 27


Runoff = 0.37 cfs @ 7.98 hrs, Volume= 0.124 af, Depth= 2.61"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description					
*	•	24,839	93	70% Lot Coverage Weighted					
		24,839	93	100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
_	10.0	•		•	,	Direct Entry,			

Subcatchment 87S: Home Basin 27

Type IA 24-hr 10-10 Year Rainfall=3.37"

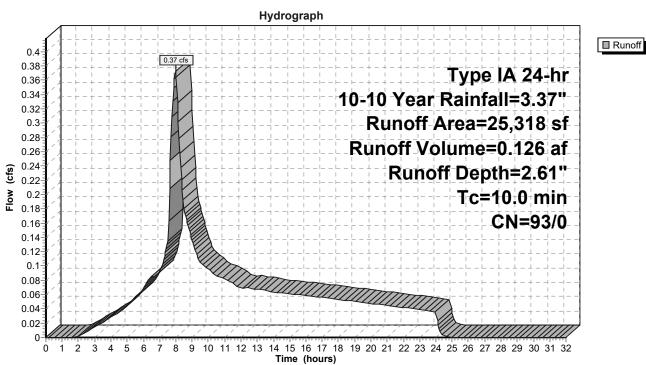
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 387

Summary for Subcatchment 88S: Home Basin 28


Runoff = 0.37 cfs @ 7.98 hrs, Volume= 0.126 af, Depth= 2.61"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description					
*		25,318	93	70% Lot Coverage Weighted					
		25,318	93	100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
_	10.0	(1001)	(14/15)	(1200)	(3.5)	Direct Entry			

Subcatchment 88S: Home Basin 28

Type IA 24-hr 10-10 Year Rainfall=3.37"

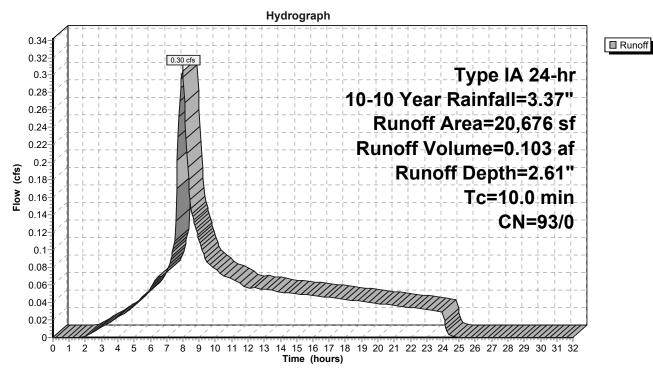
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 388

Summary for Subcatchment 89S: Home Basin 24


Runoff = 0.30 cfs @ 7.98 hrs, Volume= 0.103 af, Depth= 2.61"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description					
*		20,676	93	70% Lot Coverage Weighted					
		20,676	93	100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
-	10.0	(,	(14,11)	(1200)	(3.5)	Direct Entry			

Subcatchment 89S: Home Basin 24

Type IA 24-hr 10-10 Year Rainfall=3.37"

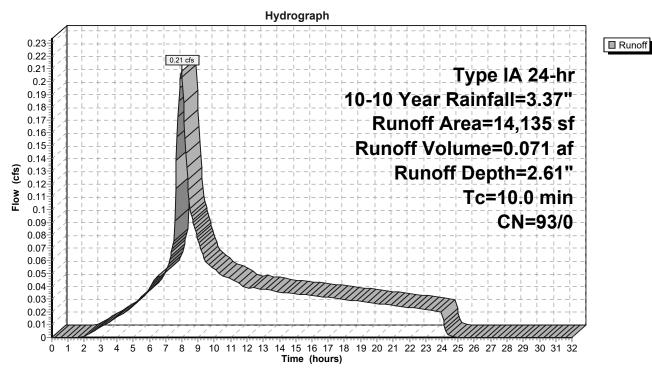
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 389

Summary for Subcatchment 90S: Home Basin 26


Runoff = 0.21 cfs @ 7.98 hrs, Volume= 0.071 af, Depth= 2.61"

Routed to Reach 136R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

	Α	rea (sf)	CN	Description					
	*	14,135	93	70% Lot Coverage Weighted					
-		14,135	93	100.00% Pervious Area					
	Тс	Length	Slope	e Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	,	(cfs)	'			
•	10.0	•				Direct Entry			

Subcatchment 90S: Home Basin 26

Type IA 24-hr 10-10 Year Rainfall=3.37"

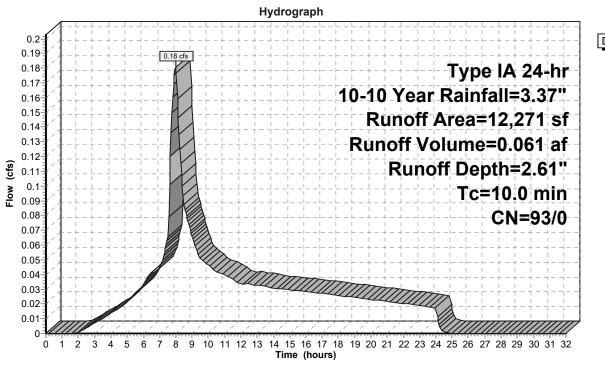
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 390

Summary for Subcatchment 91S: Home Basin 23


Runoff = 0.18 cfs @ 7.98 hrs, Volume= 0.061 af, Depth= 2.61"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

	Α	rea (sf)	CN	Description					
*		12,271	93	70% Lot Coverage Weighted					
_		12,271	93	100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description			
_	10.0			, ,	· /	Direct Entry,			

Subcatchment 91S: Home Basin 23

■ Runoff

Type IA 24-hr 10-10 Year Rainfall=3.37"

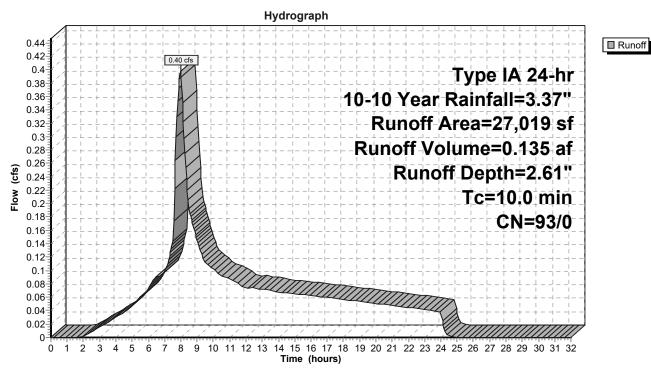
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 391

Summary for Subcatchment 92S: Home Basin 21


Runoff = 0.40 cfs @ 7.98 hrs, Volume= 0.135 af, Depth= 2.61"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

	Α	rea (sf)	CN	Description						
*		27,019	93	70% Lot Coverage Weighted						
		27,019	019 93 100.00% Pervious Area							
	Тс	3	Slope	,	. ,	Description				
_	(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 92S: Home Basin 21

Type IA 24-hr 10-10 Year Rainfall=3.37"

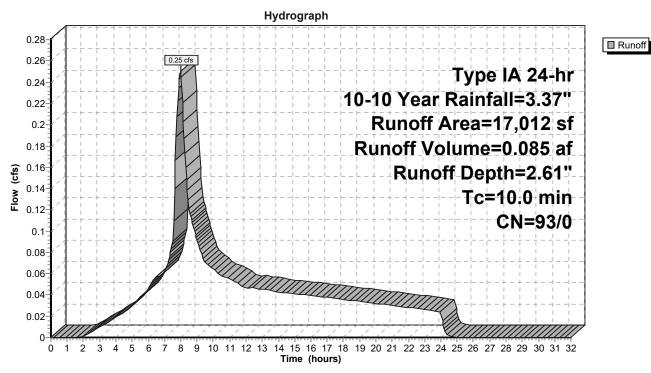
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 392

Summary for Subcatchment 93S: Home Basin 25


Runoff = 0.25 cfs @ 7.98 hrs, Volume= 0.085 af, Depth= 2.61"

Routed to Reach 136R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

	Α	rea (sf)	CN I	Description						
*		17,012	93	70% Lot Coverage Weighted						
		17,012	93	100.00% Pervious Area						
			Slope	,	. ,	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 93S: Home Basin 25

Type IA 24-hr 10-10 Year Rainfall=3.37"

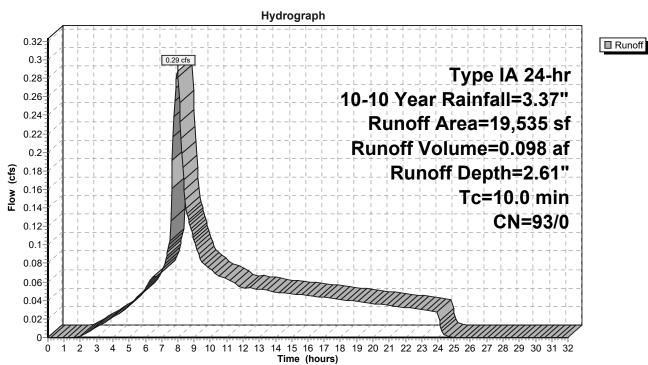
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 393

Summary for Subcatchment 94S: Home Basin 4


Runoff = 0.29 cfs @ 7.98 hrs, Volume= 0.098 af, Depth= 2.61"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description						
*		19,535	93	70% Lot Coverage Weighted						
		19,535	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0					Direct Entry,				

Subcatchment 94S: Home Basin 4

Type IA 24-hr 10-10 Year Rainfall=3.37"

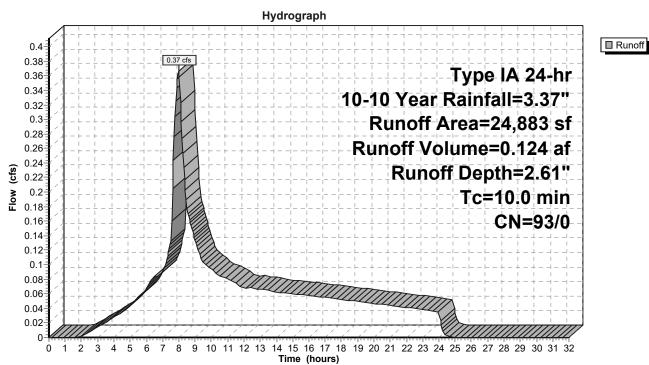
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 394

Summary for Subcatchment 95S: Home Basin 31


Runoff = 0.37 cfs @ 7.98 hrs, Volume= 0.124 af, Depth= 2.61"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description						
*	•	24,883	93	70% Lot Coverage Weighted						
_		24,883	93	100.00% Pervious Area						
_	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0					Direct Entry,				

Subcatchment 95S: Home Basin 31

Type IA 24-hr 10-10 Year Rainfall=3.37"

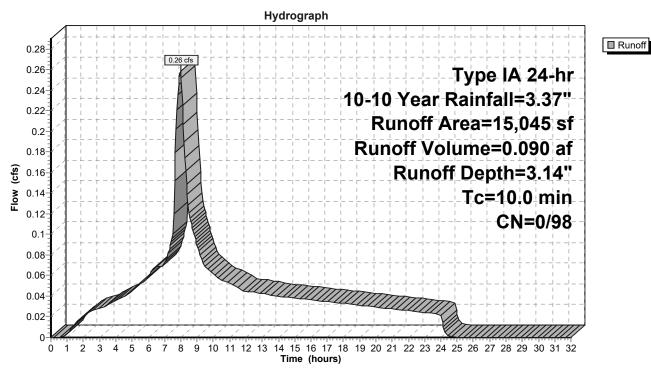
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 395

Summary for Subcatchment 96S: Basin 1


Runoff = 0.26 cfs @ 7.98 hrs, Volume= 0.090 af, Depth= 3.14"

Routed to Reach 133R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

Ar	ea (sf)	CN [Description						
	15,045	98 F	Paved roads w/curbs & sewers, HSG D						
	15,045 98 100.00% Impervious Area								
Tc (min)	Length (feet)	ength Slope Velocity Capacity Description							
10.0					Direct Entry,				

Subcatchment 96S: Basin 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

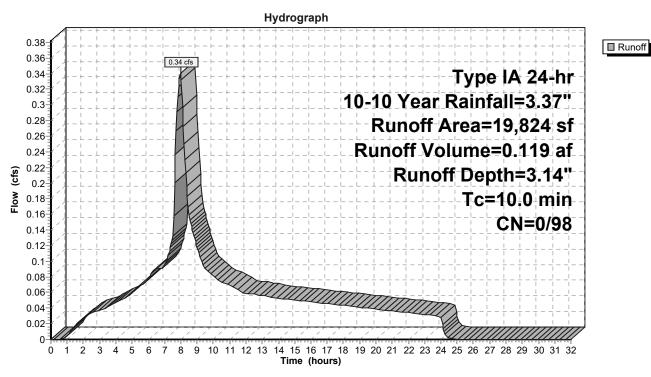
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 396

Summary for Subcatchment 97S: Basin 2


Runoff = 0.34 cfs @ 7.98 hrs, Volume= 0.119 af, Depth= 3.14"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

	Α	rea (sf)	CN	Description						
		19,824	98	Paved roads w/curbs & sewers, HSG D						
		19,824 98 100.00% Impervious Area								
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
_	10.0					Direct Entry,				

Subcatchment 97S: Basin 2

Type IA 24-hr 10-10 Year Rainfall=3.37"

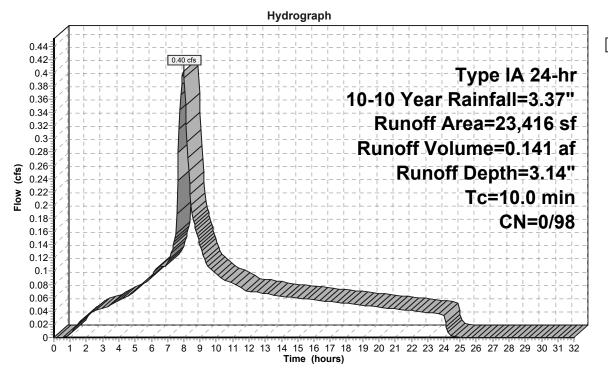
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 397

Summary for Subcatchment 98S: Basin 3


Runoff = 0.40 cfs @ 7.98 hrs, Volume= 0.141 af, Depth= 3.14"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

A	rea (sf)	CN [Description					
	23,416	98 F	Paved roads w/curbs & sewers, HSG D					
	23,416 98 100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)						
10.0					Direct Entry,			

Subcatchment 98S: Basin 3

Type IA 24-hr 10-10 Year Rainfall=3.37"

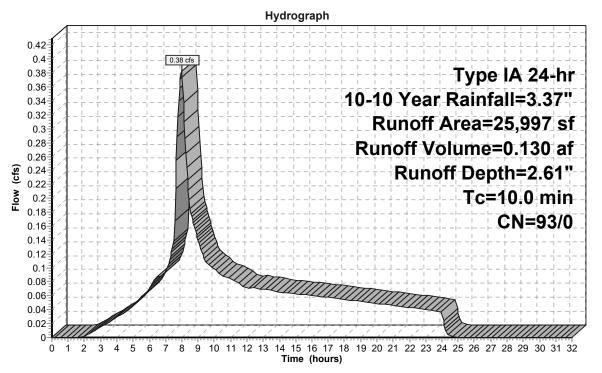
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 398

Summary for Subcatchment 99S: Home Basin 6


Runoff = 0.38 cfs @ 7.98 hrs, Volume= 0.130 af, Depth= 2.61"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description					
*		25,997	93	70% Lot Coverage Weighted					
		25,997	93 100.00% Pervious Area						
	Тс	3	Slope	•		Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 99S: Home Basin 6

Type IA 24-hr 10-10 Year Rainfall=3.37"

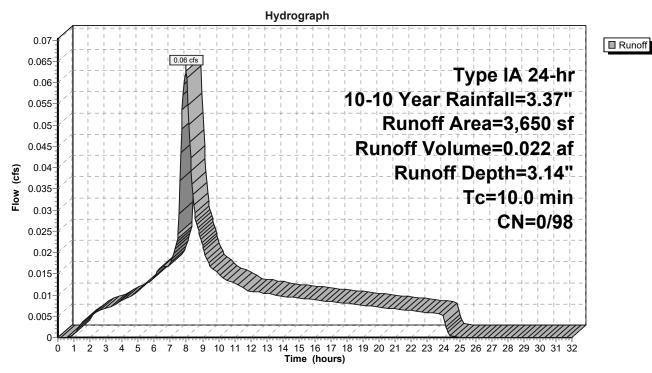
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 399

Summary for Subcatchment 100S: Basin 4


Runoff = 0.06 cfs @ 7.98 hrs, Volume= 0.022 af, Depth= 3.14"

Routed to Pond 60P: Stormwater Swale 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

A	rea (sf)	CN I	Description						
	3,650	98 F	Paved roads w/curbs & sewers, HSG D						
	3,650	98	8 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 100S: Basin 4

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

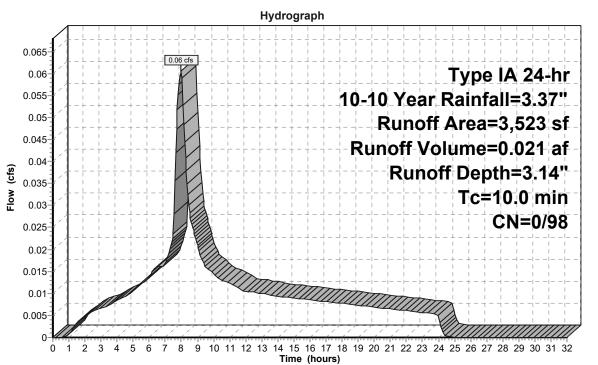
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 400

■ Runoff

Summary for Subcatchment 101S: Basin 5


Runoff = 0.06 cfs @ 7.98 hrs, Volume= 0.021 af, Depth= 3.14"

Routed to Pond 54P: Stormwater Swale 2

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

A	rea (sf)	CN [Description						
	3,523	98 F	Paved roads w/curbs & sewers, HSG D						
	3,523	98 1	8 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 101S: Basin 5

Type IA 24-hr 10-10 Year Rainfall=3.37"

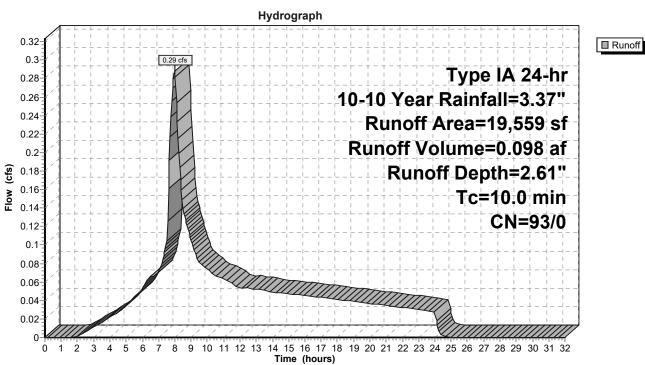
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 401

Summary for Subcatchment 102S: Home Basin 3


Runoff = 0.29 cfs @ 7.98 hrs, Volume= 0.098 af, Depth= 2.61"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

	Α	rea (sf)	CN I	Description						
*		19,559	93	70% Lot Coverage Weighted						
		19,559	93	93 100.00% Pervious Area						
	Tc	9	Slope	,	. ,	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 102S: Home Basin 3

Type IA 24-hr 10-10 Year Rainfall=3.37"

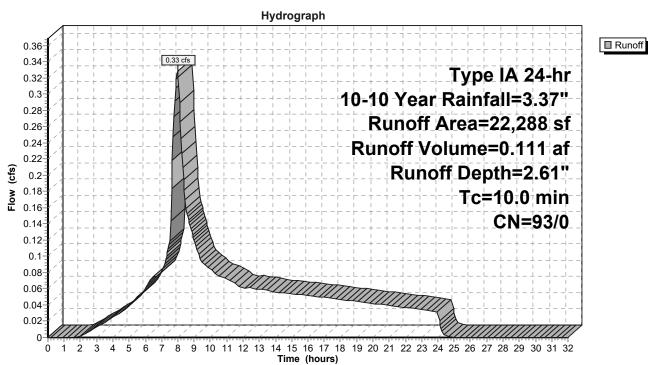
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 402

Summary for Subcatchment 103S: Home Basin 1


Runoff = 0.33 cfs @ 7.98 hrs, Volume= 0.111 af, Depth= 2.61"

Routed to Reach 137R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description						
*	•	22,288	93	70% Lot Coverage Weighted						
_		22,288	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description				
	10.0					Direct Entry,				

Subcatchment 103S: Home Basin 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

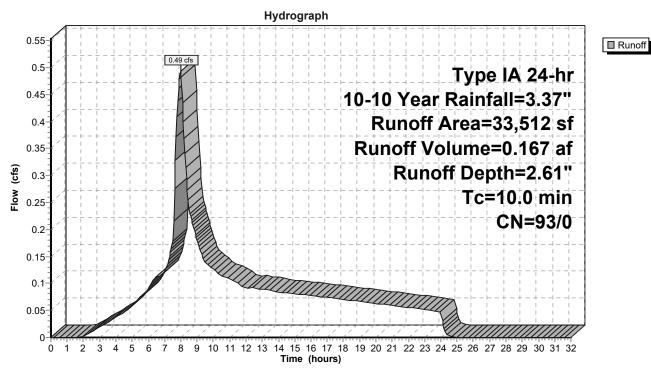
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 403

Summary for Subcatchment 104S: Home Basin 5


Runoff = 0.49 cfs @ 7.98 hrs, Volume= 0.167 af, Depth= 2.61"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description							
*		33,512	93	70% Lot Co	0% Lot Coverage Weighted						
_		33,512	93	00.00% Pervious Area							
	Тс	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	10.0			Direct Entry,							

Subcatchment 104S: Home Basin 5

Type IA 24-hr 10-10 Year Rainfall=3.37"

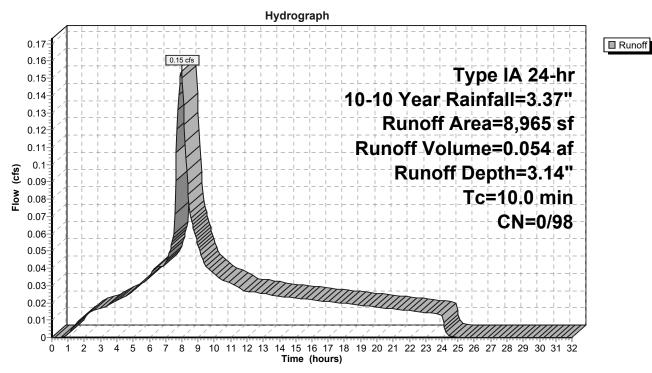
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 404

Summary for Subcatchment 105S: Basin 6


Runoff = 0.15 cfs @ 7.98 hrs, Volume= 0.054 af, Depth= 3.14"

Routed to Reach 138R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

A	rea (sf)	CN [Description						
	8,965	98 F	Paved roads w/curbs & sewers, HSG D						
	8,965	98 1	00.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0			Direct Entry,						

Subcatchment 105S: Basin 6

Type IA 24-hr 10-10 Year Rainfall=3.37"

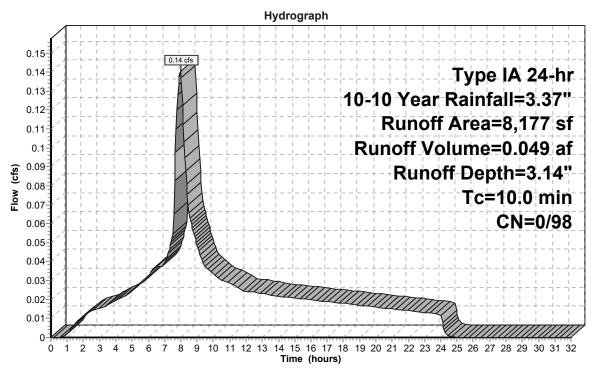
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 405

Summary for Subcatchment 107S: Basin 8


Runoff = 0.14 cfs @ 7.98 hrs, Volume= 0.049 af, Depth= 3.14"

Routed to Reach 158R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

	Α	rea (sf)	CN I	Description						
		8,177	98 I	Paved roads w/curbs & sewers, HSG D						
		8,177	98	100.00% Impervious Area						
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
•	10.0			Direct Entry						

Subcatchment 107S: Basin 8

Type IA 24-hr 10-10 Year Rainfall=3.37"

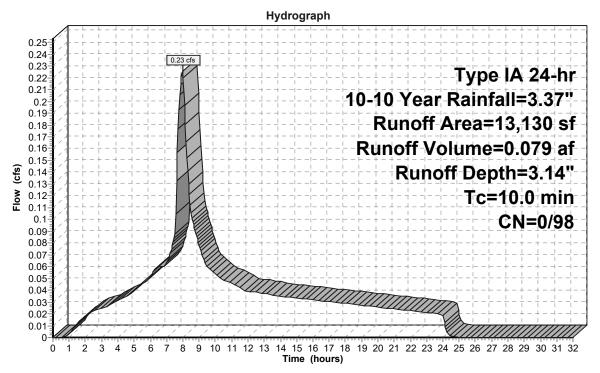
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 406

Summary for Subcatchment 108S: Basin 9


Runoff = 0.23 cfs @ 7.98 hrs, Volume= 0.079 af, Depth= 3.14"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN I	Description							
		13,130	98 F	Paved roads w/curbs & sewers, HSG D							
		13,130	98 ′	3 100.00% Impervious Area							
	To	Longth	Slope	None Valority Constitut Description							
	Tc (min)	Length (feet)	Slope (ft/ft)								
_	10.0	,	· · ·	Direct Entry,							

Subcatchment 108S: Basin 9

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

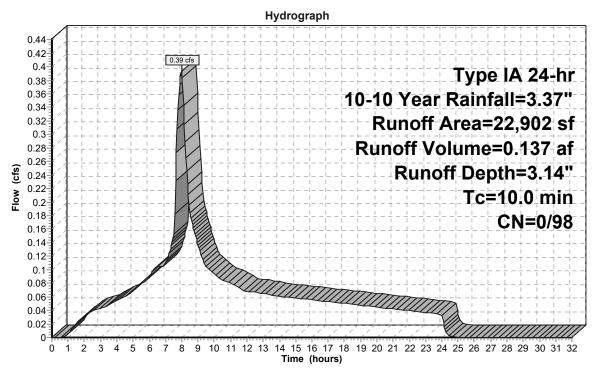
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 407

■ Runoff

Summary for Subcatchment 109S: Basin 10


Runoff = 0.39 cfs @ 7.98 hrs, Volume= 0.137 af, Depth= 3.14"

Routed to Reach 137R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

	Α	rea (sf)	CN I	Description						
		22,902	98 I	Paved roads w/curbs & sewers, HSG D						
_		22,902	98	100.00% Impervious Area						
	_									
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0	•		Direct Entry						

Subcatchment 109S: Basin 10

Type IA 24-hr 10-10 Year Rainfall=3.37"

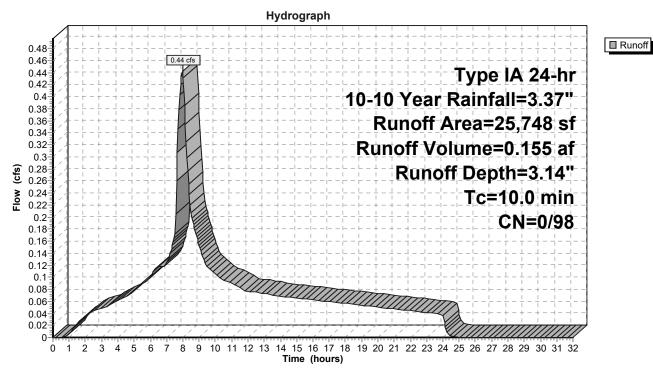
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 408

Summary for Subcatchment 110S: Basin 11


Runoff = 0.44 cfs @ 7.98 hrs, Volume= 0.155 af, Depth= 3.14"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

A	rea (sf)	CN [Description						
	25,748	98 F	Paved roads w/curbs & sewers, HSG D						
	25,748	98 ′	00.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 110S: Basin 11

Type IA 24-hr 10-10 Year Rainfall=3.37"

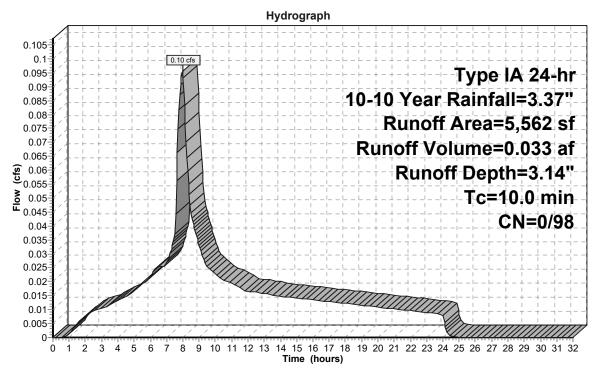
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 409

Summary for Subcatchment 111S: Basin 12


Runoff = 0.10 cfs @ 7.98 hrs, Volume= 0.033 af, Depth= 3.14"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

A	rea (sf)	CN [Description						
	5,562	98 F	Paved roads w/curbs & sewers, HSG D						
	5,562	98 ′	00.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0			Direct Entry,						

Subcatchment 111S: Basin 12

Type IA 24-hr 10-10 Year Rainfall=3.37"

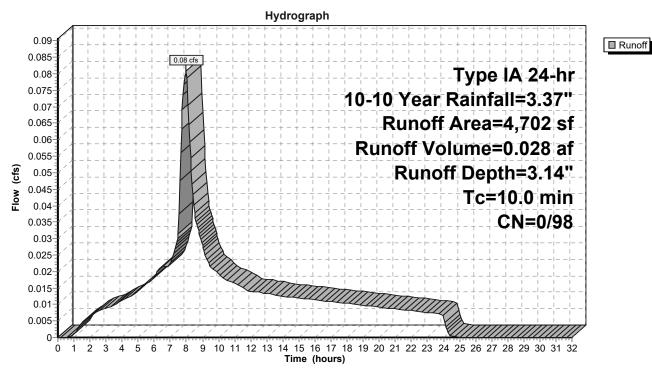
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 410

Summary for Subcatchment 112S: Basin 13


Runoff = 0.08 cfs @ 7.98 hrs, Volume= 0.028 af, Depth= 3.14"

Routed to Reach 158R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

A	rea (sf)	CN [Description						
	4,702	98 F	Paved roads w/curbs & sewers, HSG D						
	4,702	98 1	00.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0			Direct Entry,						

Subcatchment 112S: Basin 13

Type IA 24-hr 10-10 Year Rainfall=3.37"

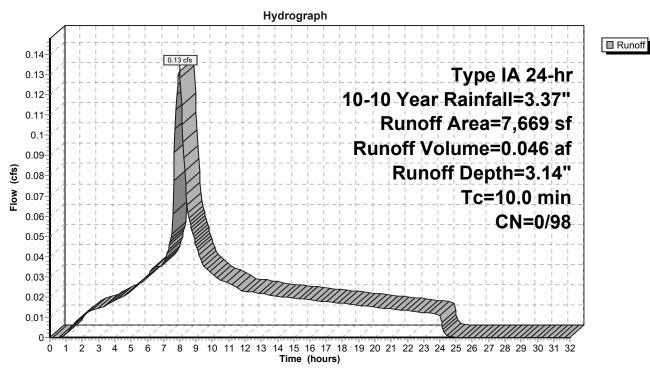
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 411

Summary for Subcatchment 113S: Basin 14


Runoff = 0.13 cfs @ 7.98 hrs, Volume= 0.046 af, Depth= 3.14"

Routed to Reach 159R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

A	rea (sf)	CN [Description							
	7,669	98 F	Paved roads w/curbs & sewers, HSG D							
	7,669	98 1	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0			Direct Entry,							

Subcatchment 113S: Basin 14

Type IA 24-hr 10-10 Year Rainfall=3.37"

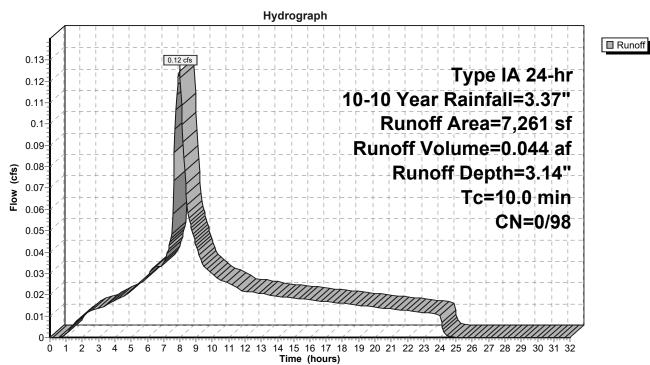
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 412

Summary for Subcatchment 114S: Basin 15


Runoff = 0.12 cfs @ 7.98 hrs, Volume= 0.044 af, Depth= 3.14"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

A	rea (sf)	CN [Description						
	7,261	98 F	Paved roads w/curbs & sewers, HSG D						
	7,261	98 1	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0			Direct Entry,						

Subcatchment 114S: Basin 15

Type IA 24-hr 10-10 Year Rainfall=3.37"

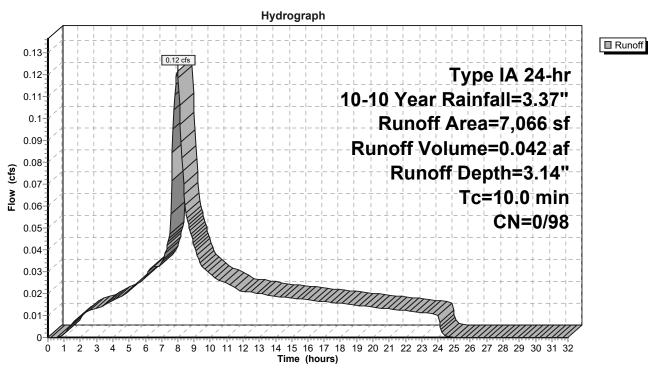
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 413

Summary for Subcatchment 115S: Basin 16


Runoff = 0.12 cfs @ 7.98 hrs, Volume= 0.042 af, Depth= 3.14"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

A	rea (sf)	CN [Description						
	7,066	98 F	Paved roads w/curbs & sewers, HSG D						
	7,066	98 1	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0			Direct Entry,						

Subcatchment 115S: Basin 16

Type IA 24-hr 10-10 Year Rainfall=3.37"

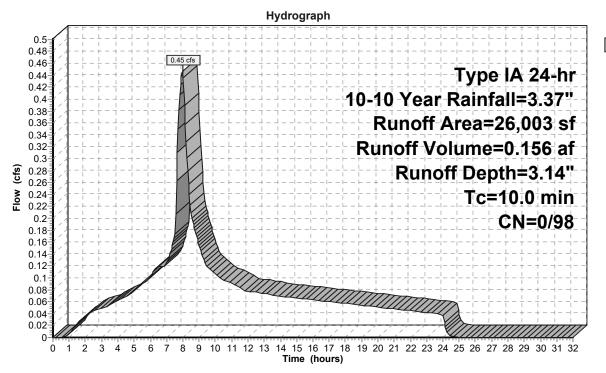
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 414

Summary for Subcatchment 116S: Basin 17


Runoff = 0.45 cfs @ 7.98 hrs, Volume= 0.156 af, Depth= 3.14"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

A	rea (sf)	CN I	Description						
	26,003	98 F	Paved roads w/curbs & sewers, HSG D						
•	26,003	98	00.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 116S: Basin 17

Type IA 24-hr 10-10 Year Rainfall=3.37"

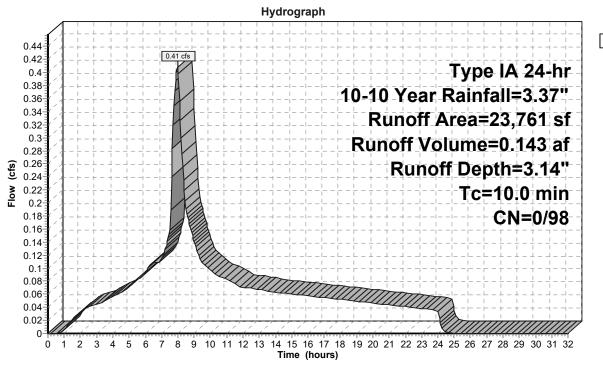
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 415

Summary for Subcatchment 117S: Basin 18


Runoff = 0.41 cfs @ 7.98 hrs, Volume= 0.143 af, Depth= 3.14"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

A	rea (sf)	CN I	Description							
	23,761	98 I	Paved roads w/curbs & sewers, HSG D							
	23,761	98	8 100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 117S: Basin 18

Type IA 24-hr 10-10 Year Rainfall=3.37"

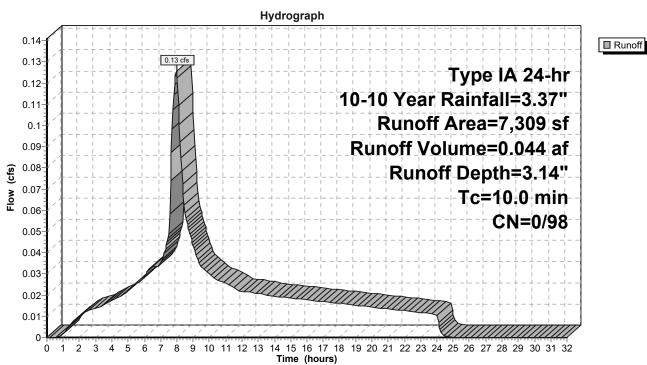
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 416

Summary for Subcatchment 118S: Basin 19


Runoff = 0.13 cfs @ 7.98 hrs, Volume= 0.044 af, Depth= 3.14"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

A	rea (sf)	CN [Description							
	7,309	98 F	Paved roads w/curbs & sewers, HSG D							
	7,309	98 1	3 100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	be Velocity Capacity Description							
10.0					Direct Entry,					

Subcatchment 118S: Basin 19

Type IA 24-hr 10-10 Year Rainfall=3.37"

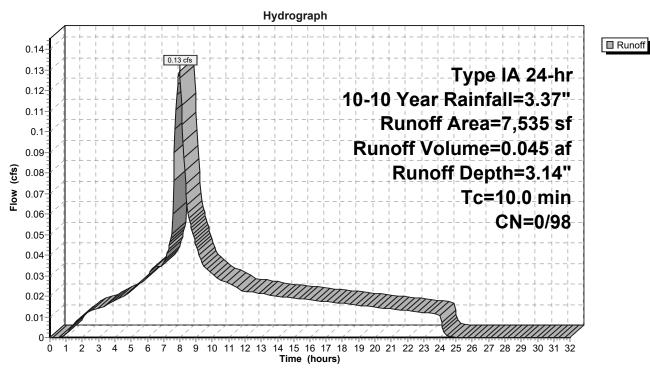
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 417

Summary for Subcatchment 119S: Basin 20


Runoff = 0.13 cfs @ 7.98 hrs, Volume= 0.045 af, Depth= 3.14"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

A	rea (sf)	CN [Description							
	7,535	98 F	Paved roads w/curbs & sewers, HSG D							
	7,535	98 1	3 100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	be Velocity Capacity Description							
10.0					Direct Entry,					

Subcatchment 119S: Basin 20

Type IA 24-hr 10-10 Year Rainfall=3.37"

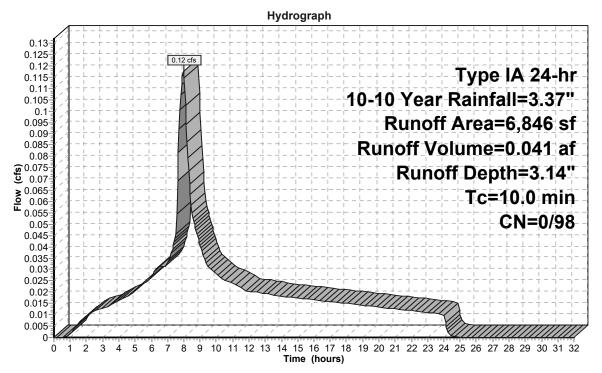
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 418

Summary for Subcatchment 120S: Basin 21


Runoff = 0.12 cfs @ 7.98 hrs, Volume= 0.041 af, Depth= 3.14"

Routed to Reach 148R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

	rea (sf)	CN [Description							
	6,846	98 F	Paved roads w/curbs & sewers, HSG D							
	6,846	98 1	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 120S: Basin 21

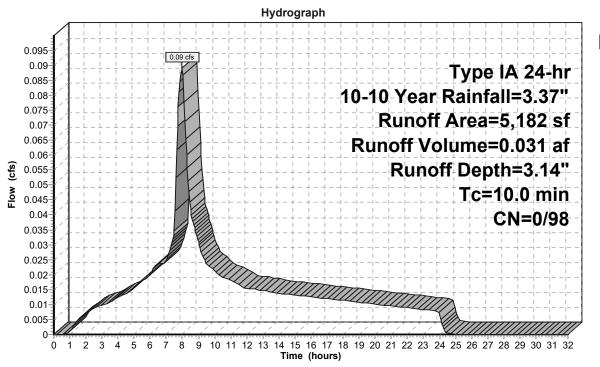
Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Printed 9/6/2023

Page 419

Summary for Subcatchment 121S: Basin 22


Runoff = 0.09 cfs @ 7.98 hrs, Volume= 0.031 af, Depth= 3.14"

Routed to Reach 154R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

	rea (sf)	CN [Description							
	5,182	98 F	Paved roads w/curbs & sewers, HSG D							
	5,182	98 ′	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 121S: Basin 22

Type IA 24-hr 10-10 Year Rainfall=3.37"

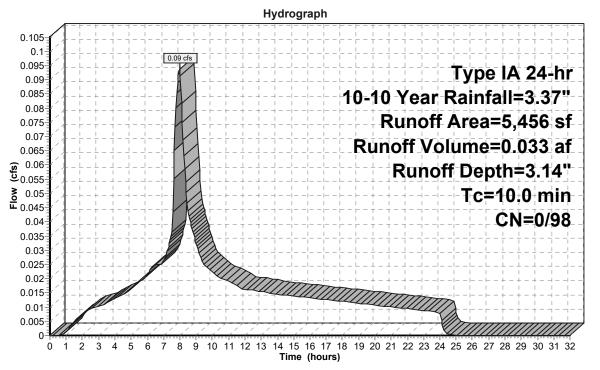
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 420

Summary for Subcatchment 122S: Basin 23


Runoff = 0.09 cfs @ 7.98 hrs, Volume= 0.033 af, Depth= 3.14"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

	Area (sf)	CN [Description							
	5,456	98 F	Paved roads w/curbs & sewers, HSG D							
	5,456	98 1	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 122S: Basin 23

Type IA 24-hr 10-10 Year Rainfall=3.37"

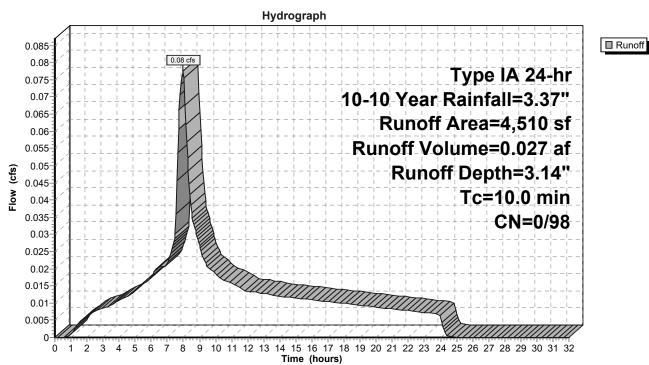
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 421

Summary for Subcatchment 123S: Basin 24


Runoff = 0.08 cfs @ 7.98 hrs, Volume= 0.027 af, Depth= 3.14"

Routed to Reach 162R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

	Area (sf)	CN	Description							
	4,510	98	Paved roads w/curbs & sewers, HSG D							
	4,510	98	100.00% Impervious Area							
(mi	Гс Length n) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10	.0				Direct Entry,					

Subcatchment 123S: Basin 24

Type IA 24-hr 10-10 Year Rainfall=3.37"

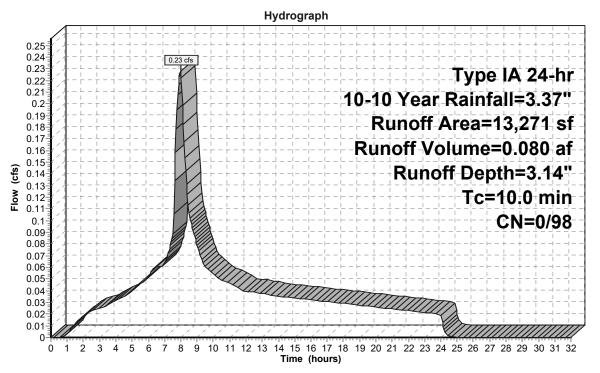
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 422

Summary for Subcatchment 124S: Basin 25


Runoff = 0.23 cfs @ 7.98 hrs, Volume= 0.080 af, Depth= 3.14"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

Area (sf)	CN	Description								
13,271	98	8 Paved roads w/curbs & sewers, HSG D								
13,271	1 98 100.00% Impervious Area									
Tc Lengt (min) (fee		•	Capacity (cfs)	Description						
10.0				Direct Entry,						

Subcatchment 124S: Basin 25

Type IA 24-hr 10-10 Year Rainfall=3.37"

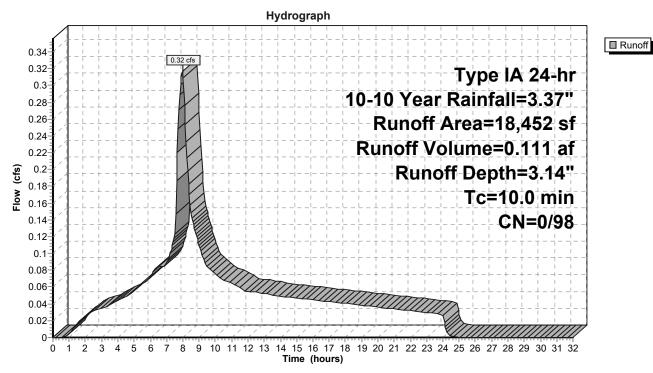
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 423

Summary for Subcatchment 125S: Basin 26


Runoff = 0.32 cfs @ 7.98 hrs, Volume= 0.111 af, Depth= 3.14"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

A	rea (sf)	CN [Description							
	18,452	98 F	Paved roads w/curbs & sewers, HSG D							
•	18,452	98 ′	98 100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)								
10.0					Direct Entry,					

Subcatchment 125S: Basin 26

Type IA 24-hr 10-10 Year Rainfall=3.37"

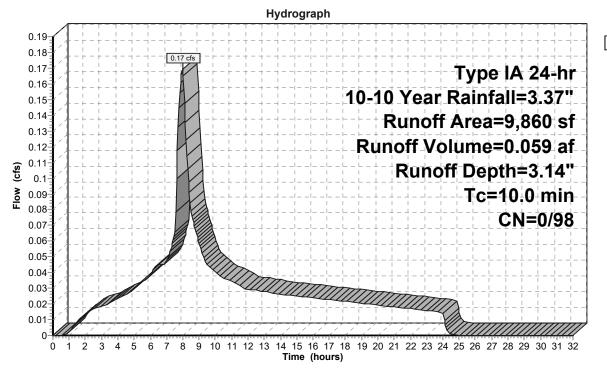
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 424

Summary for Subcatchment 126S: Alley Basin 1


Runoff = 0.17 cfs @ 7.98 hrs, Volume= 0.059 af, Depth= 3.14"

Routed to Reach 140R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN	Description								
		9,860	98	Paved roads w/curbs & sewers, HSG D								
		9,860	98	100.00% Impervious Area								
	т.	1 41.	01	V - I 16 -	0	Describetion						
		Length	•	,		Description						
_	(min)	(feet)	(ft/ft)) (ft/sec) (cfs)								
	10.0					Direct Entry.						

Subcatchment 126S: Alley Basin 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

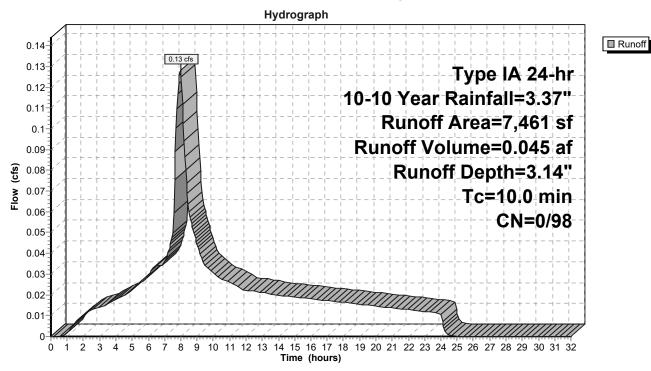
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 425

Summary for Subcatchment 127S: Alley Basin 2


Runoff = 0.13 cfs @ 7.98 hrs, Volume= 0.045 af, Depth= 3.14"

Routed to Reach 141R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

A	rea (sf)	CN [Description							
	7,461	98 F	Paved roads w/curbs & sewers, HSG D							
	7,461	98 1	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	pe Velocity Capacity Description							
10.0					Direct Entry,					

Subcatchment 127S: Alley Basin 2

Type IA 24-hr 10-10 Year Rainfall=3.37"

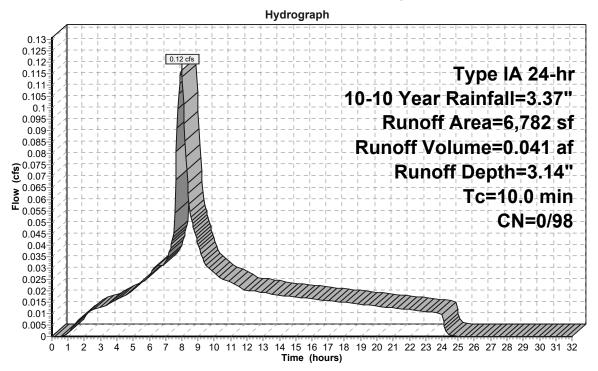
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 426

Summary for Subcatchment 128S: Alley Basin 3


Runoff = 0.12 cfs @ 7.98 hrs, Volume= 0.041 af, Depth= 3.14"

Routed to Reach 147R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

_	Α	rea (sf)	CN I	Description							
_		6,782	98 I	Paved roads w/curbs & sewers, HSG D							
_		6,782	98	100.00% Impervious Area							
	Tc	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	10.0					Direct Entry					

Subcatchment 128S: Alley Basin 3

Type IA 24-hr 10-10 Year Rainfall=3.37"

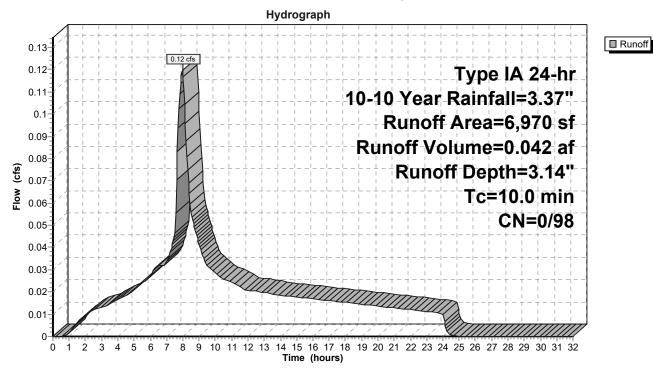
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 427

Summary for Subcatchment 129S: Alley Basin 4


Runoff = 0.12 cfs @ 7.98 hrs, Volume= 0.042 af, Depth= 3.14"

Routed to Reach 153R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

A	rea (sf)	CN [Description		
	6,970	98 F	Paved road	s w/curbs &	& sewers, HSG D
	6,970	98 ′	100.00% Im	pervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry,

Subcatchment 129S: Alley Basin 4

Type IA 24-hr 10-10 Year Rainfall=3.37"

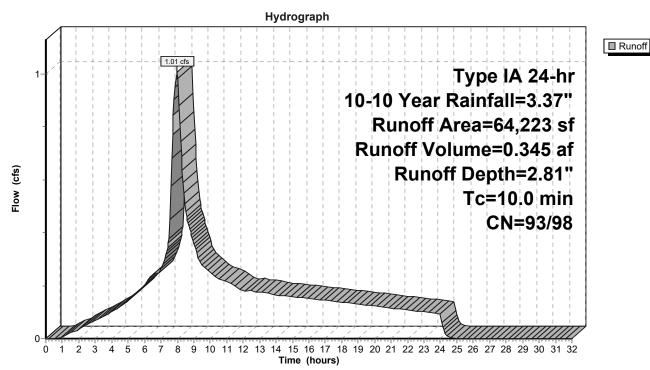
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 428

Summary for Subcatchment 168S: Future Lots


Runoff = 1.01 cfs @ 7.98 hrs, Volume= 0.345 af, Depth= 2.81"

Routed to Reach 166R: Basin Future

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

	Area (sf)	CN	Description	
4	39,915	93	70% Lot Coverage Weighted	
_	24,308	98	Paved roads w/curbs & sewers, HSG D	
	64,223	95	Weighted Average	
	39,915	93	62.15% Pervious Area	
	24,308	98	37.85% Impervious Area	
_	Tc Length (min) (feet)	Slop (ft/f		
	10.0		Direct Entry,	

Subcatchment 168S: Future Lots

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

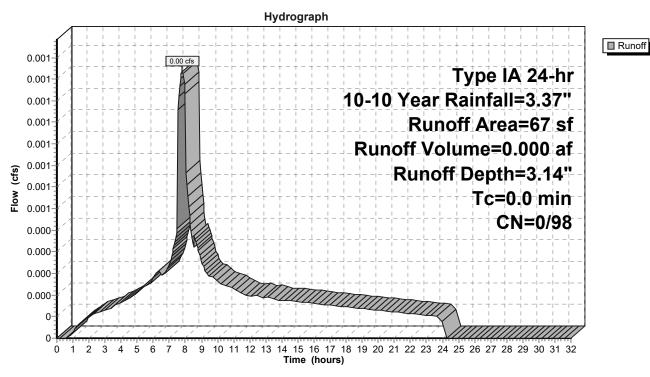
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 429

Summary for Subcatchment 169S: Swale 2

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 0.00 cfs @ 7.80 hrs, Volume= 0.000 af, [


0.000 af, Depth= 3.14"

Routed to Pond 54P: Stormwater Swale 2

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

Area (sf)	CN	Description	
67	98	Water Surface, HSG D	
67	98	100 00% Impervious Area	

Subcatchment 169S: Swale 2

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

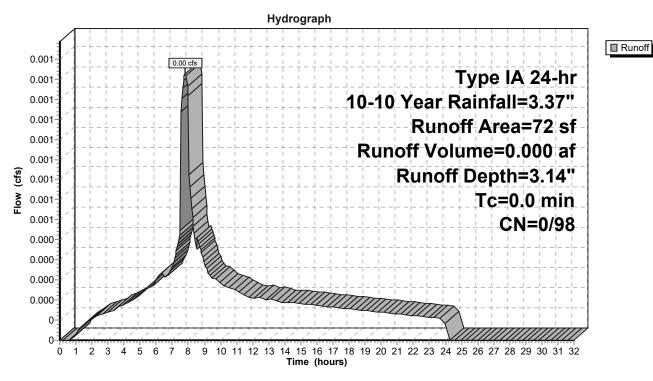
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 430

Summary for Subcatchment 170S: Swale 1

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 0.00 cfs @ 7.80 hrs, Volume=


0.000 af, Depth= 3.14"

Routed to Pond 60P: Stormwater Swale 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 10-10 Year Rainfall=3.37"

 Area (sf)	CN	Description
72	98	Water Surface, HSG D
 72	98	100.00% Impervious Area

Subcatchment 170S: Swale 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

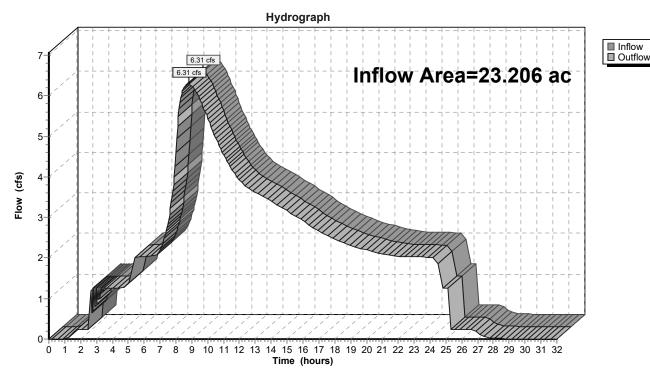
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 431

Summary for Reach 39R: Post-Construction Peak Flow

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 23.206 ac, 36.84% Impervious, Inflow Depth > 2.80" for 10-10 Year event

Inflow = 6.31 cfs @ 8.79 hrs, Volume= 5.421 af

Outflow = 6.31 cfs @ 8.79 hrs, Volume= 5.421 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 39R: Post-Construction Peak Flow

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

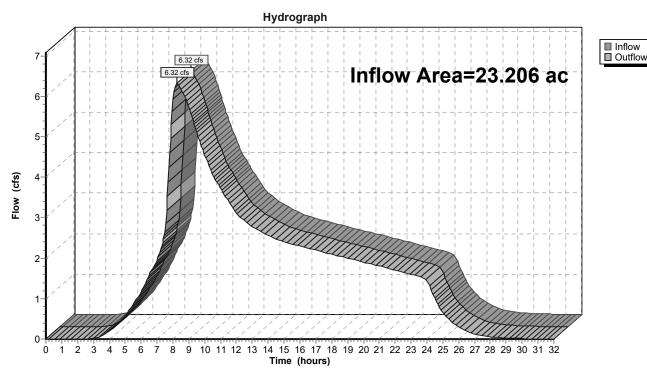
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 432

Summary for Reach 42R: Pre-Construction Peak Flow

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 23.206 ac, 0.00% Impervious, Inflow Depth > 2.24" for 10-10 Year event

Inflow = 6.32 cfs @ 8.27 hrs, Volume= 4.326 af

Outflow = 6.32 cfs @ 8.27 hrs, Volume= 4.326 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 42R: Pre-Construction Peak Flow

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

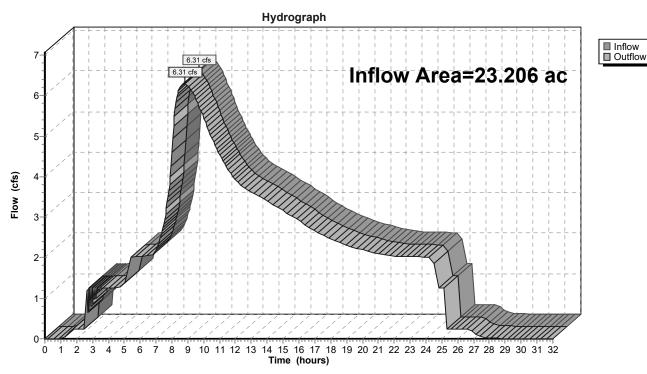
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 433

Summary for Reach 58R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 23.206 ac, 36.84% Impervious, Inflow Depth > 2.80" for 10-10 Year event


Inflow = 6.31 cfs @ 8.79 hrs, Volume= 5.421 af

Outflow = 6.31 cfs @ 8.79 hrs, Volume= 5.421 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 39R: Post-Construction Peak Flow

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 58R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

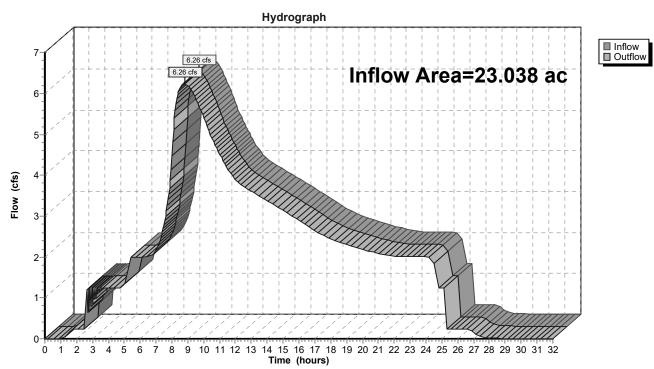
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 434

Summary for Reach 85R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 23.038 ac, 36.38% Impervious, Inflow Depth > 2.80" for 10-10 Year event


Inflow = 6.26 cfs @ 8.80 hrs, Volume= 5.377 af

Outflow = 6.26 cfs @ 8.80 hrs, Volume= 5.377 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 85R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

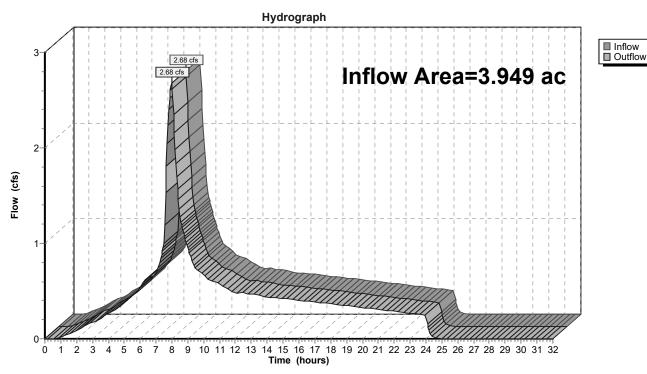
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 435

Summary for Reach 130R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.949 ac, 33.88% Impervious, Inflow Depth = 2.79" for 10-10 Year event


Inflow = 2.68 cfs @ 7.98 hrs, Volume= 0.918 af

Outflow = 2.68 cfs @ 7.98 hrs, Volume= 0.918 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 130R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

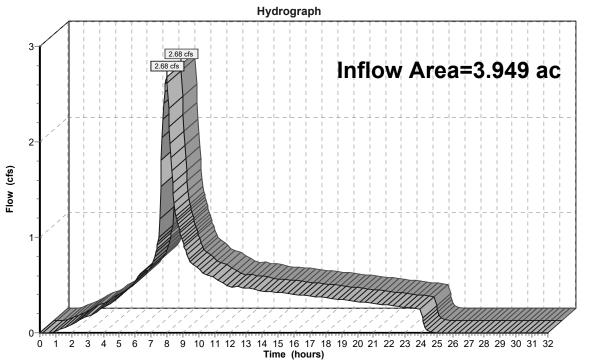
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 436

Summary for Reach 131R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.949 ac, 33.88% Impervious, Inflow Depth = 2.79" for 10-10 Year event


Inflow = 2.68 cfs @ 7.98 hrs, Volume= 0.918 af

Outflow = 2.68 cfs @ 7.98 hrs, Volume= 0.918 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 130R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 131R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

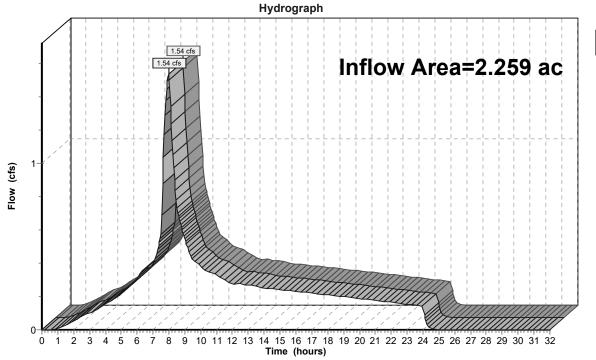
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 437

Summary for Reach 132R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.259 ac, 35.43% Impervious, Inflow Depth = 2.80" for 10-10 Year event


Inflow = 1.54 cfs @ 7.98 hrs, Volume= 0.526 af

Outflow = 1.54 cfs @ 7.98 hrs, Volume= 0.526 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 131R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 132R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

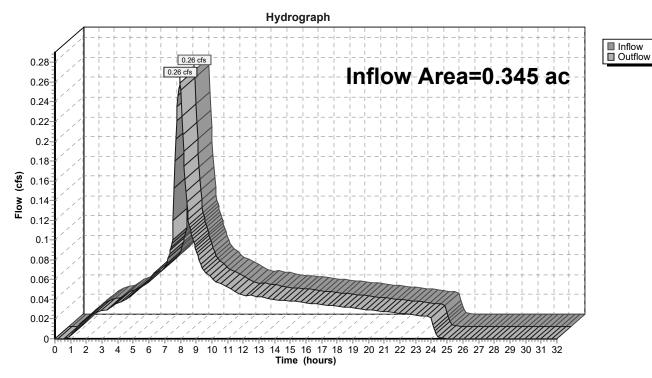
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 438

Summary for Reach 133R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.345 ac,100.00% Impervious, Inflow Depth = 3.14" for 10-10 Year event


Inflow = 0.26 cfs @ 7.98 hrs, Volume= 0.090 af

Outflow = 0.26 cfs @ 7.98 hrs, Volume= 0.090 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 132R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 133R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

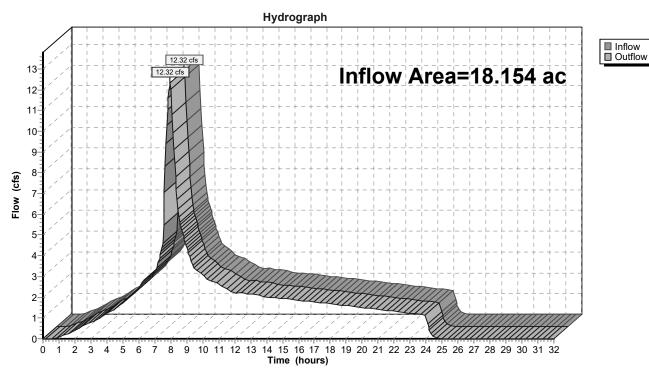
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 439

Summary for Reach 134R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 18.154 ac, 33.65% Impervious, Inflow Depth = 2.79" for 10-10 Year event


Inflow = 12.32 cfs @ 7.98 hrs, Volume= 4.216 af

Outflow = 12.32 cfs @ 7.98 hrs, Volume= 4.216 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 134R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

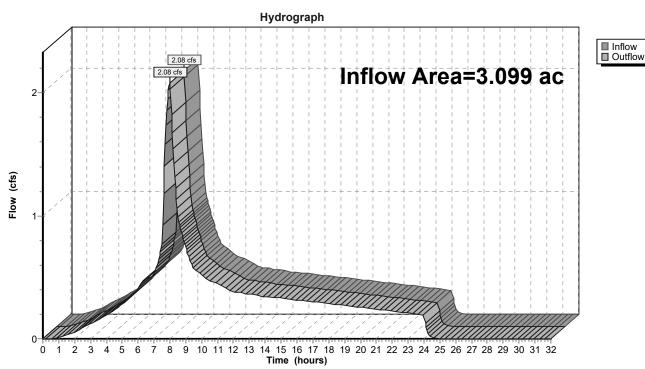
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 440

Summary for Reach 135R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.099 ac, 26.69% Impervious, Inflow Depth = 2.75" for 10-10 Year event


Inflow = 2.08 cfs @ 7.98 hrs, Volume= 0.710 af

Outflow = 2.08 cfs @ 7.98 hrs, Volume= 0.710 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 134R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 135R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

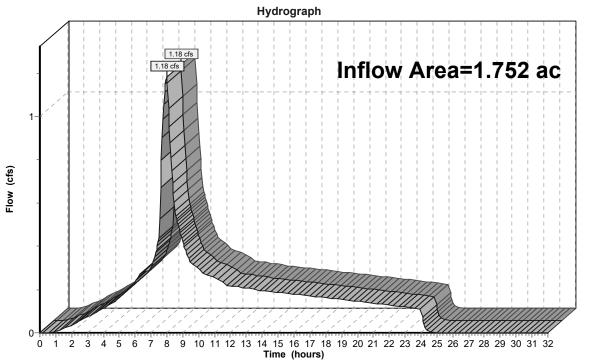
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 441

Summary for Reach 136R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.752 ac, 30.00% Impervious, Inflow Depth = 2.77" for 10-10 Year event


Inflow = 1.18 cfs @ 7.98 hrs, Volume= 0.404 af

Outflow = 1.18 cfs @ 7.98 hrs, Volume= 0.404 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 135R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 136R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

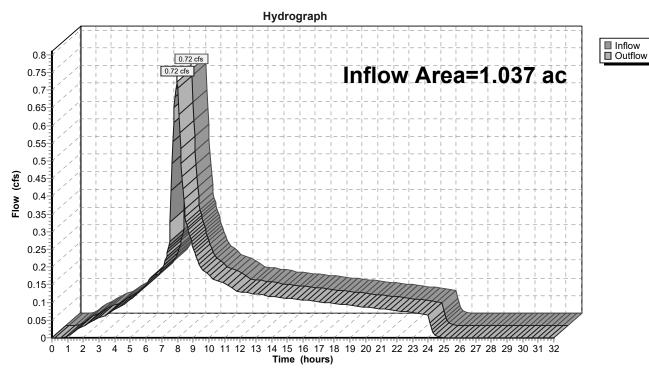
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 442

Summary for Reach 137R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.037 ac, 50.68% Impervious, Inflow Depth = 2.88" for 10-10 Year event


Inflow = 0.72 cfs @ 7.98 hrs, Volume= 0.249 af

Outflow = 0.72 cfs @ 7.98 hrs, Volume= 0.249 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 136R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 137R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

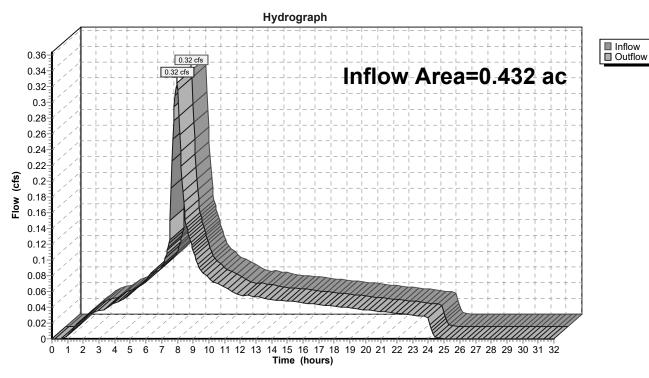
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 443

Summary for Reach 138R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.432 ac,100.00% Impervious, Inflow Depth = 3.14" for 10-10 Year event


Inflow = 0.32 cfs @ 7.98 hrs, Volume= 0.113 af

Outflow = 0.32 cfs @ 7.98 hrs, Volume= 0.113 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 138R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

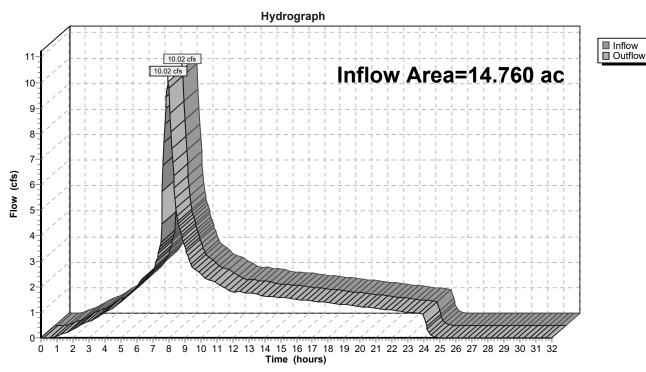
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 444

Summary for Reach 139R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.760 ac, 33.78% Impervious, Inflow Depth = 2.79" for 10-10 Year event


Inflow = 10.02 cfs @ 7.98 hrs, Volume= 3.429 af

Outflow = 10.02 cfs @ 7.98 hrs, Volume= 3.429 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 158R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 139R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

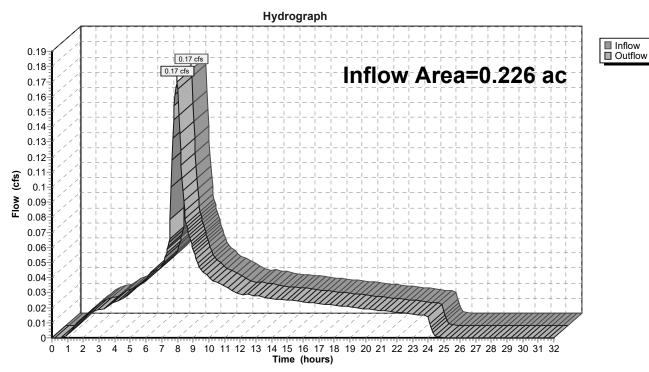
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 445

Summary for Reach 140R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.226 ac,100.00% Impervious, Inflow Depth = 3.14" for 10-10 Year event


Inflow = 0.17 cfs @ 7.98 hrs, Volume= 0.059 af

Outflow = 0.17 cfs @ 7.98 hrs, Volume= 0.059 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 138R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 140R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

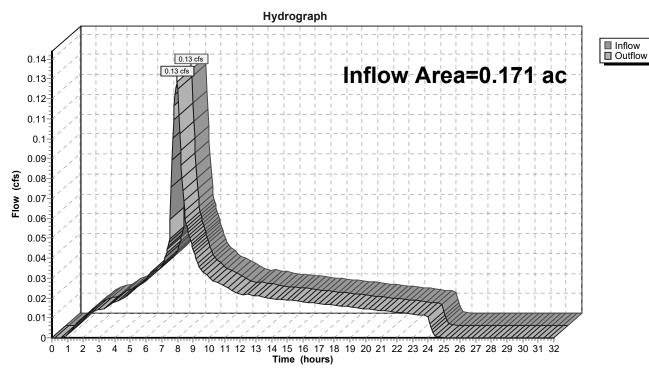
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 446

Summary for Reach 141R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.171 ac,100.00% Impervious, Inflow Depth = 3.14" for 10-10 Year event


Inflow = 0.13 cfs @ 7.98 hrs, Volume= 0.045 af

Outflow = 0.13 cfs @ 7.98 hrs, Volume= 0.045 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 139R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 141R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

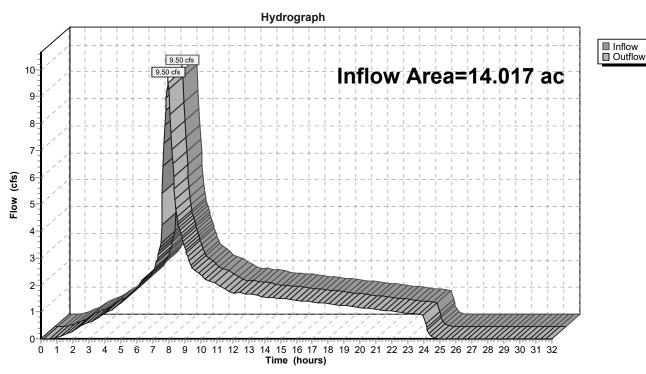
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 447

Summary for Reach 142R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.017 ac, 33.09% Impervious, Inflow Depth = 2.78" for 10-10 Year event


Inflow = 9.50 cfs @ 7.98 hrs, Volume= 3.252 af

Outflow = 9.50 cfs @ 7.98 hrs, Volume= 3.252 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 159R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 142R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

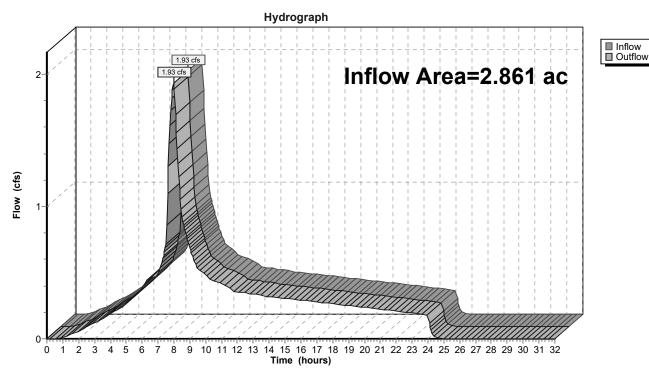
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 448

Summary for Reach 143R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.861 ac, 30.95% Impervious, Inflow Depth = 2.77" for 10-10 Year event


Inflow = 1.93 cfs @ 7.98 hrs, Volume= 0.661 af

Outflow = 1.93 cfs @ 7.98 hrs, Volume= 0.661 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 142R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 143R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

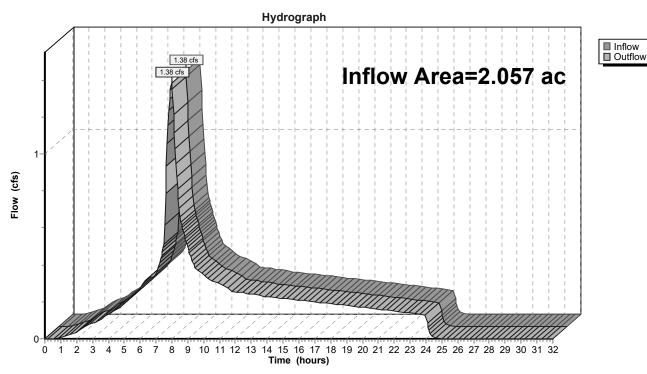
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 449

Summary for Reach 144R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.057 ac, 28.74% Impervious, Inflow Depth = 2.76" for 10-10 Year event


Inflow = 1.38 cfs @ 7.98 hrs, Volume= 0.473 af

Outflow = 1.38 cfs @ 7.98 hrs, Volume= 0.473 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 143R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 144R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

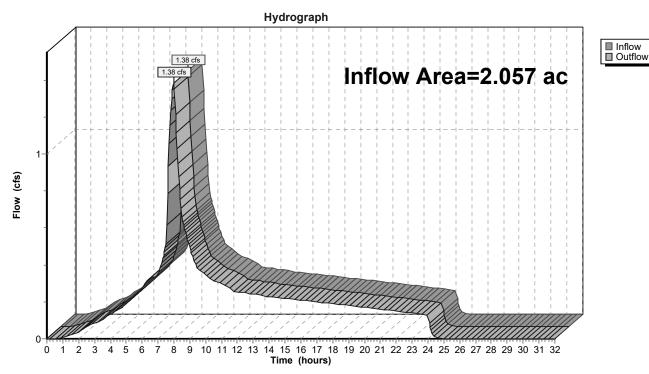
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 450

Summary for Reach 145R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.057 ac, 28.74% Impervious, Inflow Depth = 2.76" for 10-10 Year event


Inflow = 1.38 cfs @ 7.98 hrs, Volume= 0.473 af

Outflow = 1.38 cfs @ 7.98 hrs, Volume= 0.473 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 144R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 145R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

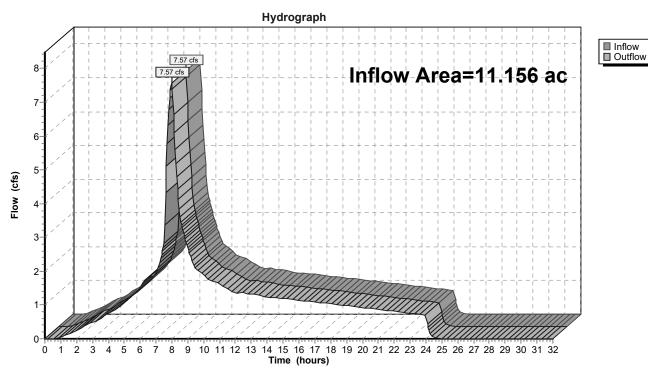
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 451

Summary for Reach 146R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 11.156 ac, 33.63% Impervious, Inflow Depth = 2.79" for 10-10 Year event


Inflow = 7.57 cfs @ 7.98 hrs, Volume= 2.591 af

Outflow = 7.57 cfs @ 7.98 hrs, Volume= 2.591 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 142R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 146R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

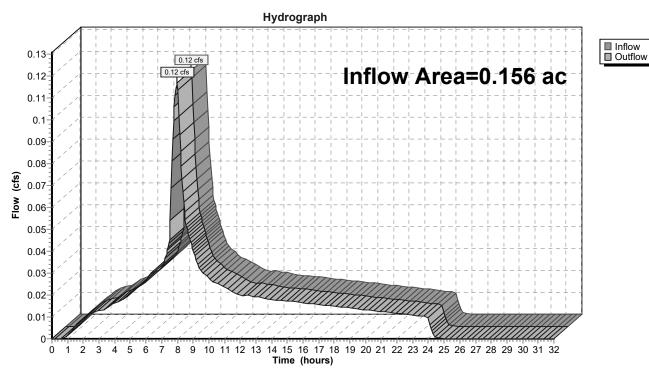
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 452

Summary for Reach 147R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.156 ac,100.00% Impervious, Inflow Depth = 3.14" for 10-10 Year event


Inflow = 0.12 cfs @ 7.98 hrs, Volume= 0.041 af

Outflow = 0.12 cfs @ 7.98 hrs, Volume= 0.041 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 146R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 147R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

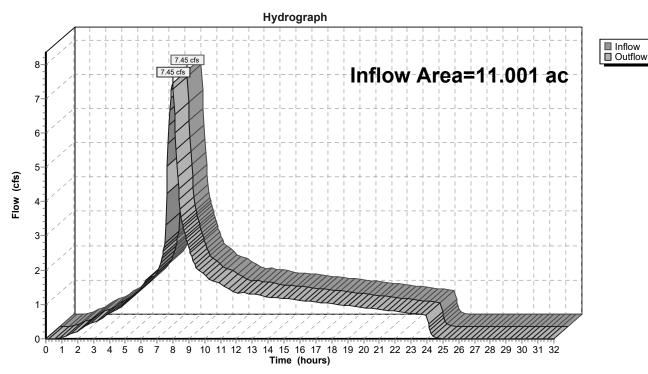
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 453

Summary for Reach 148R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 11.001 ac, 32.69% Impervious, Inflow Depth = 2.78" for 10-10 Year event


Inflow = 7.45 cfs @ 7.98 hrs, Volume= 2.550 af

Outflow = 7.45 cfs @ 7.98 hrs, Volume= 2.550 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 146R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 148R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

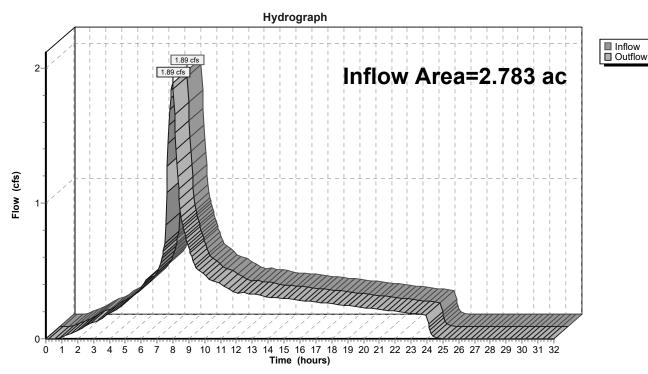
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 454

Summary for Reach 149R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.783 ac, 33.49% Impervious, Inflow Depth = 2.79" for 10-10 Year event


Inflow = 1.89 cfs @ 7.98 hrs, Volume= 0.646 af

Outflow = 1.89 cfs @ 7.98 hrs, Volume= 0.646 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 148R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 149R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

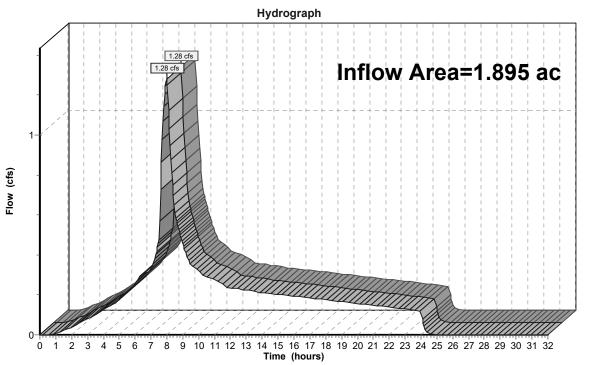
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 455

Summary for Reach 150R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.895 ac, 31.51% Impervious, Inflow Depth = 2.78" for 10-10 Year event


Inflow = 1.28 cfs @ 7.98 hrs, Volume= 0.438 af

Outflow = 1.28 cfs @ 7.98 hrs, Volume= 0.438 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 149R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 150R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

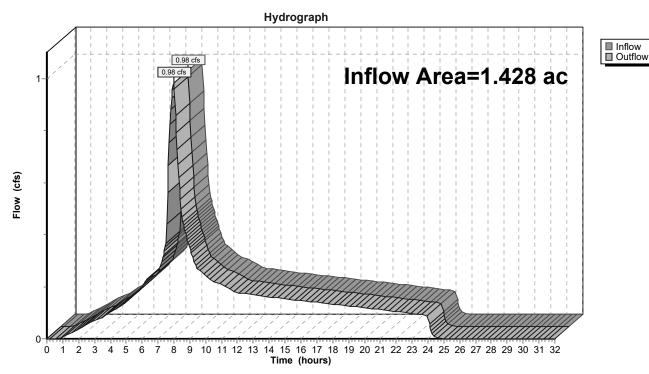
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 456

Summary for Reach 151R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.428 ac, 41.79% Impervious, Inflow Depth = 2.83" for 10-10 Year event


Inflow = 0.98 cfs @ 7.98 hrs, Volume= 0.337 af

Outflow = 0.98 cfs @ 7.98 hrs, Volume= 0.337 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 150R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 151R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

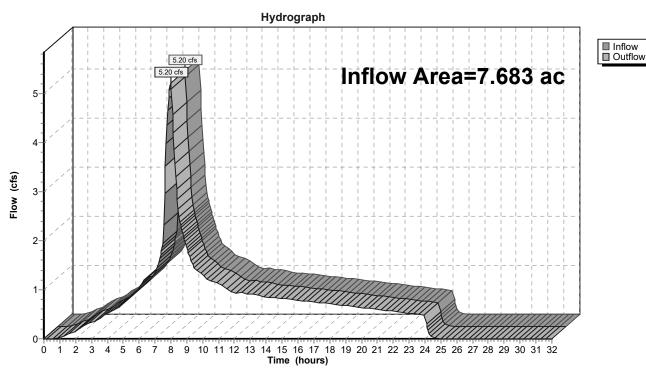
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 457

Summary for Reach 152R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 7.683 ac, 32.64% Impervious, Inflow Depth = 2.78" for 10-10 Year event


Inflow = 5.20 cfs @ 7.98 hrs, Volume= 1.781 af

Outflow = 5.20 cfs @ 7.98 hrs, Volume= 1.781 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 148R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 152R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 458

Summary for Reach 153R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.160 ac,100.00% Impervious, Inflow Depth = 3.14" for 10-10 Year event


Inflow = 0.12 cfs @ 7.98 hrs, Volume= 0.042 af

Outflow = $0.12 \text{ cfs } \overline{\textcircled{0}}$ 7.98 hrs, Volume= 0.042 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 152R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 153R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

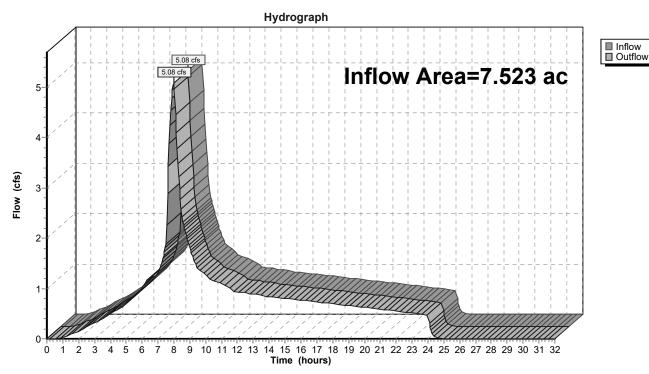
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 459

Summary for Reach 154R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 7.523 ac, 31.20% Impervious, Inflow Depth = 2.77" for 10-10 Year event


Inflow = 5.08 cfs @ 7.98 hrs, Volume= 1.739 af

Outflow = 5.08 cfs @ 7.98 hrs, Volume= 1.739 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 152R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 154R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

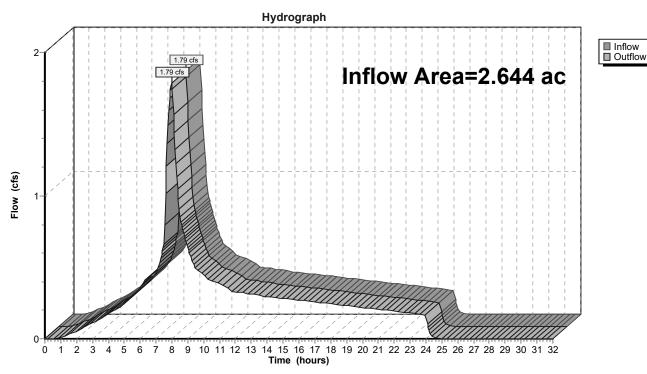
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 460

Summary for Reach 155R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.644 ac, 31.72% Impervious, Inflow Depth = 2.78" for 10-10 Year event


Inflow = 1.79 cfs @ 7.98 hrs, Volume= 0.612 af

Outflow = 1.79 cfs @ 7.98 hrs, Volume= 0.612 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 154R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 155R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

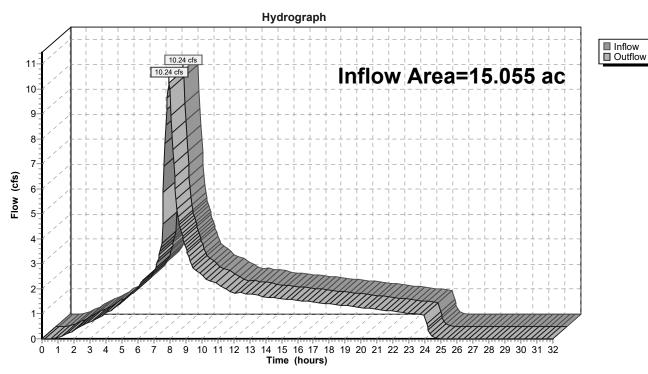
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

<u>Page 461</u>

Summary for Reach 158R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 15.055 ac, 35.08% Impervious, Inflow Depth = 2.79" for 10-10 Year event


Inflow = 10.24 cfs @ 7.98 hrs, Volume= 3.506 af

Outflow = 10.24 cfs @ 7.98 hrs, Volume= 3.506 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 134R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 158R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

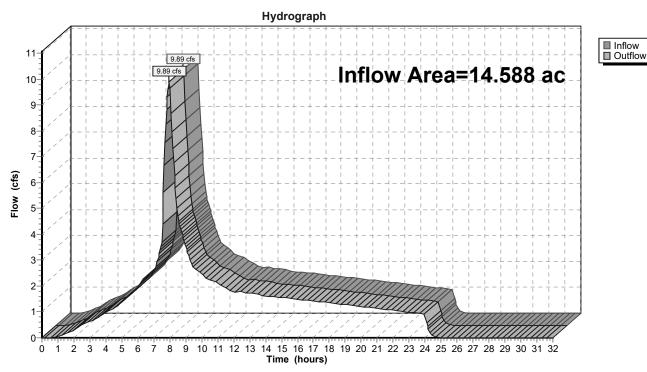
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 462

Summary for Reach 159R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.588 ac, 33.00% Impervious, Inflow Depth = 2.78" for 10-10 Year event


Inflow = 9.89 cfs @ 7.98 hrs, Volume= 3.384 af

Outflow = 9.89 cfs @ 7.98 hrs, Volume= 3.384 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 139R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 159R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

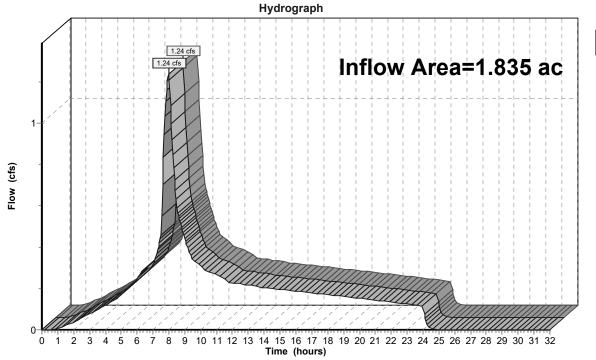
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 463

Summary for Reach 160R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.835 ac, 29.73% Impervious, Inflow Depth = 2.77" for 10-10 Year event


Inflow = 1.24 cfs @ 7.98 hrs, Volume= 0.423 af

Outflow = 1.24 cfs @ 7.98 hrs, Volume= 0.423 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 155R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 160R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

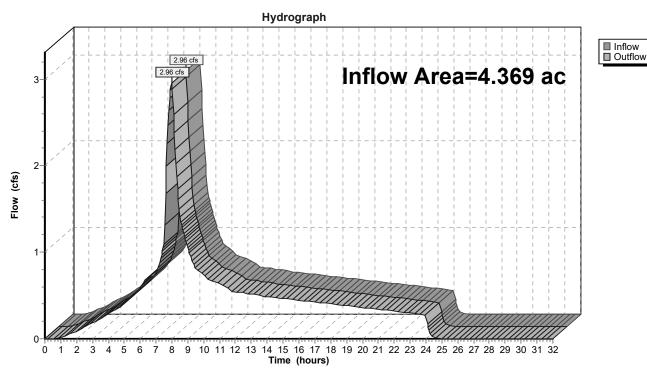
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 464

Summary for Reach 162R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.369 ac, 31.81% Impervious, Inflow Depth = 2.78" for 10-10 Year event


Inflow = 2.96 cfs @ 7.98 hrs, Volume= 1.011 af

Outflow = 2.96 cfs @ 7.98 hrs, Volume= 1.011 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 154R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 162R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

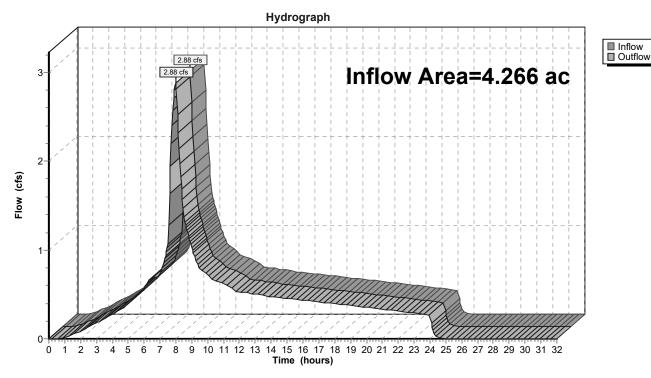
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 465

Summary for Reach 163R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.266 ac, 30.15% Impervious, Inflow Depth = 2.77" for 10-10 Year event


Inflow = 2.88 cfs @ 7.98 hrs, Volume= 0.984 af

Outflow = 2.88 cfs @ 7.98 hrs, Volume= 0.984 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 162R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 163R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

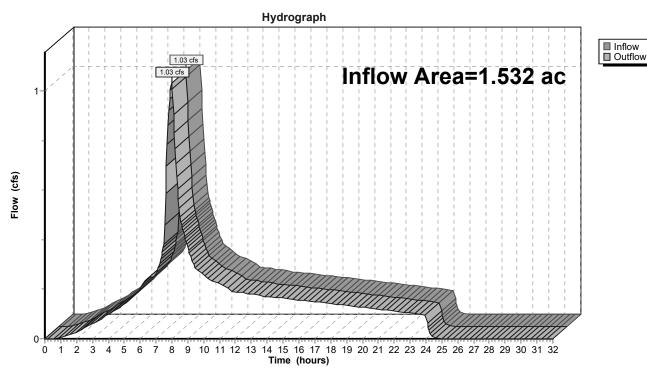
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 466

Summary for Reach 165R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.532 ac, 27.64% Impervious, Inflow Depth = 2.76" for 10-10 Year event


Inflow = 1.03 cfs @ 7.98 hrs, Volume= 0.352 af

Outflow = 1.03 cfs @ 7.98 hrs, Volume= 0.352 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 163R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 165R: 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

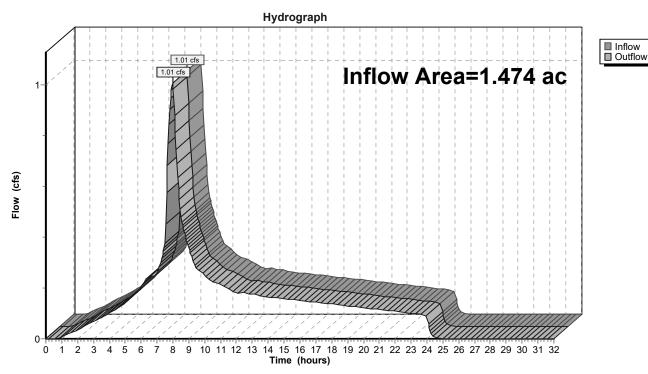
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 467

Summary for Reach 166R: Basin Future

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.474 ac, 37.85% Impervious, Inflow Depth = 2.81" for 10-10 Year event


Inflow = 1.01 cfs @ 7.98 hrs, Volume= 0.345 af

Outflow = 1.01 cfs @ 7.98 hrs, Volume= 0.345 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 163R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 166R: Basin Future

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 468

Summary for Pond 54P: Stormwater Swale 2

Inflow Area = 0.082 ac,100.00% Impervious, Inflow Depth = 3.14" for 10-10 Year event

Inflow = 0.06 cfs @ 7.98 hrs, Volume= 0.022 af

Outflow = 0.06 cfs @ 7.98 hrs, Volume= 0.022 af, Atten= 0%, Lag= 0.4 min

Primary = 0.06 cfs @ 7.98 hrs, Volume= 0.022 af

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Peak Elev= 222.42' @ 7.98 hrs Surf.Area= 185 sf Storage= 32 cf

Flood Elev= 223.30' Surf.Area= 192 sf Storage= 88 cf

Plug-Flow detention time= 37.0 min calculated for 0.022 af (100% of inflow)

Center-of-Mass det. time= 37.1 min (706.9 - 669.8)

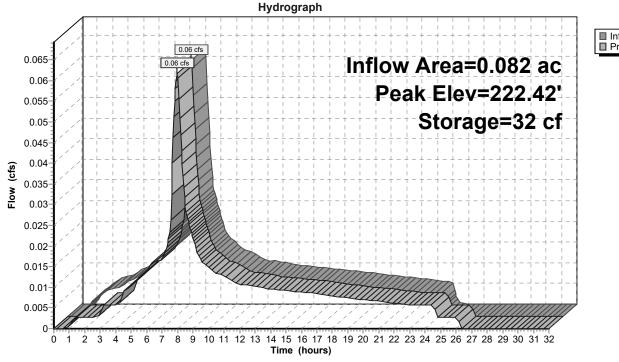
Volume	Inv	ert Avai	l.Storage	ge Storage Description			
#1	222.3	30'	63 cf	Open Storage (In	rregular)Listed be	low (Recalc)	
#2	220.8	30'	10 cf		regular) Listed bel	ow (Recalc)	
				101 cf Overall x			
#3	220.0	05'	15 cf		Irregular)Listed b	elow (Recalc)	
				44 cf Overall x 3			
			88 cf	Total Available St	torage		
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
222.3		(3q-1t) 59	33.0	0	(Cabic-icci)	59	
222.3	_	67	34.0	63	63	93	
220.0	U	07	34.0	03	0.5	90	
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
220.8	0	67	34.0	0	Ó	67	
222.3	0	67	34.0	101	101	118	
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	t)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
220.0	5	58	33.0	0	0	58	
220.8	0	58	33.0	44	44	83	
Б.	D "						
Device	Routing			et Devices			
#1	Primary	-		0 in/hr Perf Pipes		ea	
#2	Primary	223		Horiz. 4"Overflow ted to weir flow at I			
#3	Drimon	222		ted to weir flow at i " Vert. 10" Outflo			
#3	Primary	222		ted to weir flow at l			
			L	iod to won now at i	OW HOUGS		

Primary OutFlow Max=0.06 cfs @ 7.98 hrs HW=222.42' TW=0.00' (Dynamic Tailwater)

-1=Perf Pipes (Exfiltration Controls 0.01 cfs)

-2=4"Overflow Pipe (Controls 0.00 cfs)

-3=10" Outflow Pipe (Orifice Controls 0.05 cfs @ 1.16 fps)


Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Printed 9/6/2023

Page 469

Pond 54P: Stormwater Swale 2

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 470

Summary for Pond 60P: Stormwater Swale 1

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=46)

Inflow Area = 0.085 ac,100.00% Impervious, Inflow Depth = 3.14" for 10-10 Year event

Inflow = 0.06 cfs @ 7.98 hrs, Volume= 0.022 af

Outflow = 0.06 cfs @ 7.98 hrs, Volume= 0.022 af, Atten= 0%, Lag= 0.5 min

Primary = 0.06 cfs @ 7.98 hrs, Volume= 0.022 af

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Peak Elev= 222.07' @ 7.98 hrs Surf.Area= 195 sf Storage= 34 cf

Flood Elev= 222.95' Surf.Area= 204 sf Storage= 93 cf

Plug-Flow detention time= 37.3 min calculated for 0.022 af (100% of inflow)

Center-of-Mass det. time= 37.4 min (707.3 - 669.8)

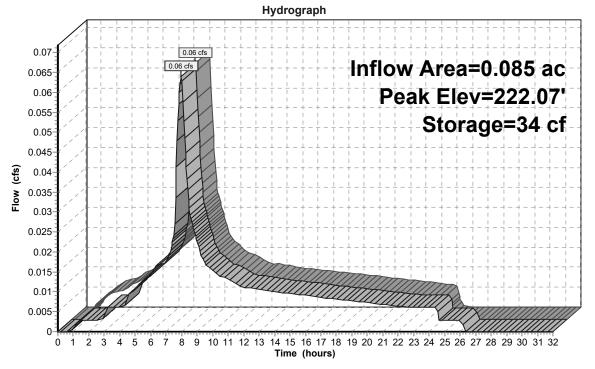
Volume	Inv	ert Avai	I.Storage	Storage Description				
#1	221.9		67 cf		rregular)Listed be			
#2	220.4	45	11 cf	108 cf Overall x	regular) Listed bel 10.0% Voids	low (Recalc)		
#3	219.7	70'	16 cf	Rock Chamber (Irregular)Listed b	elow (Recalc)		
			02 of					
			93 cf	Total Available St	lorage			
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(fee	t)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
221.9	95	62	34.0	0	0	62		
222.9	95	72	36.0	67	67	99		
- 1		O	D	la o Otana	0	107-4-0		
Elevatio		Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(fee		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
220.4	-	72	36.0	0	0	72		
221.9	15	72	36.0	108	108	126		
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area		
(fee		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)		
219.7	0	60	34.0	0	0	60		
220.4	-5	60	34.0	45	45	86		
Device	Routing			et Devices				
#1	Primary			0 in/hr Perf Pipes		ea		
#2	Primary	222		Horiz. 4"Overflov				
що.	D.:	004		ted to weir flow at I				
#3	Primary	221		" Vert. 10" Outflow Pipe C= 0.600 led to weir flow at low heads				
Elimited to well flow at low fleads								

Primary OutFlow Max=0.06 cfs @ 7.98 hrs HW=222.07' TW=0.00' (Dynamic Tailwater)

1=Perf Pipes (Exfiltration Controls 0.01 cfs)

—2=4"Overflow Pipe (Controls 0.00 cfs)

-3=10" Outflow Pipe (Orifice Controls 0.05 cfs @ 1.17 fps)


Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Printed 9/6/2023

Page 471

Pond 60P: Stormwater Swale 1

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 472

Summary for Pond 63P: Detention Pond

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=6)

Inflow Area = 23.038 ac, 36.38% Impervious, Inflow Depth = 2.80" for 10-10 Year event

Inflow = 15.71 cfs @ 7.98 hrs, Volume= 5.378 af

Outflow = 6.26 cfs @ 8.80 hrs, Volume= 5.377 af, Atten= 60%, Lag= 49.5 min

Primary = 6.26 cfs @ 8.80 hrs, Volume= 5.377 af

Routed to Reach 85R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Peak Elev= 223.70' @ 8.80 hrs Surf.Area= 46,157 sf Storage= 43,960 cf

Flood Elev= 225.50' Surf.Area= 48,838 sf Storage= 80,897 cf

Plug-Flow detention time= 103.6 min calculated for 5.377 af (100% of inflow)

Center-of-Mass det. time= 103.4 min (805.1 - 701.8)

Volume	Invert	Avail.Storage	Storage Description
#1	221.50'	75,859 cf	Open Storage (Irregular)Listed below (Recalc)
#2	220.00'	3,288 cf	Growing Medium (Irregular)Listed below (Recalc)
			32,879 cf Overall x 10.0% Voids
#3	219.00'	1,750 cf	Rock Chamber (Prismatic)Listed below (Recalc)
			5,000 cf Overall x 35.0% Voids
<u> </u>			=

80,897 cf Total Available Storage

	0	0,697 (1	Total Available Stor	age	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
221.50	16,108	696.8	0	0	16,108
222.50	17,511	717.0	16,805	16,805	18,488
223.50	18,943	738.5	18,222	35,027	21,082
224.50	20,410	754.7	19,672	54,699	23,147
225.50	21,919	770.9	21,160	75,859	25,257
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft <u>)</u>
220.00	21,919	770.9	0	0	21,919
221.50	21,919	770.9	32,879	32,879	23,075
Elevation (feet)	Surf.Area (sq-ft)	Inc	Store Cum.Si-feet) (cubic-fe	tore	20,010
219.00 220.00	5,000 5,000	(00.01	0	0	

Type IA 24-hr 10-10 Year Rainfall=3.37"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 473

Device	Routing	Invert	Outlet Devices		
#1	Primary	219.00'	24.0" Round 24" Pipe		
	•		L= 100.0' CPP, mitered to conform to fill, Ke= 0.700		
			Inlet / Outlet Invert= 219.00' / 218.80' S= 0.0020 '/' Cc= 0.900		
			n= 0.010, Flow Area= 3.14 sf		
#2	Device 1	219.00'	2.000 in/hr 4" Perf Pipes over Surface area		
#3	Device 1	221.85'	6.0" Vert. 2x6" Orifice X 2.00 C= 0.600		
			Limited to weir flow at low heads		
#4	Device 1	222.78'	6.0" Vert. 6" Orifice C= 0.600 Limited to weir flow at low heads		
#5	Device 1	222.95'	6.0" Vert. 6" Orifice C= 0.600 Limited to weir flow at low heads		
#6	Device 1	223.25'	4.0" Vert. 4" Orifice C= 0.600 Limited to weir flow at low heads		
#7	Device 1	223.55'	4.0" Vert. 4" Orifice C= 0.600 Limited to weir flow at low heads		
#8	Device 1	223.77'	4.0" Vert. 2x4" Orifice X 2.00 C= 0.600		
			Limited to weir flow at low heads		
#9	Device 1	224.35'	48.0" x 48.0" Horiz. 48" Overflow C= 0.600		
			Limited to weir flow at low heads		

Primary OutFlow Max=6.26 cfs @ 8.80 hrs HW=223.70' TW=0.00' (Dynamic Tailwater)

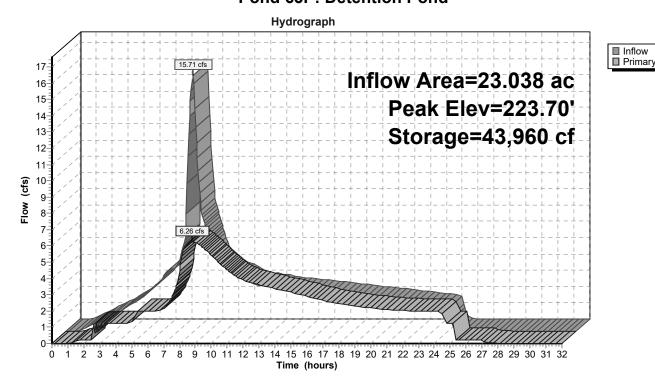
—1=24" Pipe (Passes 6.26 cfs of 25.69 cfs potential flow)

-2=4" Perf Pipes (Exfiltration Controls 2.14 cfs)

-3=2x6" Orifice (Orifice Controls 2.39 cfs @ 6.10 fps)

-4=6" Orifice (Orifice Controls 0.78 cfs @ 3.95 fps)

-5=6" Orifice (Orifice Controls 0.67 cfs @ 3.42 fps)


-6=4" Orifice (Orifice Controls 0.23 cfs @ 2.58 fps)

-7=4" Orifice (Orifice Controls 0.05 cfs @ 1.34 fps)

-8=2x4" Orifice (Controls 0.00 cfs)

-9=48" Overflow (Controls 0.00 cfs)

Pond 63P: Detention Pond

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Printed 9/6/2023

Page 474

Time span=0.00-32.00 hrs, dt=0.05 hrs, 641 points
Runoff by SBUH method, Split Pervious/Imperv.
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

rtcaon	rodding by byn-otor-i	na method - 1 ond rodding by byn-otol-ind method
Subcatchment64S	: Home Basin 20	Runoff Area=9,940 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.18 cfs 0.060 af
Subcatchment65S	Single Pond Existin Flow Length=1,526'	g Runoff Area=23.038 ac 0.00% Impervious Runoff Depth>2.77" Slope=0.0076 '/' Tc=73.0 min CN=89/0 Runoff=7.91 cfs 5.312 af
Subcatchment67S:	Home Basin 19	Runoff Area=17,197 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.31 cfs 0.104 af
Subcatchment68S	Home Basin 12	Runoff Area=18,133 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.32 cfs 0.110 af
Subcatchment69S	Home Basin 17	Runoff Area=16,661 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.30 cfs 0.101 af
Subcatchment70S	Home Basin 18	Runoff Area=11,596 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.21 cfs 0.070 af
Subcatchment71S	Home Basin 14	Runoff Area=16,444 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.29 cfs 0.099 af
Subcatchment72S:	Home Basin 16	Runoff Area=20,310 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.36 cfs 0.123 af
Subcatchment73S:	Home Basin 13	Runoff Area=10,807 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.19 cfs 0.065 af
Subcatchment74S	Swale Existing Flow Length=105'	Runoff Area=0.168 ac 0.00% Impervious Runoff Depth=2.77" Slope=0.0565 '/' Tc=10.0 min CN=89/0 Runoff=0.11 cfs 0.039 af
Subcatchment75S:	Home Basin 11	Runoff Area=18,483 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.33 cfs 0.112 af
Subcatchment77S:	Home Basin 15	Runoff Area=12,503 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.22 cfs 0.076 af
Subcatchment78S:	: Single Pond	Runoff Area=21,919 sf 100.00% Impervious Runoff Depth=3.71" Tc=0.0 min CN=0/98 Runoff=0.47 cfs 0.155 af
Subcatchment79S:	Home Basin 30	Runoff Area=38,416 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.69 cfs 0.232 af
Subcatchment80S	Home Basin 10	Runoff Area=14,789 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.26 cfs 0.089 af
Subcatchment81S	Home Basin 9	Runoff Area=15,575 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.28 cfs 0.094 af

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Printed 9/6/2023 Page 475

Subcatchment82S: Home Basin 2 Runoff Area=20,667 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.37 cfs 0.125 af Runoff Area=17,032 sf 0.00% Impervious Runoff Depth=3.16" Subcatchment83S: Home Basin 7 Tc=10.0 min CN=93/0 Runoff=0.30 cfs 0.103 af Subcatchment84S: Home Basin 8 Runoff Area=11,668 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.21 cfs 0.071 af Runoff Area=25,118 sf 0.00% Impervious Runoff Depth=3.16" Subcatchment85S: Home Basin 29 Tc=10.0 min CN=93/0 Runoff=0.45 cfs 0.152 af Runoff Area=16,159 sf 0.00% Impervious Runoff Depth=3.16" Subcatchment86S: Home Basin 22 Tc=10.0 min CN=93/0 Runoff=0.29 cfs 0.098 af Runoff Area=24,839 sf 0.00% Impervious Runoff Depth=3.16" Subcatchment87S: Home Basin 27 Tc=10.0 min CN=93/0 Runoff=0.44 cfs 0.150 af Subcatchment88S: Home Basin 28 Runoff Area=25,318 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.45 cfs 0.153 af Runoff Area=20,676 sf 0.00% Impervious Runoff Depth=3.16" Subcatchment89S: Home Basin 24 Tc=10.0 min CN=93/0 Runoff=0.37 cfs 0.125 af Runoff Area=14.135 sf 0.00% Impervious Runoff Depth=3.16" Subcatchment90S: Home Basin 26 Tc=10.0 min CN=93/0 Runoff=0.25 cfs 0.085 af Runoff Area=12,271 sf 0.00% Impervious Runoff Depth=3.16" Subcatchment91S: Home Basin 23 Tc=10.0 min CN=93/0 Runoff=0.22 cfs 0.074 af Subcatchment92S: Home Basin 21 Runoff Area=27,019 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.48 cfs 0.163 af Subcatchment93S: Home Basin 25 Runoff Area=17,012 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.30 cfs 0.103 af Subcatchment94S: Home Basin 4 Runoff Area=19,535 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.35 cfs 0.118 af Subcatchment95S: Home Basin 31 Runoff Area=24,883 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.45 cfs 0.150 af Subcatchment96S: Basin 1 Runoff Area=15,045 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.30 cfs 0.107 af Subcatchment97S: Basin 2 Runoff Area=19,824 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.40 cfs 0.141 af Subcatchment98S: Basin 3 Runoff Area=23,416 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.47 cfs 0.166 af

Printed 9/6/2023

9-6-23 HydroCAD DOMPrepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Type IA 24-hr 25-25 Year Rainfall=3.94"

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD®	droCAD Software Solutions LLC Page 476
Subcatchment99S: Home Basin 6	Runoff Area=25,997 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.46 cfs 0.157 af
Subcatchment100S: Basin 4	Runoff Area=3,650 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.07 cfs 0.026 af
Subcatchment101S: Basin 5	Runoff Area=3,523 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.07 cfs 0.025 af
Subcatchment102S: Home Basin 3	Runoff Area=19,559 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.35 cfs 0.118 af
Subcatchment103S: Home Basin 1	Runoff Area=22,288 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.40 cfs 0.135 af
Subcatchment104S: Home Basin 5	Runoff Area=33,512 sf 0.00% Impervious Runoff Depth=3.16" Tc=10.0 min CN=93/0 Runoff=0.60 cfs 0.203 af
Subcatchment105S: Basin 6	Runoff Area=8,965 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.18 cfs 0.064 af
Subcatchment107S: Basin 8	Runoff Area=8,177 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.17 cfs 0.058 af
Subcatchment108S: Basin 9	Runoff Area=13,130 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.27 cfs 0.093 af
Subcatchment109S: Basin 10	Runoff Area=22,902 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.46 cfs 0.162 af
Subcatchment110S: Basin 11	Runoff Area=25,748 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.52 cfs 0.183 af
Subcatchment111S: Basin 12	Runoff Area=5,562 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.11 cfs 0.039 af
Subcatchment112S: Basin 13	Runoff Area=4,702 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.10 cfs 0.033 af
Subcatchment113S: Basin 14	Runoff Area=7,669 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.16 cfs 0.054 af
Subcatchment114S: Basin 15	Runoff Area=7,261 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.15 cfs 0.051 af
Subcatchment115S: Basin 16	Runoff Area=7,066 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.14 cfs 0.050 af
Subcatchment116S: Basin 17	Runoff Area=26,003 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.53 cfs 0.184 af

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 477

Runoff Area=23,761 sf 100.00% Impervious Runoff Depth=3.71" Subcatchment117S: Basin 18 Tc=10.0 min CN=0/98 Runoff=0.48 cfs 0.168 af Subcatchment118S: Basin 19 Runoff Area=7,309 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.15 cfs 0.052 af Subcatchment119S: Basin 20 Runoff Area=7,535 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.15 cfs 0.053 af Subcatchment120S: Basin 21 Runoff Area=6,846 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.14 cfs 0.049 af Runoff Area=5,182 sf 100.00% Impervious Runoff Depth=3.71" Subcatchment121S: Basin 22 Tc=10.0 min CN=0/98 Runoff=0.10 cfs 0.037 af Subcatchment 122S: Basin 23 Runoff Area=5.456 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.11 cfs 0.039 af Subcatchment123S: Basin 24 Runoff Area=4,510 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.09 cfs 0.032 af Runoff Area=13,271 sf 100.00% Impervious Runoff Depth=3.71" Subcatchment124S: Basin 25 Tc=10.0 min CN=0/98 Runoff=0.27 cfs 0.094 af Runoff Area=18,452 sf 100.00% Impervious Runoff Depth=3.71" Subcatchment 125S: Basin 26 Tc=10.0 min CN=0/98 Runoff=0.37 cfs 0.131 af Runoff Area=9,860 sf 100.00% Impervious Runoff Depth=3.71" Subcatchment126S: Alley Basin 1 Tc=10.0 min CN=0/98 Runoff=0.20 cfs 0.070 af Subcatchment127S: Alley Basin 2 Runoff Area=7,461 sf 100.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=0/98 Runoff=0.15 cfs 0.053 af Runoff Area=6,782 sf 100.00% Impervious Runoff Depth=3.71" Subcatchment 128S: Alley Basin 3 Tc=10.0 min CN=0/98 Runoff=0.14 cfs 0.048 af Runoff Area=6,970 sf 100.00% Impervious Runoff Depth=3.71" Subcatchment129S: Alley Basin 4 Tc=10.0 min CN=0/98 Runoff=0.14 cfs 0.049 af Subcatchment 168S: Future Lots Runoff Area=64,223 sf 37.85% Impervious Runoff Depth=3.37" Tc=10.0 min CN=93/98 Runoff=1.21 cfs 0.414 af Subcatchment169S: Swale 2 Runoff Area=67 sf 100.00% Impervious Runoff Depth=3.71" Tc=0.0 min CN=0/98 Runoff=0.00 cfs 0.000 af Runoff Area=72 sf 100.00% Impervious Runoff Depth=3.71" Subcatchment 170S: Swale 1

Reach 39R: Post-ConstructionPeak Flow

Inflow=7.97 cfs 6.500 af Outflow=7.97 cfs 6.500 af

Tc=0.0 min CN=0/98 Runoff=0.00 cfs 0.001 af

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC	Printed 9/6/2023 Page 478
Reach 42R: Pre-ConstructionPeak Flow	Inflow=7.98 cfs 5.350 af Outflow=7.98 cfs 5.350 af
Reach 58R: 1	Inflow=7.97 cfs 6.500 af Outflow=7.97 cfs 6.500 af
Reach 85R: 1	Inflow=7.91 cfs 6.448 af Outflow=7.91 cfs 6.448 af
Reach 130R: 1	Inflow=3.21 cfs 1.101 af Outflow=3.21 cfs 1.101 af
Reach 131R: 1	Inflow=3.21 cfs 1.101 af Outflow=3.21 cfs 1.101 af
Reach 132R: 1	Inflow=1.84 cfs 0.631 af Outflow=1.84 cfs 0.631 af
Reach 133R: 1	Inflow=0.30 cfs 0.107 af Outflow=0.30 cfs 0.107 af
Reach 134R: 1	Inflow=14.77 cfs 5.060 af Outflow=14.77 cfs 5.060 af
Reach 135R: 1	Inflow=2.50 cfs 0.854 af Outflow=2.50 cfs 0.854 af
Reach 136R: 1	Inflow=1.42 cfs 0.486 af Outflow=1.42 cfs 0.486 af
Reach 137R: 1	Inflow=0.86 cfs 0.297 af Outflow=0.86 cfs 0.297 af
Reach 138R: 1	Inflow=0.38 cfs 0.133 af Outflow=0.38 cfs 0.133 af
Reach 139R: 1	Inflow=12.01 cfs 4.114 af Outflow=12.01 cfs 4.114 af
Reach 140R: 1	Inflow=0.20 cfs 0.070 af Outflow=0.20 cfs 0.070 af
Reach 141R: 1	Inflow=0.15 cfs 0.053 af Outflow=0.15 cfs 0.053 af
Reach 142R: 1	Inflow=11.39 cfs 3.903 af Outflow=11.39 cfs 3.903 af
Reach 143R: 1	Inflow=2.32 cfs 0.794 af Outflow=2.32 cfs 0.794 af

9-6-23 HydroCAD DOMPrepared by A&O Engineering LLC

Type IA 24-hr 25-25 Year Rainfall=3.94"

	24-nr 25-25 Year Raintail=3.94
Prepared by A&O Engineering LLC	Printed 9/6/2023
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC	Page 479
Reach 144R: 1	Inflow=1.66 cfs 0.569 af
	Outflow=1.66 cfs 0.569 af
Reach 145R: 1	Inflow=1.66 cfs 0.569 af
	Outflow=1.66 cfs 0.569 af
Reach 146R: 1	Inflow=9.07 cfs 3.109 af
	Outflow=9.07 cfs 3.109 af
Reach 147R: 1	Inflow=0.14 cfs 0.048 af
	Outflow=0.14 cfs 0.048 af
	Guillew 6.11 616 6.616 ul
Reach 148R: 1	Inflow=8.94 cfs 3.061 af
Neach 140N. 1	Outflow=8.94 cfs 3.061 af
	Outilow=0.94 Cis 3.001 ai
Reach 149R: 1	Inflow=2.26 of 0.775 of
Reach 149R: 1	Inflow=2.26 cfs 0.775 af
	Outflow=2.26 cfs 0.775 af
D 1.450D.4	1.51.5.0500.5
Reach 150R: 1	Inflow=1.54 cfs 0.526 af
	Outflow=1.54 cfs 0.526 af
Reach 151R: 1	Inflow=1.17 cfs 0.403 af
	Outflow=1.17 cfs 0.403 af
Reach 152R: 1	Inflow=6.24 cfs 2.138 af
	Outflow=6.24 cfs 2.138 af
Reach 153R: 1	Inflow=0.14 cfs 0.049 af
	Outflow=0.14 cfs 0.049 af
Reach 154R: 1	Inflow=6.10 cfs 2.088 af
	Outflow=6.10 cfs 2.088 af
Reach 155R: 1	Inflow=2.14 cfs 0.734 af
	Outflow=2.14 cfs 0.734 af
Reach 158R: 1	Inflow=12.27 cfs 4.206 af
	Outflow=12.27 cfs 4.206 af
Reach 159R: 1	Inflow=11.86 cfs 4.062 af
	Outflow=11.86 cfs 4.062 af
	Guillett 11.00 ele 1.002 ul
Reach 160R: 1	Inflow=1.48 cfs 0.508 af
TOUGH 1991(1)	Outflow=1.48 cfs 0.508 af
	Camow-1.70 013 0.000 at
Reach 162R: 1	Inflow=3.55 cfs 1.214 af
NEGGII 102N. I	Outflow=3.55 cfs 1.214 af
	Outilow-5.55 CIS 1.214 at
Decel 402D: 4	Inflow=2 45 ata 4 400 at
Reach 163R: 1	Inflow=3.45 cfs 1.182 af
	Outflow=3.45 cfs 1.182 af

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 480

Reach 165R: 1 Inflow=1.24 cfs 0.423 af

Outflow=1.24 cfs 0.423 af

Reach 166R: Basin Future Inflow=1.21 cfs 0.414 af

Outflow=1.21 cfs 0.414 af

Pond 54P: Stormwater Swale 2 Peak Elev=222.43' Storage=33 cf Inflow=0.07 cfs 0.025 af

Outflow=0.07 cfs 0.025 af

Pond 60P: Stormwater Swale 1 Peak Elev=222.08' Storage=35 cf Inflow=0.08 cfs 0.026 af

Outflow=0.08 cfs 0.026 af

Pond 63P: Detention Pond Peak Elev=224.18' Storage=53,277 cf Inflow=18.82 cfs 6.449 af

Outflow=7.91 cfs 6.448 af

Total Runoff Area = 46.412 ac Runoff Volume = 11.852 af Average Runoff Depth = 3.06" 81.58% Pervious = 37.863 ac 18.42% Impervious = 8.549 ac

Type IA 24-hr 25-25 Year Rainfall=3.94"

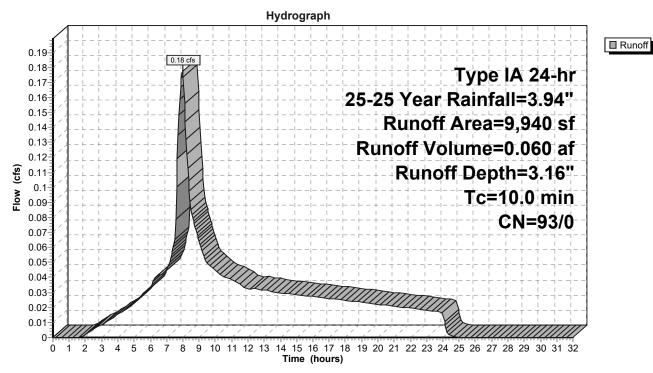
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 481

Summary for Subcatchment 64S: Home Basin 20


Runoff = 0.18 cfs @ 7.98 hrs, Volume= 0.060 af, Depth= 3.16"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description					
*		9,940	93	70% Lot Coverage Weighted					
		9,940	93	100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
	10.0					Direct Entry,			

Subcatchment 64S: Home Basin 20

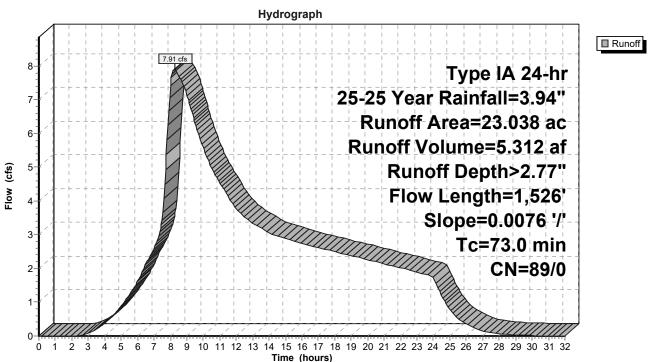
Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 482


Summary for Subcatchment 65S: Single Pond Existing Conditions

Runoff = 7.91 cfs @ 8.27 hrs, Volume= 5.312 af, Depth> 2.77" Routed to Reach 42R : Pre-Construction Peak Flow

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Area	(ac) C	N Des	cription		
_	23.	038 8	39 Past	ture/grassl	and/range,	Poor, HSG D
	23.	038 8	39 100.	00% Pervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	39.5	300	0.0076	0.13	, ,	Sheet Flow,
	33.5	1,226	0.0076	0.61		Grass: Short n= 0.150 P2= 2.47" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
	73.0	1 526	Total			

Subcatchment 65S: Single Pond Existing Conditions

Type IA 24-hr 25-25 Year Rainfall=3.94"

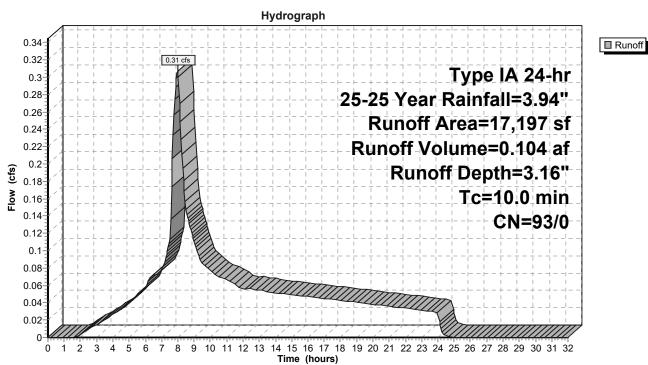
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 483

Summary for Subcatchment 67S: Home Basin 19


Runoff = 0.31 cfs @ 7.98 hrs, Volume= 0.104 af, Depth= 3.16"

Routed to Reach 159R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description					
*		17,197	93	70% Lot Coverage Weighted					
		17,197	93	100.00% Pervious Area					
		Length	Slope	,	. ,	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 67S: Home Basin 19

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 484

Summary for Subcatchment 68S: Home Basin 12

Runoff = 0.32 cfs @ 7.98 hrs, Volume= 0.110 af, Depth= 3.16"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description						
*		18,133	93	70% Lot Coverage Weighted						
		18,133	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
_	10.0	, ,	, /	, ,	· /	Direct Entry,				

Subcatchment 68S: Home Basin 12

Type IA 24-hr 25-25 Year Rainfall=3.94"

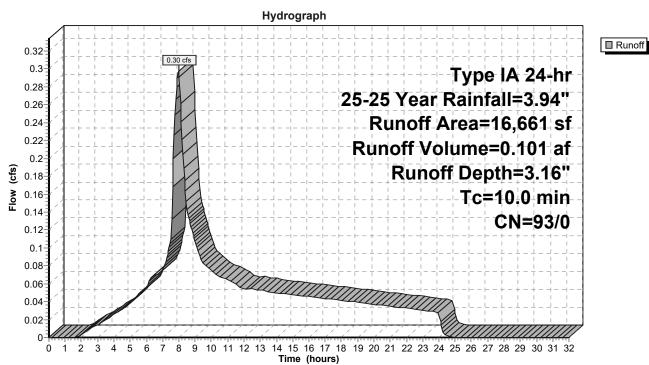
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 485

Summary for Subcatchment 69S: Home Basin 17


Runoff = 0.30 cfs @ 7.98 hrs, Volume= 0.101 af, Depth= 3.16"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description						
*		16,661	93	70% Lot Coverage Weighted						
		16,661	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
_	10.0	, ,		,	, ,	Direct Entry,				

Subcatchment 69S: Home Basin 17

Type IA 24-hr 25-25 Year Rainfall=3.94"

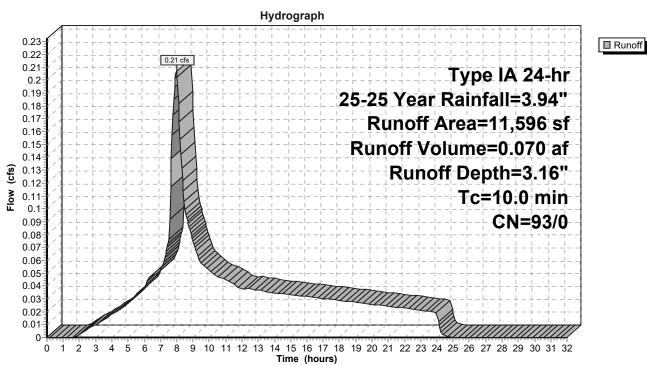
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 486

Summary for Subcatchment 70S: Home Basin 18


Runoff = 0.21 cfs @ 7.98 hrs, Volume= 0.070 af, Depth= 3.16"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN I	Description						
*		11,596	93	70% Lot Coverage Weighted						
		11,596	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	10.0	•	,	,	, ,	Direct Entry,				

Subcatchment 70S: Home Basin 18

Type IA 24-hr 25-25 Year Rainfall=3.94"

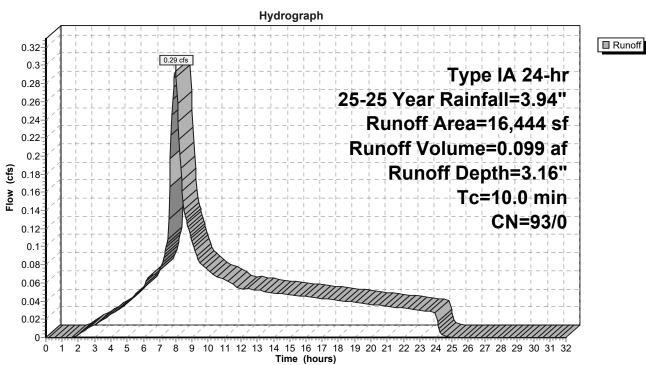
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 487

Summary for Subcatchment 71S: Home Basin 14


Runoff = 0.29 cfs @ 7.98 hrs, Volume= 0.099 af, Depth= 3.16"

Routed to Reach 148R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description						
*		16,444	93	70% Lot Coverage Weighted						
		16,444	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0					Direct Entry,				

Subcatchment 71S: Home Basin 14

Type IA 24-hr 25-25 Year Rainfall=3.94"

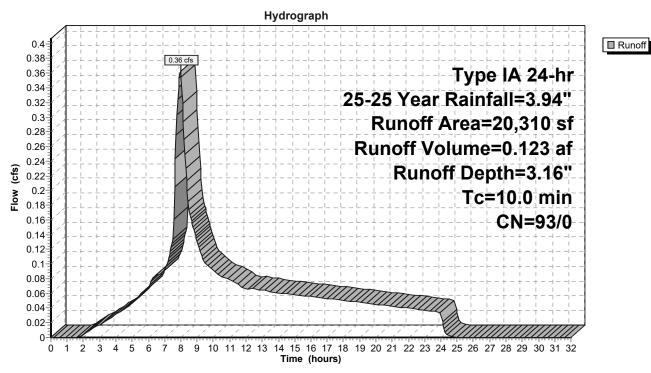
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 488

Summary for Subcatchment 72S: Home Basin 16


Runoff = 0.36 cfs @ 7.98 hrs, Volume= 0.123 af, Depth= 3.16"

Routed to Reach 150R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description						
*		20,310	93	70% Lot Coverage Weighted						
_		20,310	93	3 100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
_	10.0	•	•			Direct Entry,				

Subcatchment 72S: Home Basin 16

Type IA 24-hr 25-25 Year Rainfall=3.94"

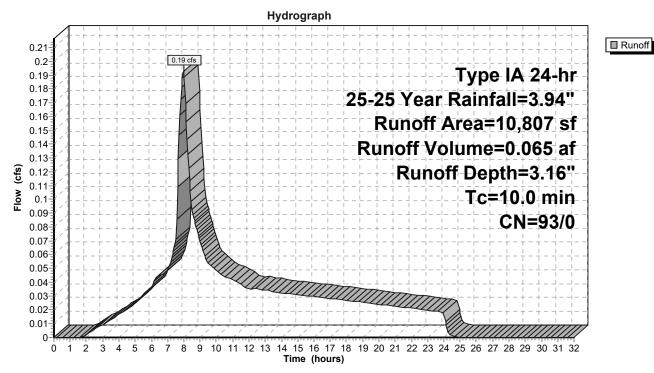
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 489

Summary for Subcatchment 73S: Home Basin 13


Runoff = 0.19 cfs @ 7.98 hrs, Volume= 0.065 af, Depth= 3.16"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description					
*		10,807	93	70% Lot Coverage Weighted					
		10,807	93	100.00% Pervious Area					
	Тс	3	Slope	,	. ,	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 73S: Home Basin 13

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

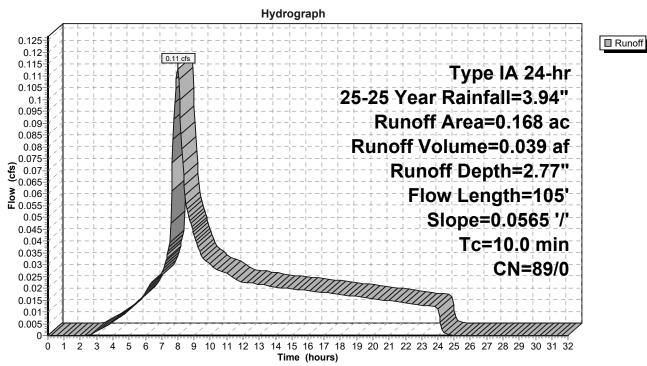
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 490

Summary for Subcatchment 74S: Swale Existing Conditions

Runoff = 0.11 cfs @ 7.99 hrs, Volume= 0.039 af, Depth= 2.77"


Routed to Reach 42R: Pre-Construction Peak Flow

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

Area (ac) CN Description								
0.	168	89 Past	ture/grassl	and/range,	Poor, HSG D			
0.	0.168 89 100.00% Pervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
7.7	105	0.0565	0.23		Sheet Flow, Grass: Short	n= 0.150	P2= 2.47"	

7.7 105 Total, Increased to minimum Tc = 10.0 min

Subcatchment 74S: Swale Existing Conditions

Type IA 24-hr 25-25 Year Rainfall=3.94"

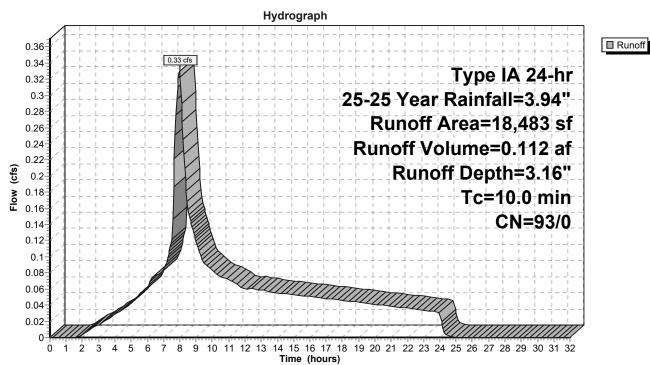
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 491

Summary for Subcatchment 75S: Home Basin 11


Runoff = 0.33 cfs @ 7.98 hrs, Volume= 0.112 af, Depth= 3.16"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description						
*		18,483	93	70% Lot Coverage Weighted						
		18,483	93	100.00% Pervious Area						
_	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0		•			Direct Entry,				

Subcatchment 75S: Home Basin 11

Type IA 24-hr 25-25 Year Rainfall=3.94"

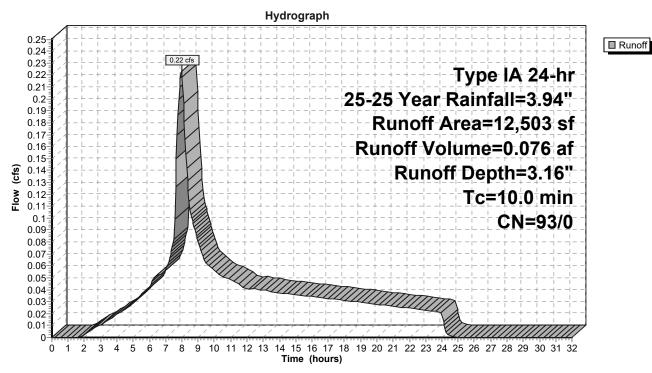
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 492

Summary for Subcatchment 77S: Home Basin 15


Runoff = 0.22 cfs @ 7.98 hrs, Volume= 0.076 af, Depth= 3.16"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description						
*		12,503	93	70% Lot Coverage Weighted						
		12,503	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	10.0	, ,	, ,	, ,	, ,	Direct Entry,				

Subcatchment 77S: Home Basin 15

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

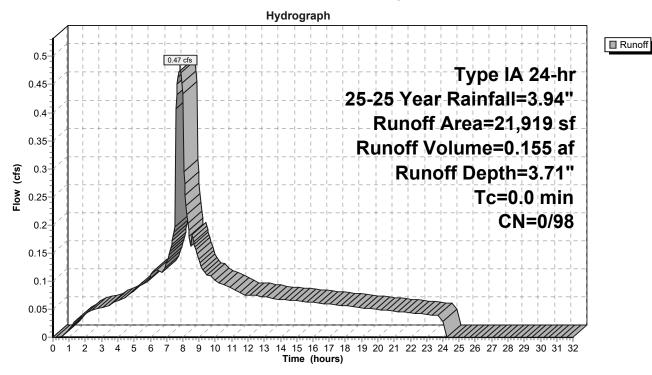
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 493

Summary for Subcatchment 78S: Single Pond

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 0.47 cfs @ 7.80 hrs, Volume=


0.155 af, Depth= 3.71"

Routed to Pond 63P: Detention Pond

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

 Area (sf)	CN	Description
21,919	98	Water Surface, HSG D
21,919	98	100.00% Impervious Area

Subcatchment 78S: Single Pond

Type IA 24-hr 25-25 Year Rainfall=3.94"

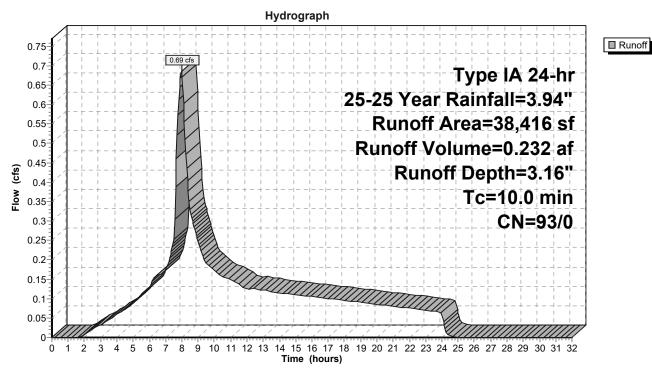
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 494

Summary for Subcatchment 79S: Home Basin 30


Runoff = 0.69 cfs @ 7.98 hrs, Volume= 0.232 af, Depth= 3.16"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description						
4	•	38,416	93	70% Lot Coverage Weighted						
_		38,416	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	10.0					Direct Entry,				

Subcatchment 79S: Home Basin 30

Type IA 24-hr 25-25 Year Rainfall=3.94"

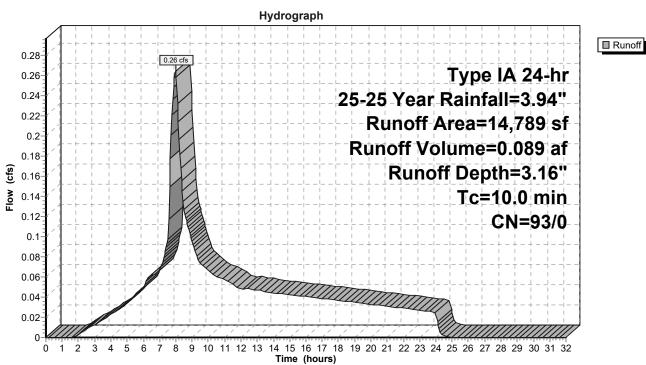
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 495

Summary for Subcatchment 80S: Home Basin 10


Runoff = 0.26 cfs @ 7.98 hrs, Volume= 0.089 af, Depth= 3.16"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN I	Description						
*		14,789	93	70% Lot Coverage Weighted						
_		14,789	93	100.00% Pervious Area						
		Length		,		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 80S: Home Basin 10

Type IA 24-hr 25-25 Year Rainfall=3.94"

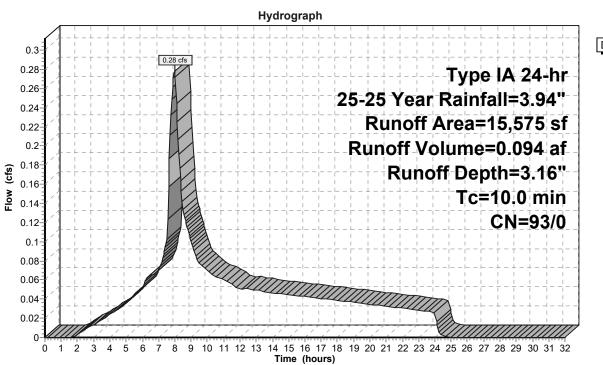
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 496

Summary for Subcatchment 81S: Home Basin 9


Runoff = 0.28 cfs @ 7.98 hrs, Volume= 0.094 af, Depth= 3.16"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	А	rea (sf)	CN [N Description					
*	•	15,575	93 7	70% Lot Coverage Weighted					
_		15,575	93 ′	3 100.00% Pervious Area					
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry			

Subcatchment 81S: Home Basin 9

■ Runoff

Type IA 24-hr 25-25 Year Rainfall=3.94"

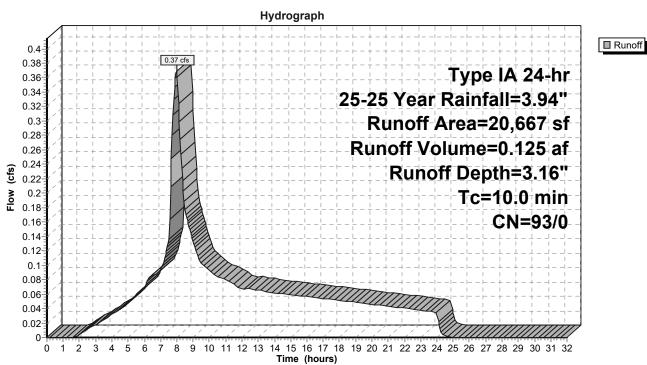
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 497

Summary for Subcatchment 82S: Home Basin 2


Runoff = 0.37 cfs @ 7.98 hrs, Volume= 0.125 af, Depth= 3.16"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

	Α	rea (sf)	CN	Description				
	*	20,667	93	70% Lot Coverage Weighted				
-		20,667	93 100.00% Pervious Area					
	Тс	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
_	10.0					Direct Entry		

Subcatchment 82S: Home Basin 2

Type IA 24-hr 25-25 Year Rainfall=3.94"

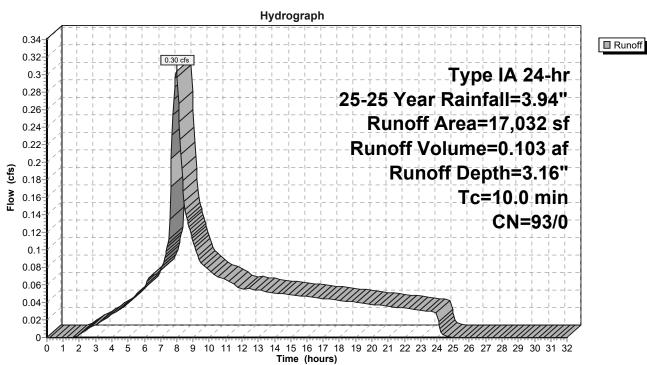
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 498

Summary for Subcatchment 83S: Home Basin 7


Runoff = 0.30 cfs @ 7.98 hrs, Volume= 0.103 af, Depth= 3.16"

Routed to Reach 154R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

Α	rea (sf)	CN	Description				
*	17,032	93	70% Lot Coverage Weighted				
	17,032	93	100.00% Pervious Area				
Tc	Length	Slone	Velocity	Canacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description		
10.0					Direct Entry		

Subcatchment 83S: Home Basin 7

Type IA 24-hr 25-25 Year Rainfall=3.94"

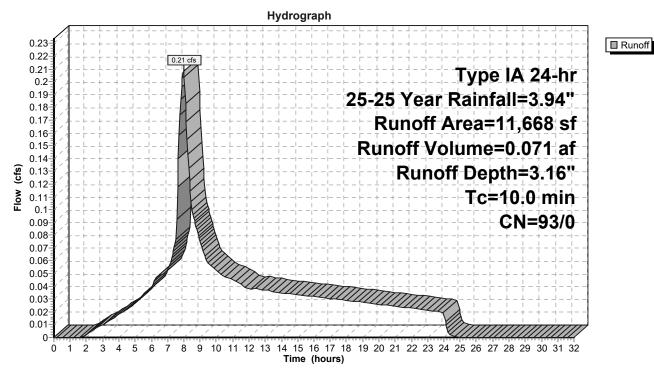
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 499

Summary for Subcatchment 84S: Home Basin 8


Runoff = 0.21 cfs @ 7.98 hrs, Volume= 0.071 af, Depth= 3.16"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description						
*		11,668	93	70% Lot Coverage Weighted						
_		11,668	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0					Direct Entry,				

Subcatchment 84S: Home Basin 8

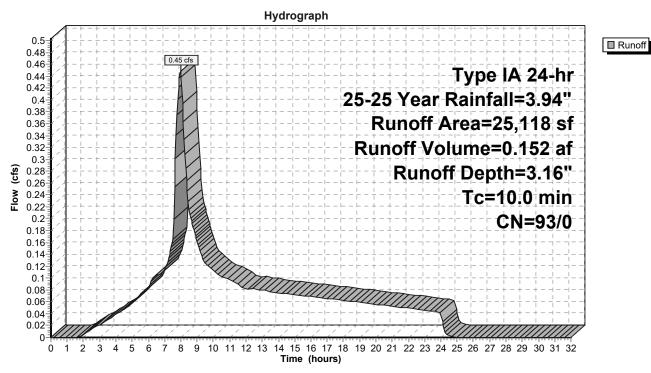
Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Printed 9/6/2023

Page 500

Summary for Subcatchment 85S: Home Basin 29


Runoff = 0.45 cfs @ 7.98 hrs, Volume= 0.152 af, Depth= 3.16"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

	Α	rea (sf)	CN I	Description						
*		25,118	93	70% Lot Coverage Weighted						
	25,118 93 100.00% Pervious Area					ea				
	Tc	J	Slope	,	. ,	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 85S: Home Basin 29

Type IA 24-hr 25-25 Year Rainfall=3.94"

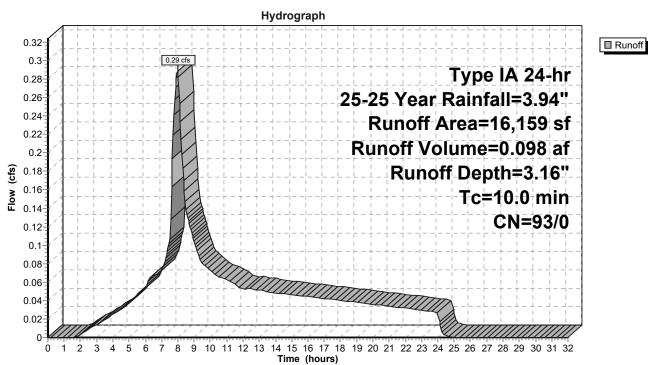
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 501

Summary for Subcatchment 86S: Home Basin 22


Runoff = 0.29 cfs @ 7.98 hrs, Volume= 0.098 af, Depth= 3.16"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description						
*		16,159	93	70% Lot Coverage Weighted						
		16,159	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0	-			-	Direct Entry,				

Subcatchment 86S: Home Basin 22

Type IA 24-hr 25-25 Year Rainfall=3.94"

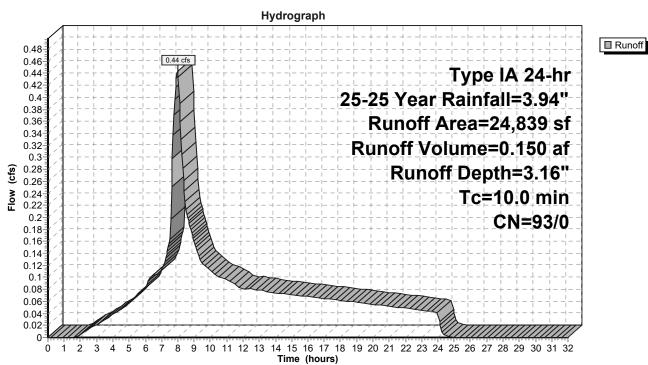
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 502

Summary for Subcatchment 87S: Home Basin 27


Runoff = 0.44 cfs @ 7.98 hrs, Volume= 0.150 af, Depth= 3.16"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN I	Description						
*		24,839	93	70% Lot Coverage Weighted						
		24,839	93	3 100.00% Pervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
_	10.0		•			Direct Entry,				

Subcatchment 87S: Home Basin 27

Type IA 24-hr 25-25 Year Rainfall=3.94"

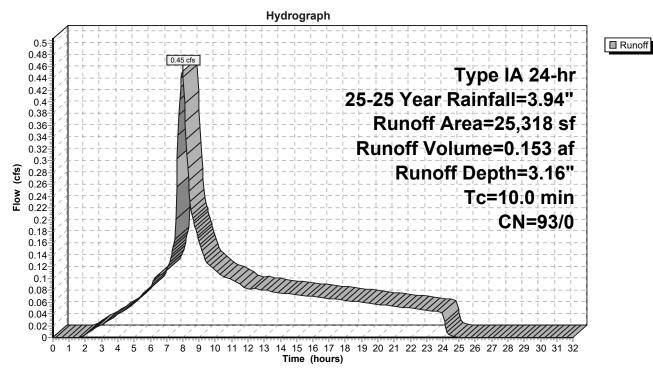
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 503

Summary for Subcatchment 88S: Home Basin 28


Runoff = 0.45 cfs @ 7.98 hrs, Volume= 0.153 af, Depth= 3.16"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description						
*		25,318	93	70% Lot Coverage Weighted						
		25,318	93	ea						
	Тс	Length	Slope	•		Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 88S: Home Basin 28

Type IA 24-hr 25-25 Year Rainfall=3.94"

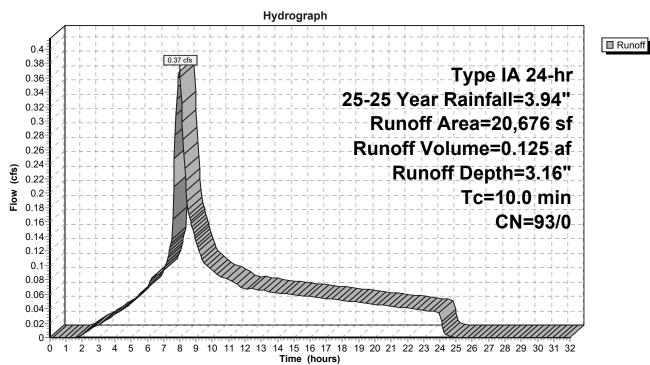
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 504

Summary for Subcatchment 89S: Home Basin 24


Runoff = 0.37 cfs @ 7.98 hrs, Volume= 0.125 af, Depth= 3.16"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description						
*		20,676	93	70% Lot Coverage Weighted						
		20,676 93 100.00% Pervious Area								
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
-	10.0	()	(14,11)	(1200)	(3.5)	Direct Entry				

Subcatchment 89S: Home Basin 24

Type IA 24-hr 25-25 Year Rainfall=3.94"

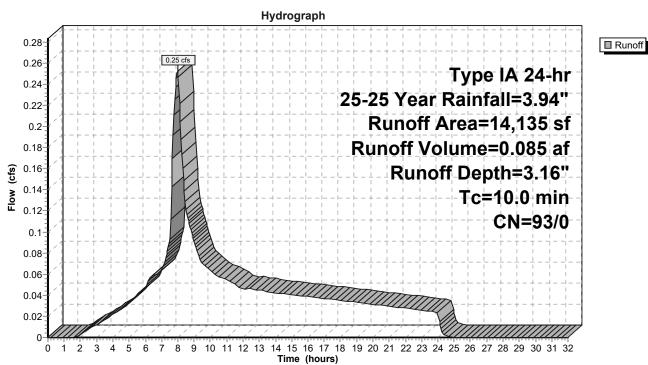
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 505

Summary for Subcatchment 90S: Home Basin 26


Runoff = 0.25 cfs @ 7.98 hrs, Volume= 0.085 af, Depth= 3.16"

Routed to Reach 136R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description						
•	ŧ	14,135	93	70% Lot Coverage Weighted						
		14,135	93	100.00% Pervious Area						
	Тс	Length	Slope	e Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	,	(cfs)					
	10.0			•		Direct Entry				

Subcatchment 90S: Home Basin 26

Type IA 24-hr 25-25 Year Rainfall=3.94"

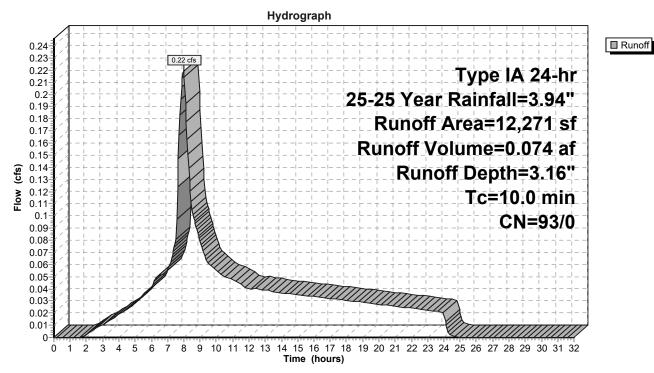
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 506

Summary for Subcatchment 91S: Home Basin 23


Runoff = 0.22 cfs @ 7.98 hrs, Volume= 0.074 af, Depth= 3.16"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN I	Description						
*	,	12,271	93	70% Lot Coverage Weighted						
_	12,271 93 100.00% Pervious Area									
		Length	•	•		Description				
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10 0					Direct Entry				

Subcatchment 91S: Home Basin 23

Type IA 24-hr 25-25 Year Rainfall=3.94"

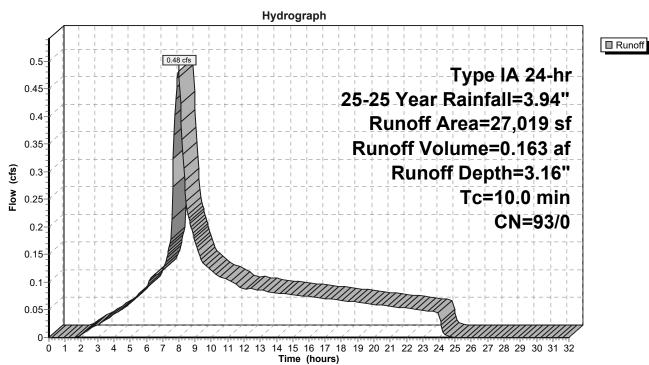
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 507

Summary for Subcatchment 92S: Home Basin 21


Runoff = 0.48 cfs @ 7.98 hrs, Volume= 0.163 af, Depth= 3.16"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description						
*	,	27,019	93	70% Lot Coverage Weighted						
_		27,019 93 100.00% Pervious Area								
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
-	10.0	(icci)	(1011)	(11/360)	(013)	Direct Entry				

Subcatchment 92S: Home Basin 21

Type IA 24-hr 25-25 Year Rainfall=3.94"

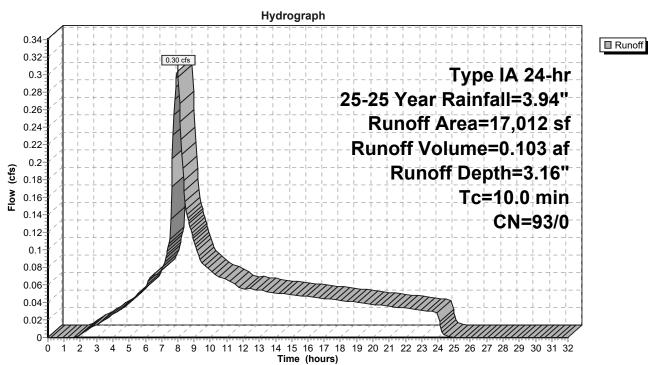
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 508

Summary for Subcatchment 93S: Home Basin 25


Runoff = 0.30 cfs @ 7.98 hrs, Volume= 0.103 af, Depth= 3.16"

Routed to Reach 136R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description						
*	,	17,012	93	70% Lot Coverage Weighted						
		17,012	93	100.00% Pervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'				
	10.0					Direct Entry				

Subcatchment 93S: Home Basin 25

Type IA 24-hr 25-25 Year Rainfall=3.94"

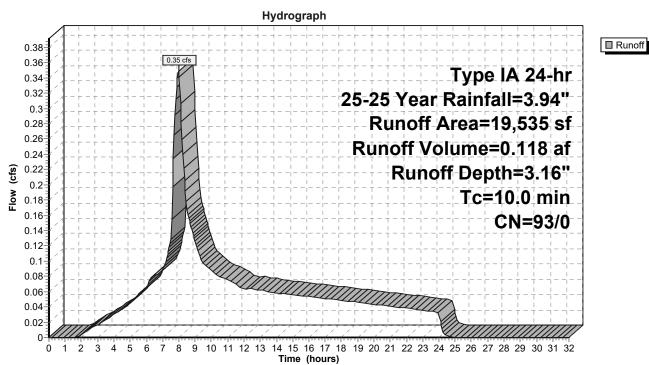
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 509

Summary for Subcatchment 94S: Home Basin 4


Runoff = 0.35 cfs @ 7.98 hrs, Volume= 0.118 af, Depth= 3.16"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN I	Description						
•	k	19,535	93	70% Lot Coverage Weighted						
		19,535	93	100.00% Pervious Area						
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0	•		•		Direct Entry				

Subcatchment 94S: Home Basin 4

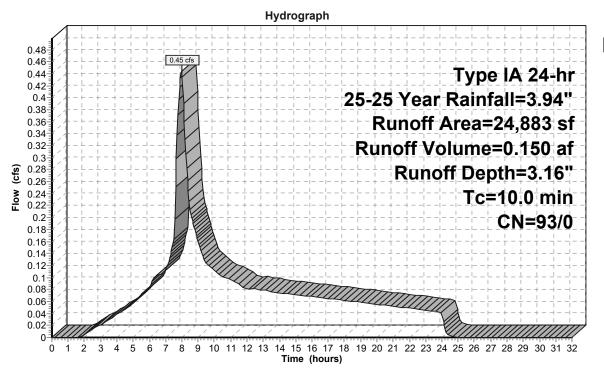
Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Printed 9/6/2023

Page 510

Summary for Subcatchment 95S: Home Basin 31


Runoff = 0.45 cfs @ 7.98 hrs, Volume= 0.150 af, Depth= 3.16"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN I	Description						
*		24,883	93	70% Lot Coverage Weighted						
	24,883 93 100.00% Pervious Area					ea				
	Tc	9	Slope	,	. ,	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 95S: Home Basin 31

Type IA 24-hr 25-25 Year Rainfall=3.94"

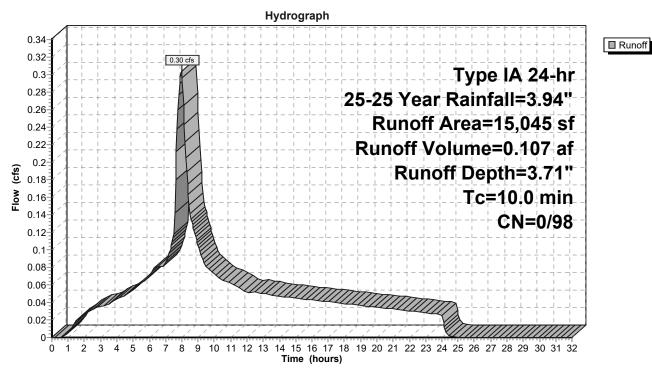
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 511

Summary for Subcatchment 96S: Basin 1


Runoff = 0.30 cfs @ 7.98 hrs, Volume= 0.107 af, Depth= 3.71"

Routed to Reach 133R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

Ar	ea (sf)	CN [Description						
	15,045	98 F	Paved roads w/curbs & sewers, HSG D						
	15,045	98 1	98 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)							
10.0					Direct Entry,				

Subcatchment 96S: Basin 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

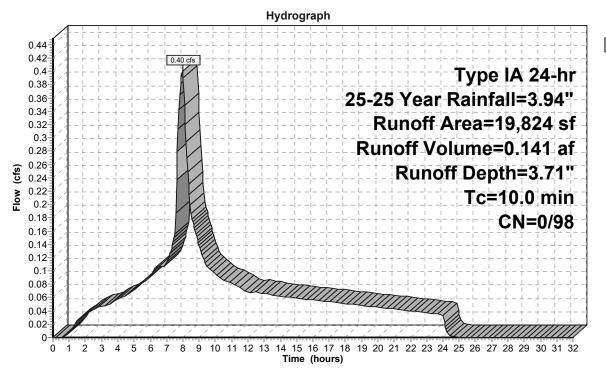
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 512

Summary for Subcatchment 97S: Basin 2


Runoff = 0.40 cfs @ 7.98 hrs, Volume= 0.141 af, Depth= 3.71"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

A	rea (sf)	CN I	Description						
	19,824	98 F	Paved roads w/curbs & sewers, HSG D						
•	19,824	98	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 97S: Basin 2

Type IA 24-hr 25-25 Year Rainfall=3.94"

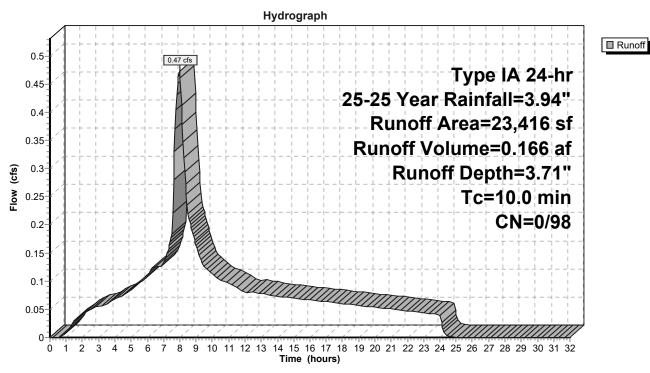
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 513

Summary for Subcatchment 98S: Basin 3


Runoff = 0.47 cfs @ 7.98 hrs, Volume= 0.166 af, Depth= 3.71"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

A	rea (sf)	CN [Description						
	23,416	98 F	Paved roads w/curbs & sewers, HSG D						
	23,416	98 ′	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 98S: Basin 3

Type IA 24-hr 25-25 Year Rainfall=3.94"

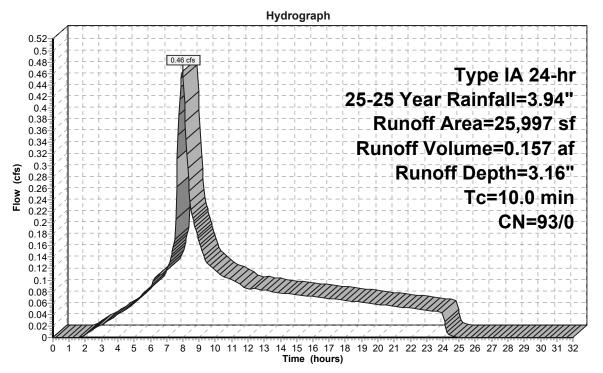
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 514

Summary for Subcatchment 99S: Home Basin 6


Runoff = 0.46 cfs @ 7.98 hrs, Volume= 0.157 af, Depth= 3.16"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN I	Description						
*		25,997	93	70% Lot Coverage Weighted						
		25,997	93	93 100.00% Pervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
_	10.0	•	•			Direct Entry,				

Subcatchment 99S: Home Basin 6

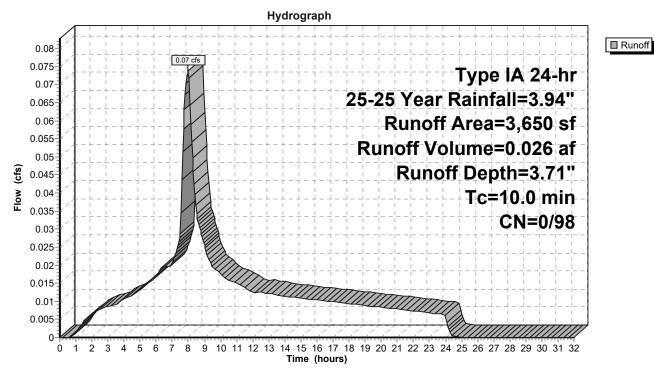
Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Printed 9/6/2023

Page 515

Summary for Subcatchment 100S: Basin 4


Runoff = 0.07 cfs @ 7.98 hrs, Volume= 0.026 af, Depth= 3.71"

Routed to Pond 60P: Stormwater Swale 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

	Area (sf)	CN I	Description						
	3,650	98 I	Paved roads w/curbs & sewers, HSG D						
	3,650	98	100.00% Impervious Area						
To (min	c Length) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0)				Direct Entry,				

Subcatchment 100S: Basin 4

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Printed 9/6/2023

Page 516

Summary for Subcatchment 101S: Basin 5

Runoff = 0.07 cfs @ 7.98 hrs, Volume= 0.025 af, Depth= 3.71"

Routed to Pond 54P: Stormwater Swale 2

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

A	rea (sf)	CN [Description						
	3,523	98 F	Paved roads w/curbs & sewers, HSG D						
	3,523	98 1	8 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 101S: Basin 5

Type IA 24-hr 25-25 Year Rainfall=3.94"

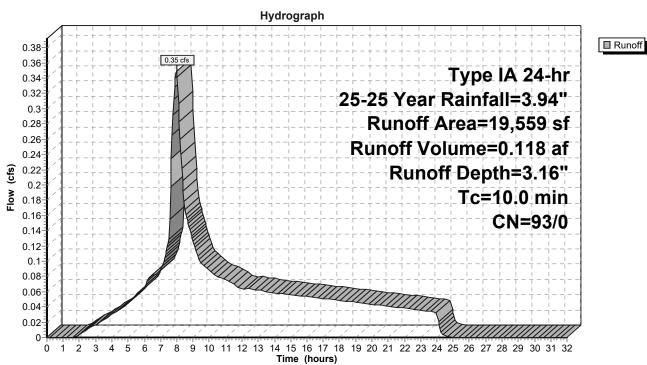
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 517

Summary for Subcatchment 102S: Home Basin 3


Runoff = 0.35 cfs @ 7.98 hrs, Volume= 0.118 af, Depth= 3.16"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description						
*		19,559	93	70% Lot Coverage Weighted						
_		19,559	93	100.00% Pervious Area						
	Тс	Length	Slope	•		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 102S: Home Basin 3

Type IA 24-hr 25-25 Year Rainfall=3.94"

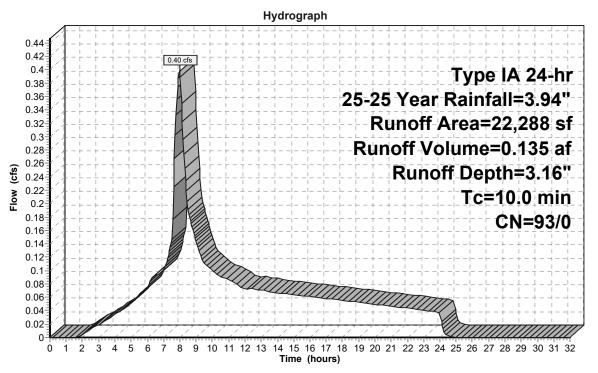
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 518

Summary for Subcatchment 103S: Home Basin 1


Runoff = 0.40 cfs @ 7.98 hrs, Volume= 0.135 af, Depth= 3.16"

Routed to Reach 137R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

	Α	rea (sf)	CN I	Description						
3	k	22,288	93	70% Lot Coverage Weighted						
		22,288	93	100.00% Pervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 103S: Home Basin 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

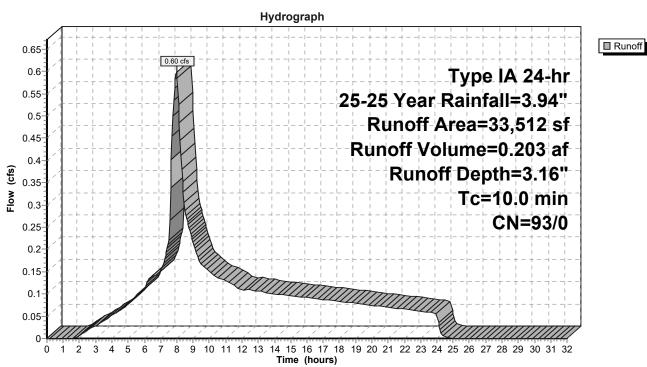
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 519

Summary for Subcatchment 104S: Home Basin 5


Runoff = 0.60 cfs @ 7.98 hrs, Volume= 0.203 af, Depth= 3.16"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN [Description						
*		33,512	93 7	70% Lot Coverage Weighted						
		33,512	93 ′	100.00% Pervious Area						
		Length		,		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 104S: Home Basin 5

Type IA 24-hr 25-25 Year Rainfall=3.94"

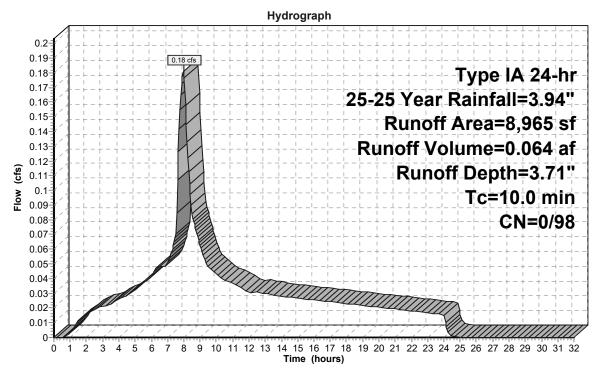
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 520

Summary for Subcatchment 105S: Basin 6


Runoff = 0.18 cfs @ 7.98 hrs, Volume= 0.064 af, Depth= 3.71"

Routed to Reach 138R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

A	rea (sf)	CN [Description						
	8,965	98 F	Paved roads w/curbs & sewers, HSG D						
	8,965	98 1	3 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 105S: Basin 6

Type IA 24-hr 25-25 Year Rainfall=3.94"

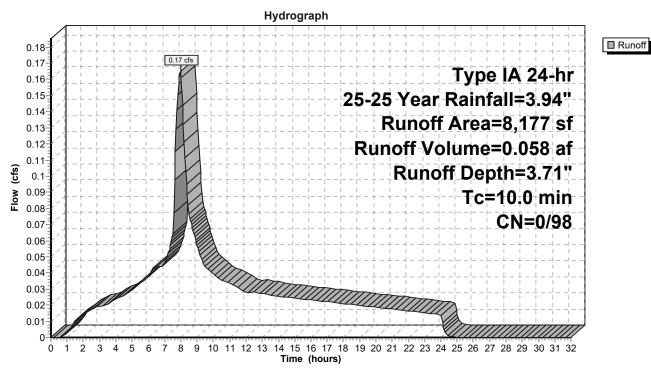
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 521

Summary for Subcatchment 107S: Basin 8


Runoff = 0.17 cfs @ 7.98 hrs, Volume= 0.058 af, Depth= 3.71"

Routed to Reach 158R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

	Α	rea (sf)	CN I	Description						
		8,177	98 I	Paved roads w/curbs & sewers, HSG D						
		8,177	98	8 100.00% Impervious Area						
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
•	10.0					Direct Entry.				

Subcatchment 107S: Basin 8

Type IA 24-hr 25-25 Year Rainfall=3.94"

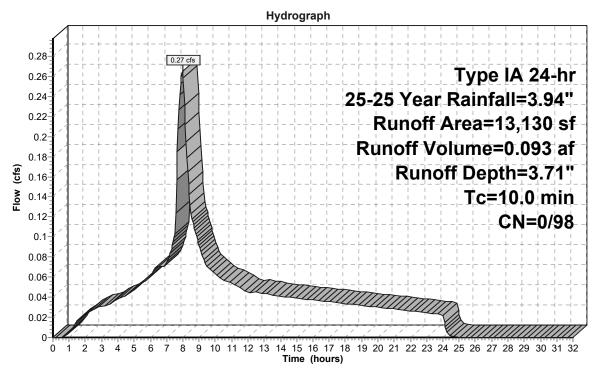
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 522

Summary for Subcatchment 108S: Basin 9


Runoff = 0.27 cfs @ 7.98 hrs, Volume= 0.093 af, Depth= 3.71"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

Ar	rea (sf)	CN [Description						
	13,130	98 F	Paved roads w/curbs & sewers, HSG D						
•	13,130	98 1	8 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	be Velocity Capacity Description						
10.0					Direct Entry,				

Subcatchment 108S: Basin 9

Type IA 24-hr 25-25 Year Rainfall=3.94"

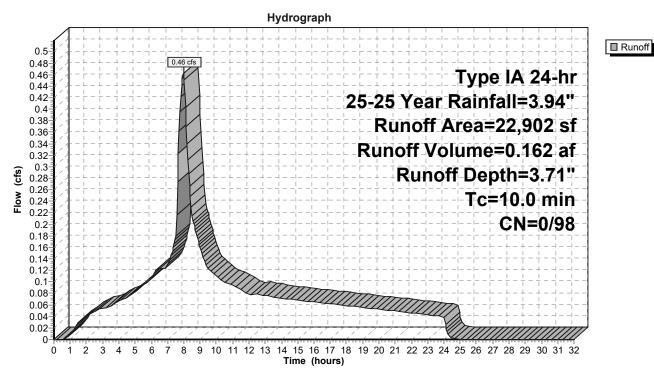
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 523

Summary for Subcatchment 109S: Basin 10


Runoff = 0.46 cfs @ 7.98 hrs, Volume= 0.162 af, Depth= 3.71"

Routed to Reach 137R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

	Α	rea (sf)	CN I	Description							
		22,902	98 I	Paved roads w/curbs & sewers, HSG D							
_		22,902	98	00.00% Impervious Area							
	_										
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	10.0	•				Direct Entry					

Subcatchment 109S: Basin 10

Type IA 24-hr 25-25 Year Rainfall=3.94"

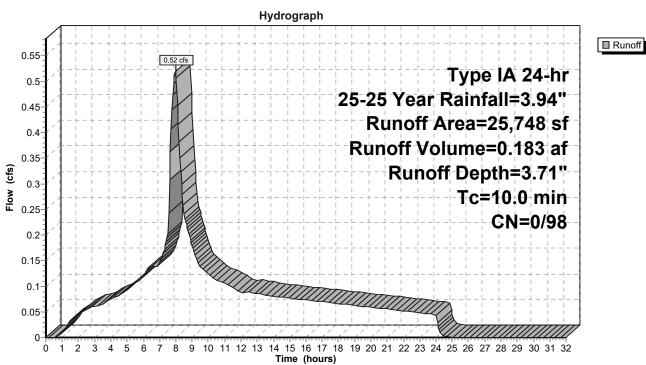
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 524

Summary for Subcatchment 110S: Basin 11


Runoff = 0.52 cfs @ 7.98 hrs, Volume= 0.183 af, Depth= 3.71"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

A	rea (sf)	CN [Description						
	25,748	98 F	Paved roads w/curbs & sewers, HSG D						
	25,748	98 ′	00.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 110S: Basin 11

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 525

Summary for Subcatchment 111S: Basin 12

Runoff = 0.11 cfs @ 7.98 hrs, Volume= 0.039 af, Depth= 3.71"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

	Α	rea (sf)	CN	Description							
		5,562	98	Paved roads w/curbs & sewers, HSG D							
		5,562	98	100.00% Impervious Area							
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description					
<u> </u>	10.0					Direct Entry,					

Subcatchment 111S: Basin 12

Type IA 24-hr 25-25 Year Rainfall=3.94"

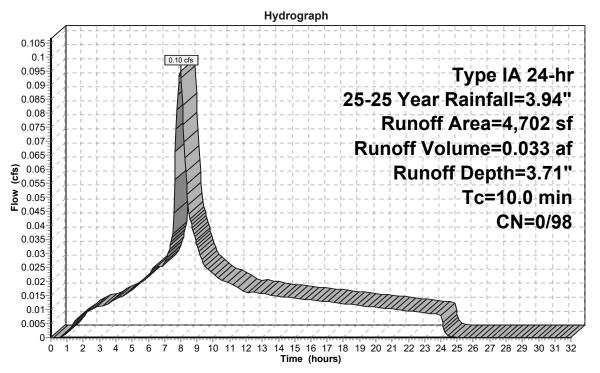
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 526

Summary for Subcatchment 112S: Basin 13


Runoff = 0.10 cfs @ 7.98 hrs, Volume= 0.033 af, Depth= 3.71"

Routed to Reach 158R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

	Area (sf)	CN [Description							
	4,702	98 F	Paved roads w/curbs & sewers, HSG D							
	4,702	98 ′	00.00% Impervious Area							
To (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 112S: Basin 13

Type IA 24-hr 25-25 Year Rainfall=3.94"

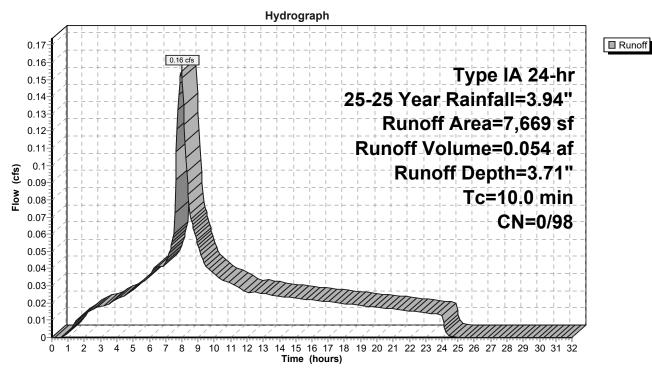
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 527

Summary for Subcatchment 113S: Basin 14


Runoff = 0.16 cfs @ 7.98 hrs, Volume= 0.054 af, Depth= 3.71"

Routed to Reach 159R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

	Area (sf)	CN [Description						
	7,669	98 F	Paved roads w/curbs & sewers, HSG D						
	7,669	98 ′	00.00% Impervious Area						
٦ (mi)	c Length	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10	.0		Direct Entry,						

Subcatchment 113S: Basin 14

Type IA 24-hr 25-25 Year Rainfall=3.94"

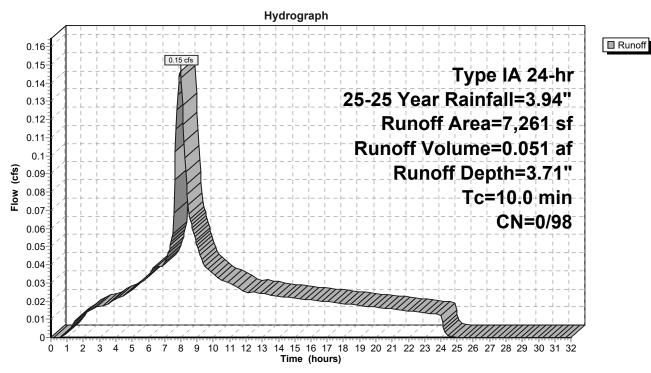
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 528

Summary for Subcatchment 114S: Basin 15


Runoff = 0.15 cfs @ 7.98 hrs, Volume= 0.051 af, Depth= 3.71"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

A	rea (sf)	CN [Description						
	7,261	98 F	Paved roads w/curbs & sewers, HSG D						
	7,261	98 1	00.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0			Direct Entry,						

Subcatchment 114S: Basin 15

Type IA 24-hr 25-25 Year Rainfall=3.94"

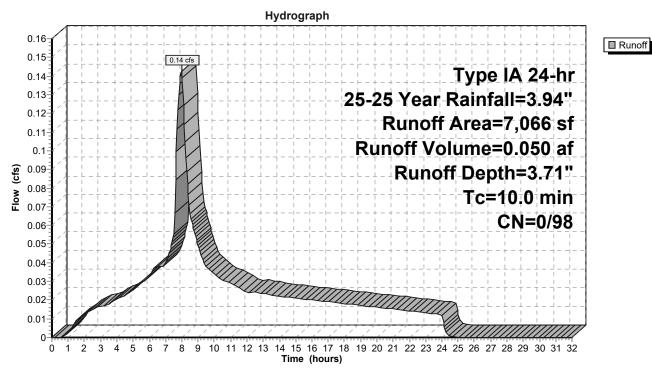
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 529

Summary for Subcatchment 115S: Basin 16


Runoff = 0.14 cfs @ 7.98 hrs, Volume= 0.050 af, Depth= 3.71"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

A	rea (sf)	CN [Description							
	7,066	98 F	Paved roads w/curbs & sewers, HSG D							
	7,066	98 1	00.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0			Direct Entry,							

Subcatchment 115S: Basin 16

Type IA 24-hr 25-25 Year Rainfall=3.94"

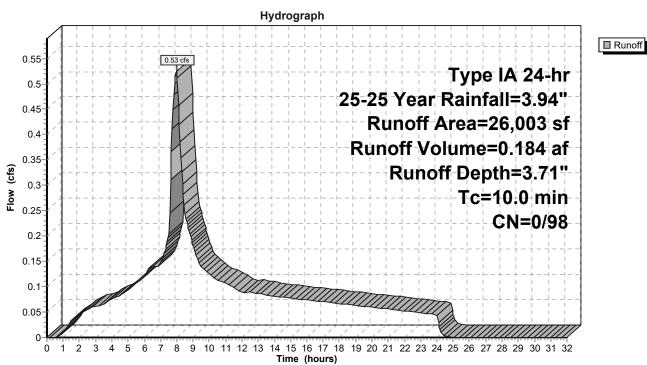
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 530

Summary for Subcatchment 116S: Basin 17


Runoff = 0.53 cfs @ 7.98 hrs, Volume= 0.184 af, Depth= 3.71"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

A	rea (sf)	CN I	Description							
	26,003	98 F	Paved road	Paved roads w/curbs & sewers, HSG D						
•	26,003	98	00.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 116S: Basin 17

Type IA 24-hr 25-25 Year Rainfall=3.94"

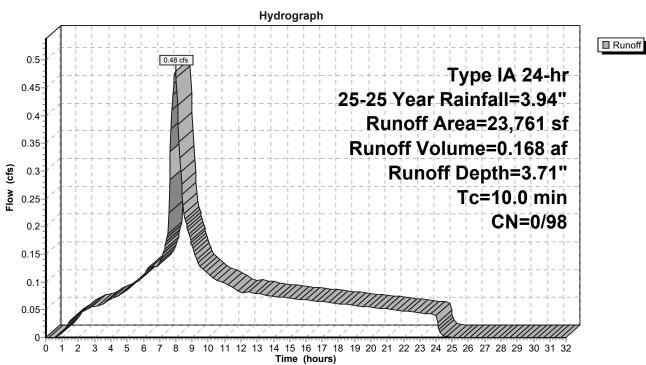
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 531

Summary for Subcatchment 117S: Basin 18


Runoff = 0.48 cfs @ 7.98 hrs, Volume= 0.168 af, Depth= 3.71"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

	A	rea (sf)	CN	Description							
		23,761	98	Paved roads w/curbs & sewers, HSG D							
_		23,761	1 98 100.00% Impervious Area								
	Tc (min)	Length (feet)	Slope (ft/ft	•	Capacity (cfs)	Description					
_	10.0					Direct Entry.					

Subcatchment 117S: Basin 18

Type IA 24-hr 25-25 Year Rainfall=3.94"

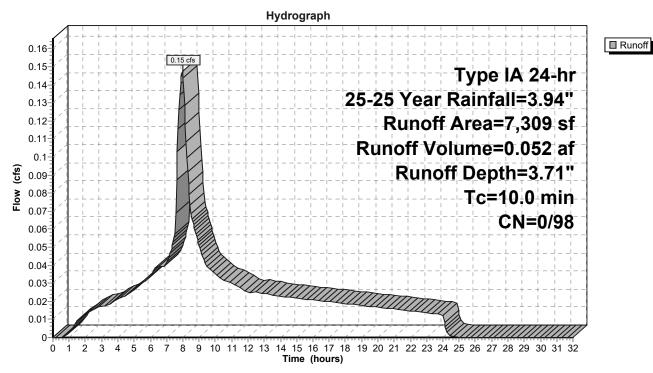
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 532

Summary for Subcatchment 118S: Basin 19


Runoff = 0.15 cfs @ 7.98 hrs, Volume= 0.052 af, Depth= 3.71"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

A	rea (sf)	CN [Description							
	7,309	98 F	Paved roads w/curbs & sewers, HSG D							
	7,309	98 1	00.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0			Direct Entry,							

Subcatchment 118S: Basin 19

Type IA 24-hr 25-25 Year Rainfall=3.94"

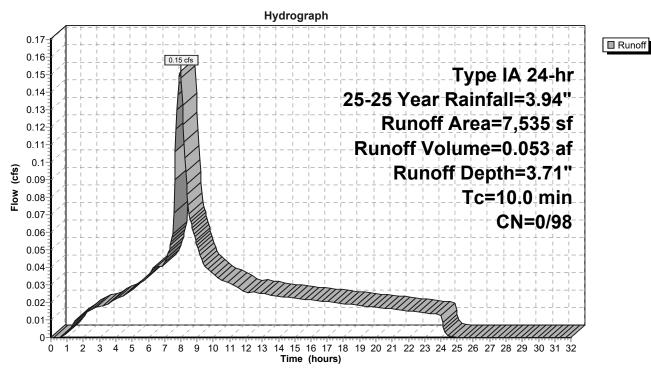
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 533

Summary for Subcatchment 119S: Basin 20


Runoff = 0.15 cfs @ 7.98 hrs, Volume= 0.053 af, Depth= 3.71"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

A	rea (sf)	CN [Description							
	7,535	98 F	Paved roads w/curbs & sewers, HSG D							
	7,535	98 1	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0			Direct Entry,							

Subcatchment 119S: Basin 20

Type IA 24-hr 25-25 Year Rainfall=3.94"

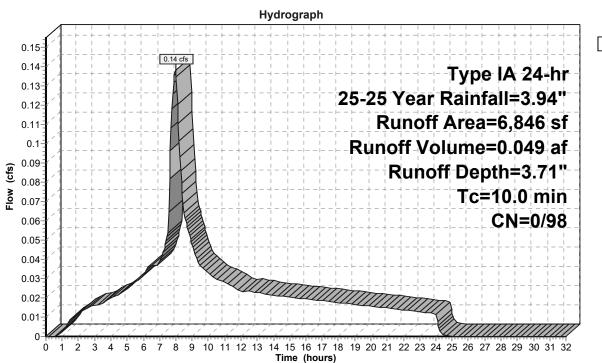
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 534

Summary for Subcatchment 120S: Basin 21


Runoff = 0.14 cfs @ 7.98 hrs, Volume= 0.049 af, Depth= 3.71"

Routed to Reach 148R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

	rea (sf)	CN [Description						
	6,846	98 F	Paved roads w/curbs & sewers, HSG D						
	6,846	98 1	00.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0			Direct Entry,						

Subcatchment 120S: Basin 21

Type IA 24-hr 25-25 Year Rainfall=3.94"

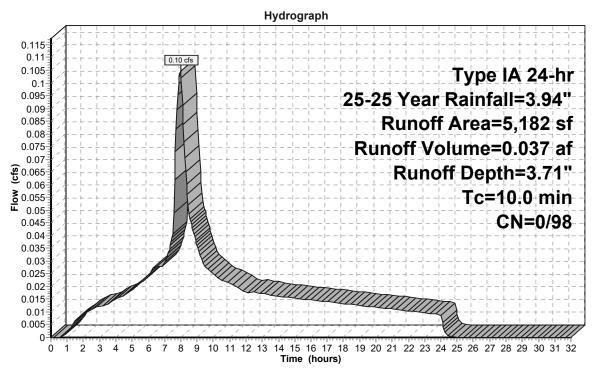
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 535

Summary for Subcatchment 121S: Basin 22


Runoff = 0.10 cfs @ 7.98 hrs, Volume= 0.037 af, Depth= 3.71"

Routed to Reach 154R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

	rea (sf)	CN [Description						
	5,182	98 F	Paved roads w/curbs & sewers, HSG D						
	5,182	98 ′	98 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 121S: Basin 22

■ Runoff

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

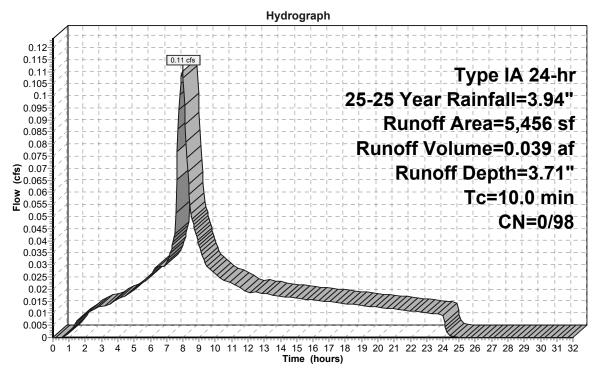
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 536

■ Runoff

Summary for Subcatchment 122S: Basin 23


Runoff = 0.11 cfs @ 7.98 hrs, Volume= 0.039 af, Depth= 3.71"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

	Area (sf)	CN [Description		
	5,456	98 F	Paved road	s w/curbs &	& sewers, HSG D
	5,456	98 1	100.00% Im	pervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry,

Subcatchment 122S: Basin 23

Type IA 24-hr 25-25 Year Rainfall=3.94"

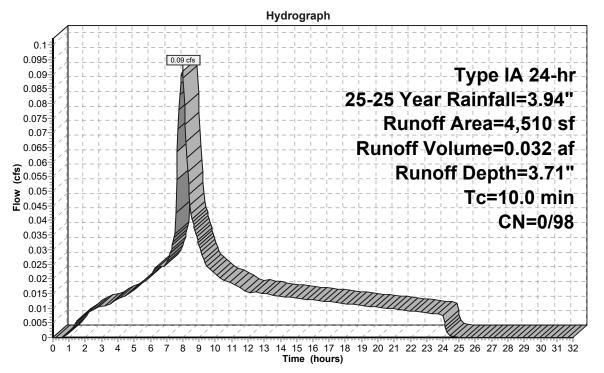
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 537

Summary for Subcatchment 123S: Basin 24


Runoff = 0.09 cfs @ 7.98 hrs, Volume= 0.032 af, Depth= 3.71"

Routed to Reach 162R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

	Area (sf)	CN	Description		
	4,510	98	Paved road	s w/curbs &	& sewers, HSG D
	4,510	98	100.00% Im	npervious A	Area
(mi	Гс Length n) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10	.0				Direct Entry,

Subcatchment 123S: Basin 24

■ Runoff

Type IA 24-hr 25-25 Year Rainfall=3.94"

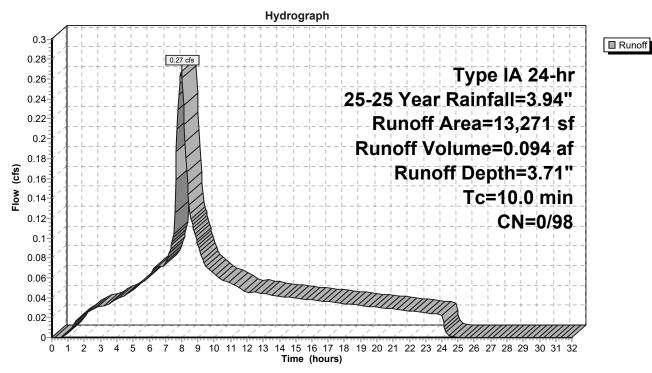
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 538

Summary for Subcatchment 124S: Basin 25


Runoff = 0.27 cfs @ 7.98 hrs, Volume= 0.094 af, Depth= 3.71"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description				
	13,271 98 Paved roads w/curbs & sewers, HSG D							
		13,271	98	100.00% In	npervious A	ırea		
	_		0.1					
	IC	Length		,	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	10.0					Direct Entry.		

Subcatchment 124S: Basin 25

Type IA 24-hr 25-25 Year Rainfall=3.94"

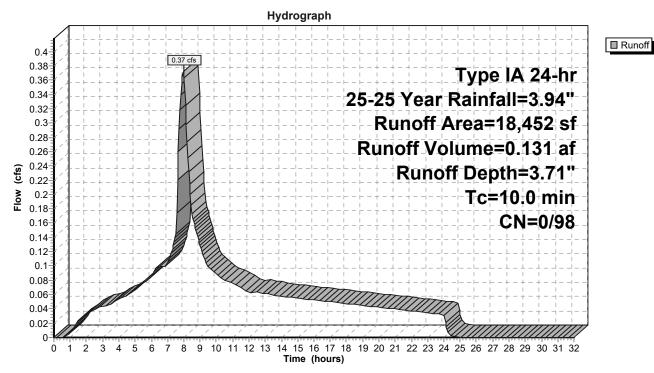
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 539

Summary for Subcatchment 125S: Basin 26


Runoff = 0.37 cfs @ 7.98 hrs, Volume= 0.131 af, Depth= 3.71"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

_	Α	rea (sf)	CN	Description		
18,452 98 Paved roads w/curbs & sewers, HSG D						
		18,452	98	100.00% In	npervious A	Area
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	10.0					Direct Entry,

Subcatchment 125S: Basin 26

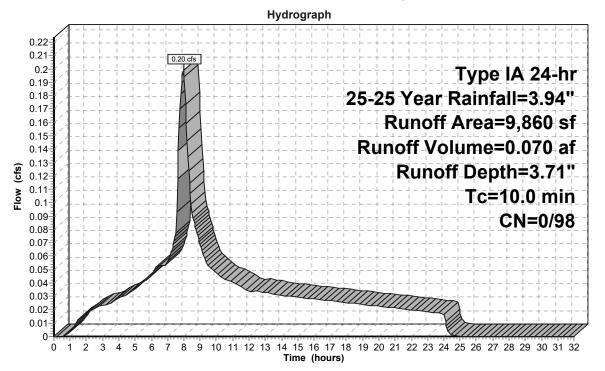
Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Printed 9/6/2023

Page 540

Summary for Subcatchment 126S: Alley Basin 1


Runoff = 0.20 cfs @ 7.98 hrs, Volume= 0.070 af, Depth= 3.71"

Routed to Reach 140R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

A	rea (sf)	CN [Description						
	9,860	98 F	Paved roads w/curbs & sewers, HSG D						
	9,860	98 1	98 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 126S: Alley Basin 1

■ Runoff

Type IA 24-hr 25-25 Year Rainfall=3.94"

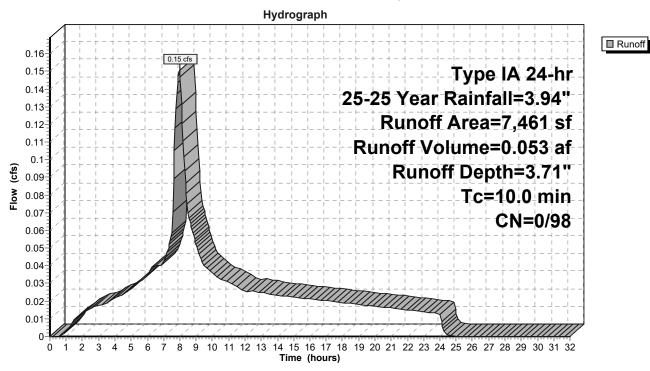
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 541

Summary for Subcatchment 127S: Alley Basin 2


Runoff = 0.15 cfs @ 7.98 hrs, Volume= 0.053 af, Depth= 3.71"

Routed to Reach 141R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

A	rea (sf)	CN [Description						
	7,461	98 F	Paved roads w/curbs & sewers, HSG D						
	7,461	98 1	98 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 127S: Alley Basin 2

Type IA 24-hr 25-25 Year Rainfall=3.94"

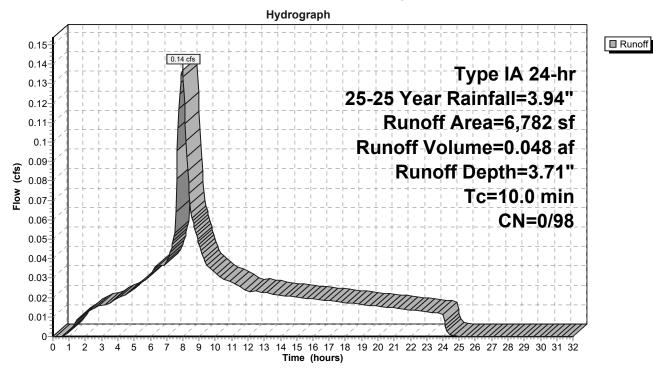
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 542

Summary for Subcatchment 128S: Alley Basin 3


Runoff = 0.14 cfs @ 7.98 hrs, Volume= 0.048 af, Depth= 3.71"

Routed to Reach 147R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

A	rea (sf)	CN [Description						
	6,782	98 F	Paved roads w/curbs & sewers, HSG D						
	6,782	98 ′	98 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 128S: Alley Basin 3

Type IA 24-hr 25-25 Year Rainfall=3.94"

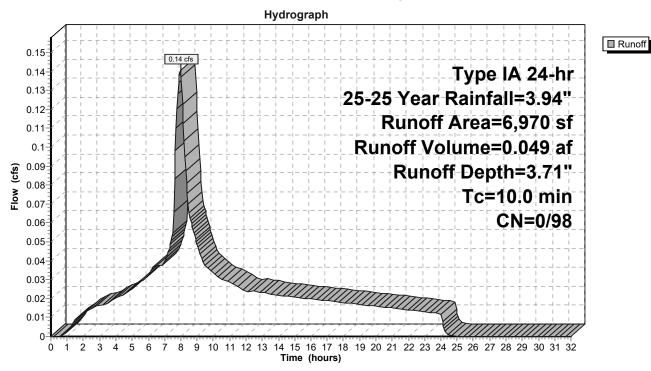
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 543

Summary for Subcatchment 129S: Alley Basin 4


Runoff = 0.14 cfs @ 7.98 hrs, Volume= 0.049 af, Depth= 3.71"

Routed to Reach 153R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

A	rea (sf)	CN [Description						
	6,970	98 F	Paved roads w/curbs & sewers, HSG D						
	6,970	98 ′	98 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 129S: Alley Basin 4

Type IA 24-hr 25-25 Year Rainfall=3.94"

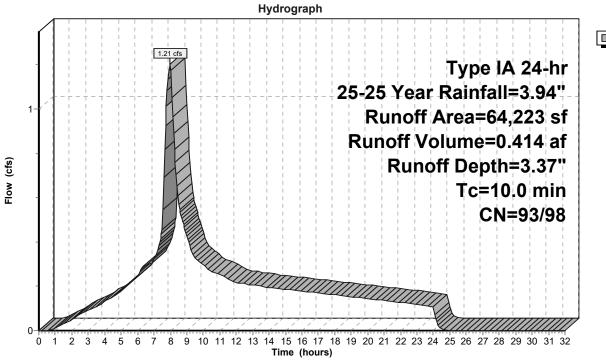
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 544

Summary for Subcatchment 168S: Future Lots


Runoff = 1.21 cfs @ 7.98 hrs, Volume= 0.414 af, Depth= 3.37"

Routed to Reach 166R: Basin Future

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

	Area (sf)	CN	Description
4	39,915	93	70% Lot Coverage Weighted
	24,308	98	Paved roads w/curbs & sewers, HSG D
	64,223	95	Weighted Average
	39,915	93	62.15% Pervious Area
	24,308	98	37.85% Impervious Area
_	Tc Length (min) (feet)	Slo _l (ft/	
	10.0		Direct Entry,

Subcatchment 168S: Future Lots

■ Runoff

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

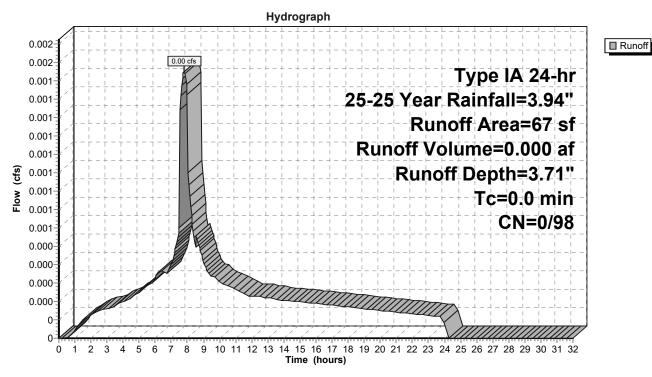
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 545

Summary for Subcatchment 169S: Swale 2

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 0.00 cfs @ 7.80 hrs, Volume=


0.000 af, Depth= 3.71"

Routed to Pond 54P: Stormwater Swale 2

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

	Area (sf)	CN	Description
	67	98	Water Surface, HSG D
-	67	98	100 00% Impervious Area

Subcatchment 169S: Swale 2

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

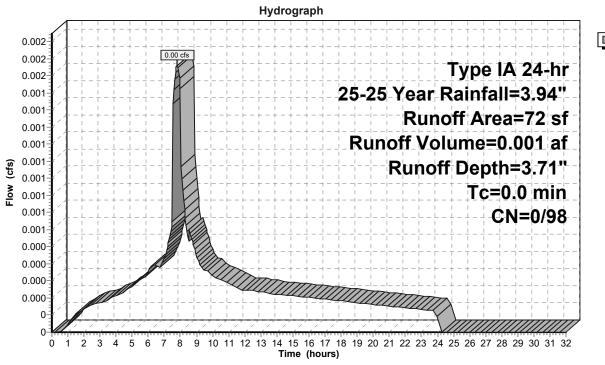
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 546

Summary for Subcatchment 170S: Swale 1

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 0.00 cfs @ 7.80 hrs, Volume=


0.001 af, Depth= 3.71"

Routed to Pond 60P: Stormwater Swale 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 25-25 Year Rainfall=3.94"

 Area (sf)	CN	Description
72	98	Water Surface, HSG D
72	98	100.00% Impervious Area

Subcatchment 170S: Swale 1

■ Runoff

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

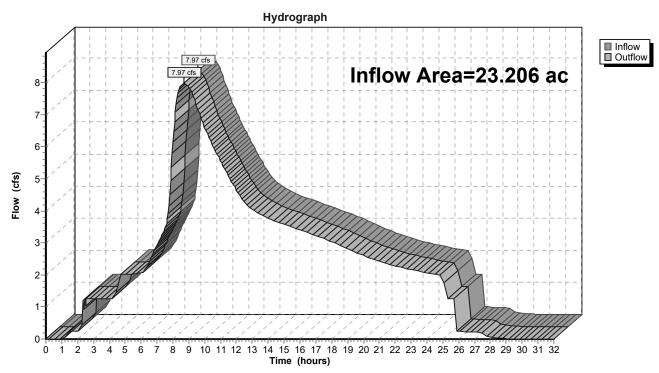
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 547

Summary for Reach 39R: Post-Construction Peak Flow

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 23.206 ac, 36.84% Impervious, Inflow Depth > 3.36" for 25-25 Year event

Inflow = 7.97 cfs @ 8.68 hrs, Volume= 6.500 af

Outflow = 7.97 cfs @ 8.68 hrs, Volume= 6.500 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 39R: Post-Construction Peak Flow

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

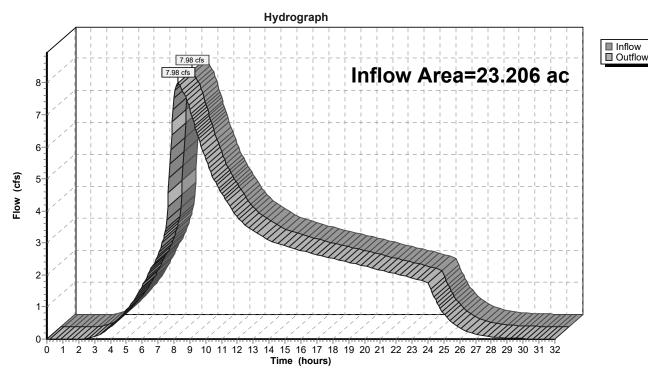
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 548

Summary for Reach 42R: Pre-Construction Peak Flow

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 23.206 ac, 0.00% Impervious, Inflow Depth > 2.77" for 25-25 Year event

Inflow = 7.98 cfs @ 8.26 hrs, Volume= 5.350 af

Outflow = 7.98 cfs @ 8.26 hrs, Volume= 5.350 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 42R: Pre-Construction Peak Flow

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

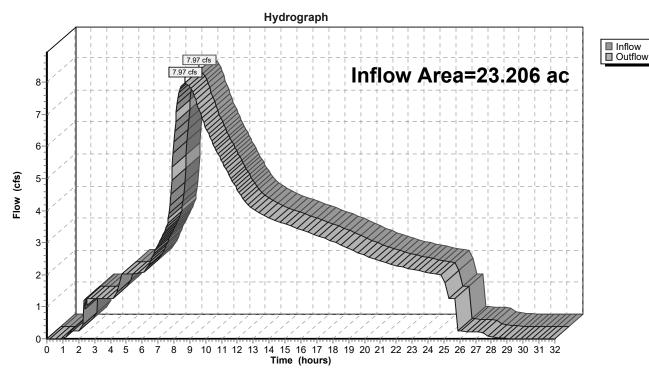
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 549

Summary for Reach 58R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 23.206 ac, 36.84% Impervious, Inflow Depth > 3.36" for 25-25 Year event


Inflow = 7.97 cfs @ 8.68 hrs, Volume= 6.500 af

Outflow = 7.97 cfs @ 8.68 hrs, Volume= 6.500 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 39R: Post-Construction Peak Flow

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 58R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

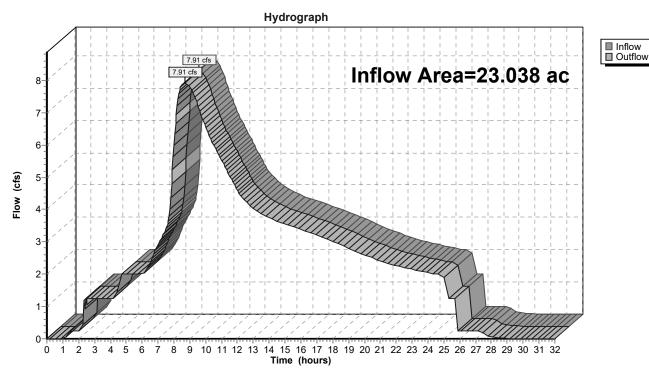
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 550

Summary for Reach 85R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 23.038 ac, 36.38% Impervious, Inflow Depth > 3.36" for 25-25 Year event


Inflow = 7.91 cfs @ 8.69 hrs, Volume= 6.448 af

Outflow = 7.91 cfs @ 8.69 hrs, Volume= 6.448 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 85R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

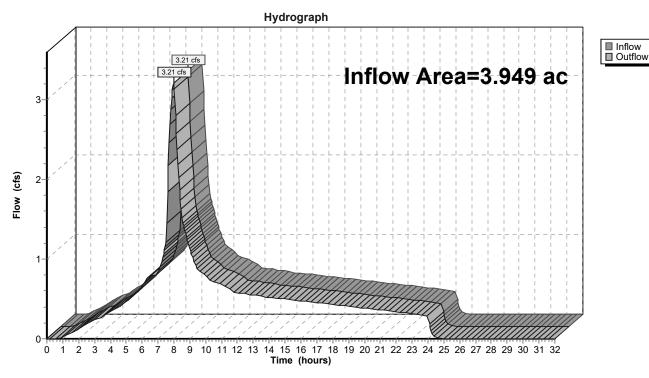
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 551

Summary for Reach 130R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.949 ac, 33.88% Impervious, Inflow Depth = 3.35" for 25-25 Year event


Inflow = 3.21 cfs @ 7.98 hrs, Volume= 1.101 af

Outflow = 3.21 cfs @ 7.98 hrs, Volume= 1.101 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 130R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

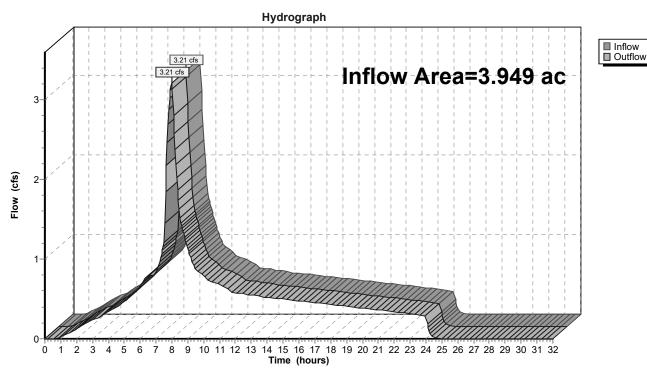
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 552

Summary for Reach 131R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.949 ac, 33.88% Impervious, Inflow Depth = 3.35" for 25-25 Year event


Inflow = 3.21 cfs @ 7.98 hrs, Volume= 1.101 af

Outflow = 3.21 cfs @ 7.98 hrs, Volume= 1.101 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 130R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 131R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

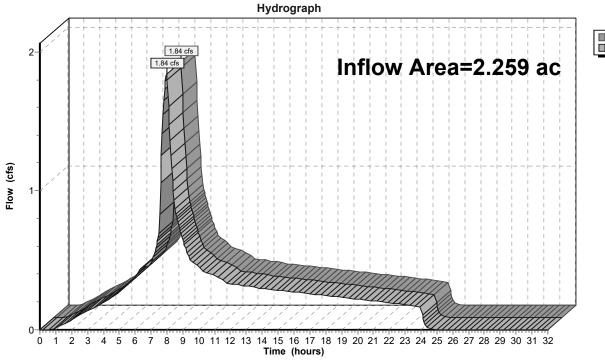
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 553

Summary for Reach 132R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.259 ac, 35.43% Impervious, Inflow Depth = 3.35" for 25-25 Year event


Inflow = 1.84 cfs @ 7.98 hrs, Volume= 0.631 af

Outflow = 1.84 cfs @ 7.98 hrs, Volume= 0.631 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 131R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 132R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

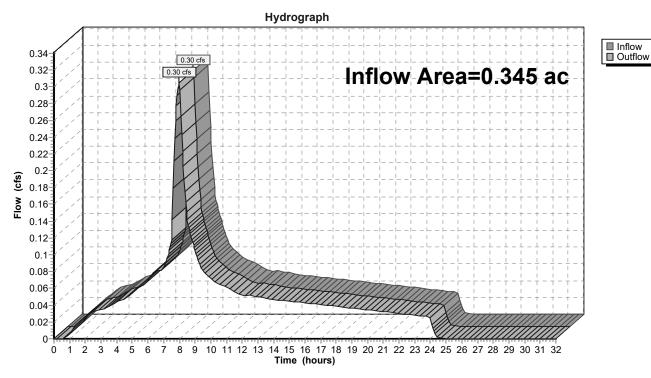
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 554

Summary for Reach 133R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.345 ac,100.00% Impervious, Inflow Depth = 3.71" for 25-25 Year event


Inflow = 0.30 cfs @ 7.98 hrs, Volume= 0.107 af

Outflow = 0.30 cfs @ 7.98 hrs, Volume= 0.107 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 132R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 133R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

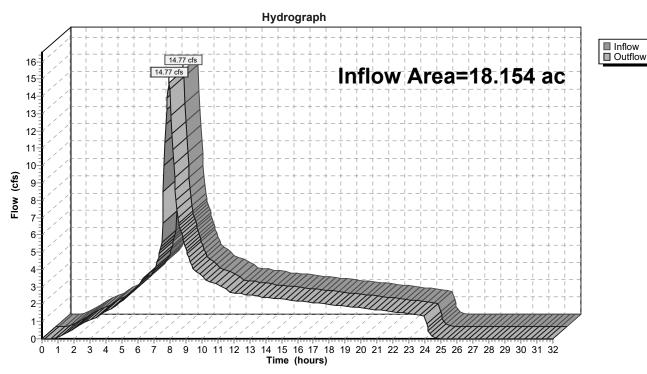
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 555

Summary for Reach 134R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 18.154 ac, 33.65% Impervious, Inflow Depth = 3.34" for 25-25 Year event


Inflow = 14.77 cfs @ 7.98 hrs, Volume= 5.060 af

Outflow = 14.77 cfs @ 7.98 hrs, Volume= 5.060 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 134R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

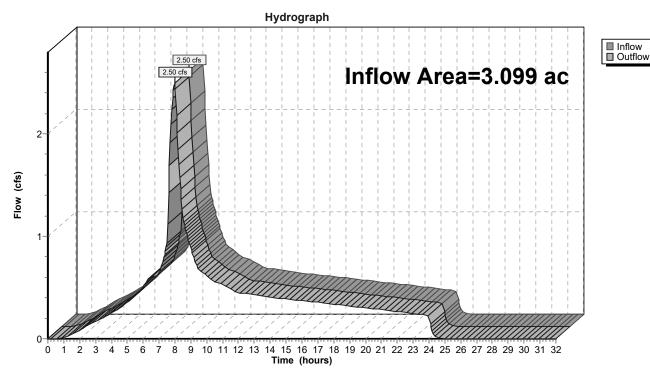
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 556

Summary for Reach 135R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.099 ac, 26.69% Impervious, Inflow Depth = 3.31" for 25-25 Year event


Inflow = 2.50 cfs @ 7.98 hrs, Volume= 0.854 af

Outflow = 2.50 cfs @ 7.98 hrs, Volume= 0.854 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 134R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 135R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

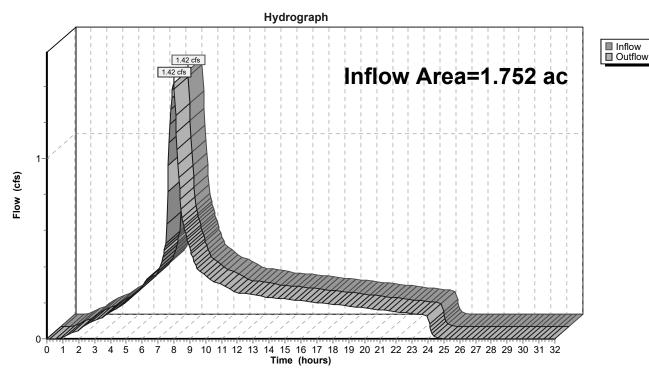
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 557

Summary for Reach 136R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.752 ac, 30.00% Impervious, Inflow Depth = 3.32" for 25-25 Year event


Inflow = 1.42 cfs @ 7.98 hrs, Volume= 0.486 af

Outflow = 1.42 cfs @ 7.98 hrs, Volume= 0.486 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 135R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 136R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

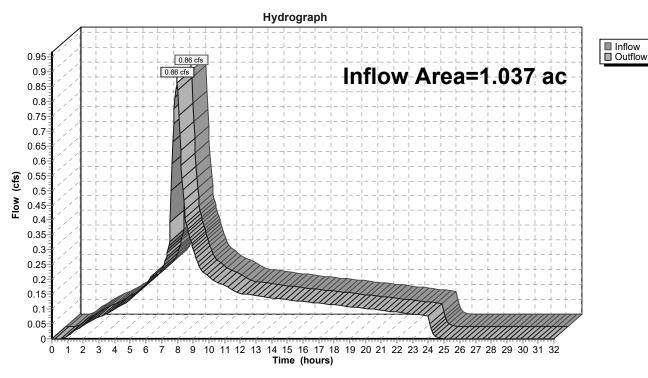
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 558

Summary for Reach 137R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.037 ac, 50.68% Impervious, Inflow Depth = 3.44" for 25-25 Year event


Inflow = 0.86 cfs @ 7.98 hrs, Volume= 0.297 af

Outflow = 0.86 cfs @ 7.98 hrs, Volume= 0.297 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 136R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 137R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

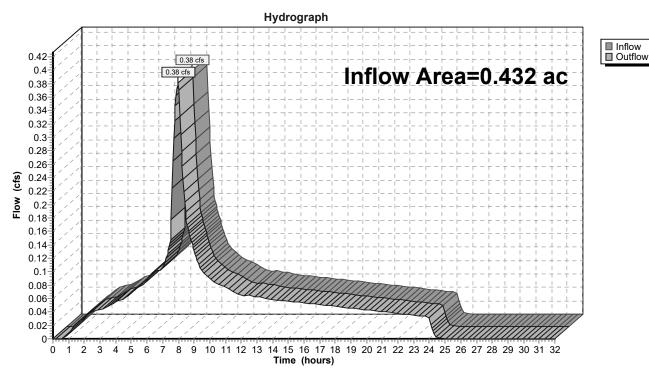
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 559

Summary for Reach 138R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.432 ac,100.00% Impervious, Inflow Depth = 3.71" for 25-25 Year event


Inflow = 0.38 cfs @ 7.98 hrs, Volume= 0.133 af

Outflow = 0.38 cfs @ 7.98 hrs, Volume= 0.133 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 138R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

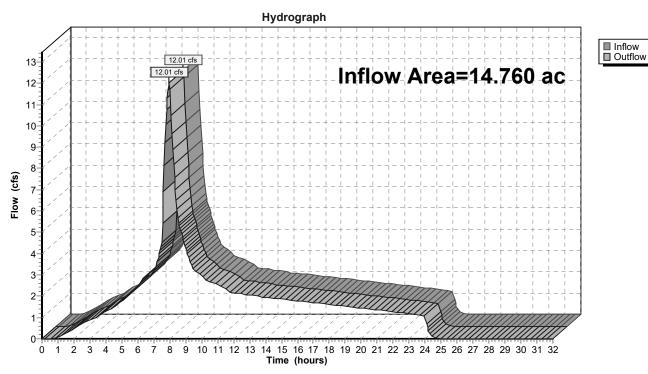
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 560

Summary for Reach 139R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.760 ac, 33.78% Impervious, Inflow Depth = 3.35" for 25-25 Year event


Inflow = 12.01 cfs @ 7.98 hrs, Volume= 4.114 af

Outflow = 12.01 cfs @ 7.98 hrs, Volume= 4.114 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 158R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 139R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

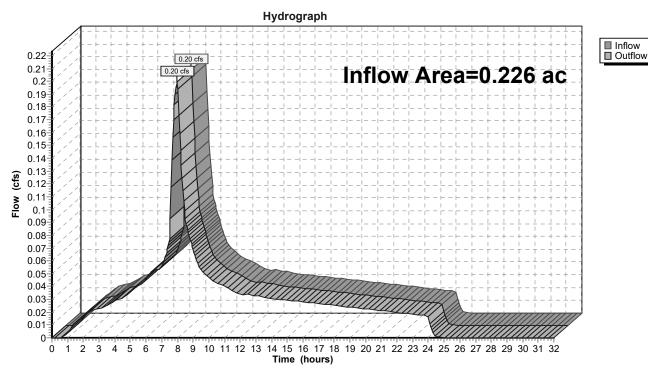
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 561

Summary for Reach 140R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.226 ac,100.00% Impervious, Inflow Depth = 3.71" for 25-25 Year event


Inflow = 0.20 cfs @ 7.98 hrs, Volume= 0.070 af

Outflow = 0.20 cfs @ 7.98 hrs, Volume= 0.070 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 138R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 140R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

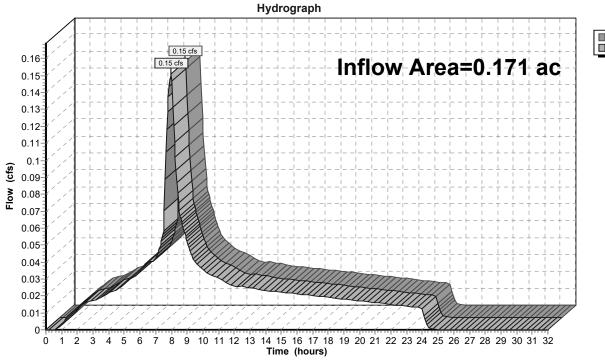
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 562

Summary for Reach 141R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.171 ac,100.00% Impervious, Inflow Depth = 3.71" for 25-25 Year event


Inflow = 0.15 cfs @ 7.98 hrs, Volume= 0.053 af

Outflow = 0.15 cfs @ 7.98 hrs, Volume= 0.053 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 139R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 141R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

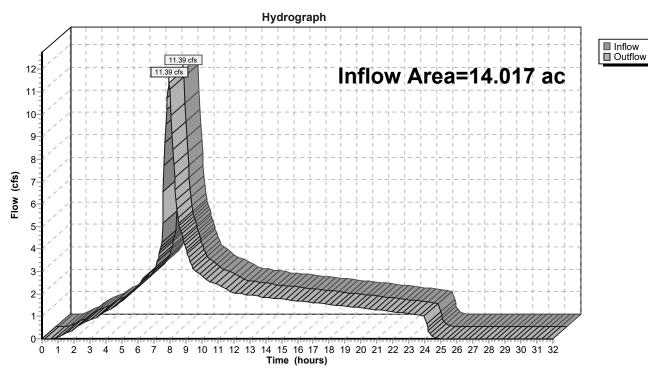
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 563

Summary for Reach 142R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.017 ac, 33.09% Impervious, Inflow Depth = 3.34" for 25-25 Year event


Inflow = 11.39 cfs @ 7.98 hrs, Volume= 3.903 af

Outflow = 11.39 cfs @ 7.98 hrs, Volume= 3.903 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 159R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 142R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

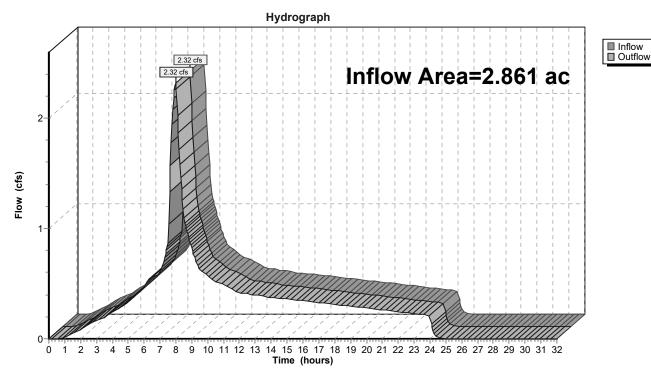
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 564

Summary for Reach 143R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.861 ac, 30.95% Impervious, Inflow Depth = 3.33" for 25-25 Year event


Inflow = 2.32 cfs @ 7.98 hrs, Volume= 0.794 af

Outflow = 2.32 cfs @ 7.98 hrs, Volume= 0.794 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 142R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 143R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

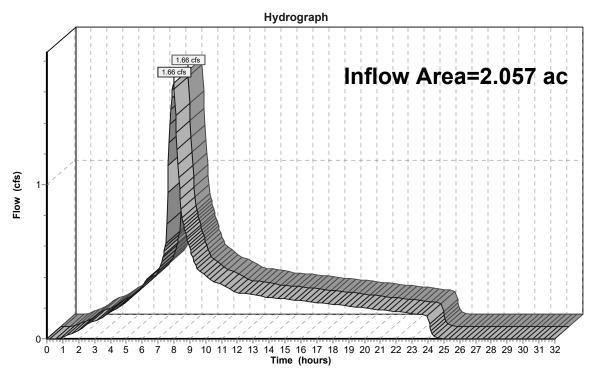
Page 565

☐ Inflow☐ Outflow

Summary for Reach 144R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.057 ac, 28.74% Impervious, Inflow Depth = 3.32" for 25-25 Year event


Inflow = 1.66 cfs @ 7.98 hrs, Volume= 0.569 af

Outflow = 1.66 cfs @ 7.98 hrs, Volume= 0.569 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 143R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 144R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

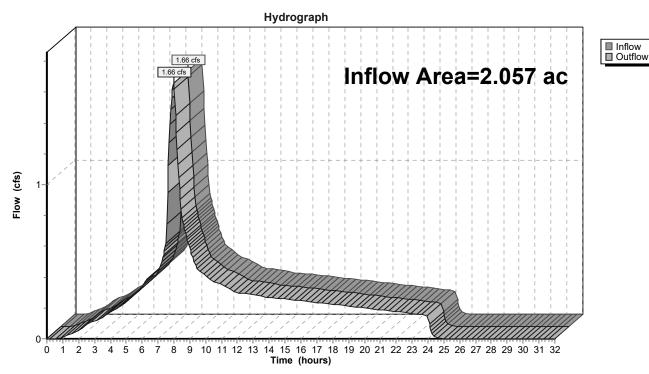
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 566

Summary for Reach 145R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.057 ac, 28.74% Impervious, Inflow Depth = 3.32" for 25-25 Year event


Inflow = 1.66 cfs @ 7.98 hrs, Volume= 0.569 af

Outflow = 1.66 cfs @ 7.98 hrs, Volume= 0.569 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 144R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 145R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

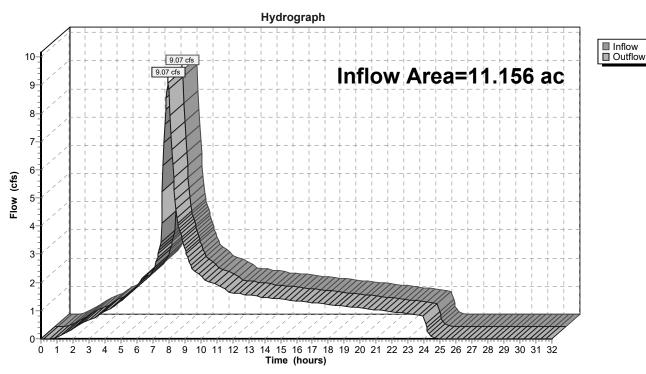
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 567

Summary for Reach 146R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 11.156 ac, 33.63% Impervious, Inflow Depth = 3.34" for 25-25 Year event


Inflow = 9.07 cfs @ 7.98 hrs, Volume= 3.109 af

Outflow = 9.07 cfs @ 7.98 hrs, Volume= 3.109 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 142R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 146R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

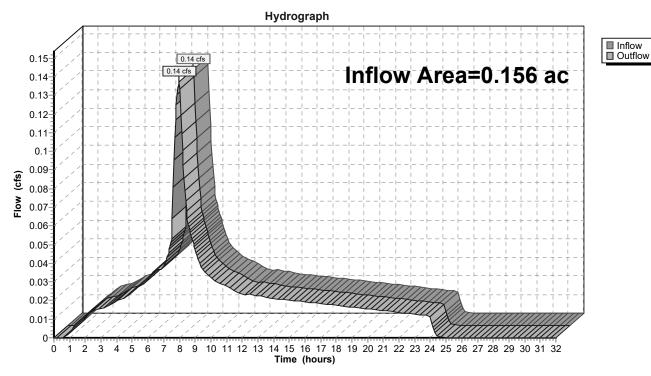
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 568

Summary for Reach 147R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.156 ac,100.00% Impervious, Inflow Depth = 3.71" for 25-25 Year event


Inflow = 0.14 cfs @ 7.98 hrs, Volume= 0.048 af

Outflow = $0.14 \text{ cfs } \overline{\textcircled{0}}$ 7.98 hrs, Volume= 0.048 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 146R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 147R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

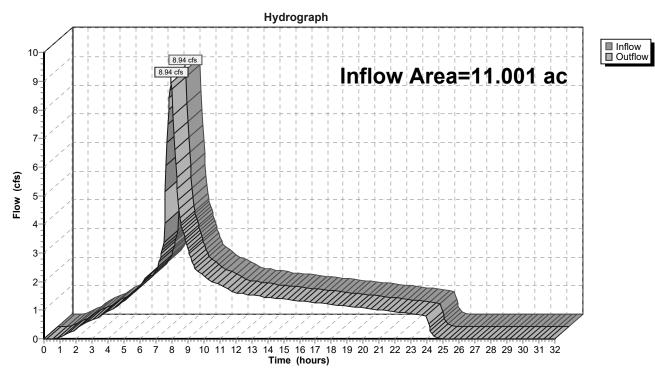
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 569

Summary for Reach 148R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 11.001 ac, 32.69% Impervious, Inflow Depth = 3.34" for 25-25 Year event


Inflow = 8.94 cfs @ 7.98 hrs, Volume= 3.061 af

Outflow = 8.94 cfs @ 7.98 hrs, Volume= 3.061 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 146R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 148R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

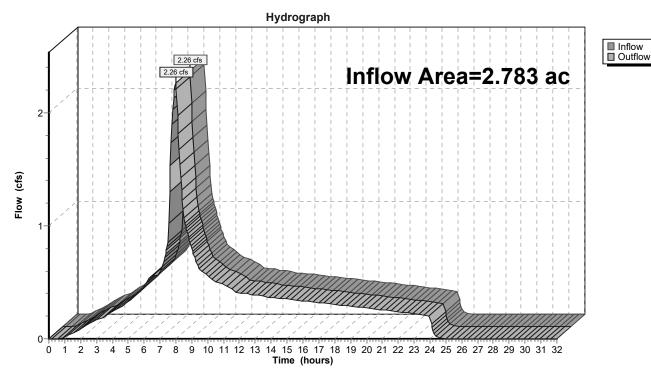
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 570

Summary for Reach 149R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.783 ac, 33.49% Impervious, Inflow Depth = 3.34" for 25-25 Year event


Inflow = 2.26 cfs @ 7.98 hrs, Volume= 0.775 af

Outflow = 2.26 cfs @ 7.98 hrs, Volume= 0.775 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 148R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 149R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

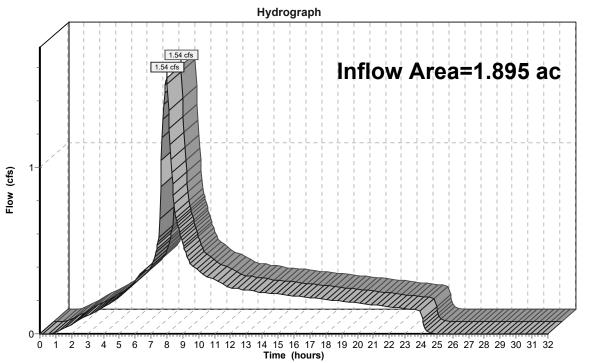
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 571

Summary for Reach 150R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.895 ac, 31.51% Impervious, Inflow Depth = 3.33" for 25-25 Year event


Inflow = 1.54 cfs @ 7.98 hrs, Volume= 0.526 af

Outflow = 1.54 cfs @ 7.98 hrs, Volume= 0.526 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 149R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 150R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

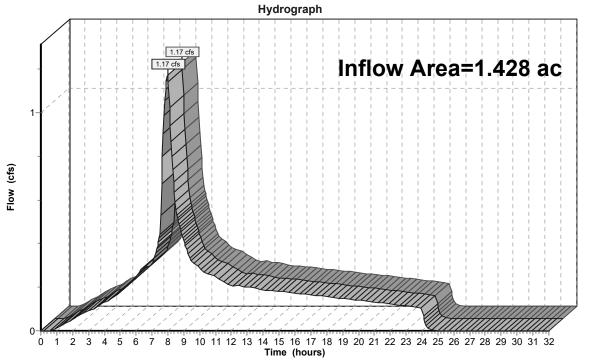
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 572

Summary for Reach 151R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.428 ac, 41.79% Impervious, Inflow Depth = 3.39" for 25-25 Year event


Inflow = 1.17 cfs @ 7.98 hrs, Volume= 0.403 af

Outflow = 1.17 cfs @ 7.98 hrs, Volume= 0.403 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 150R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 151R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

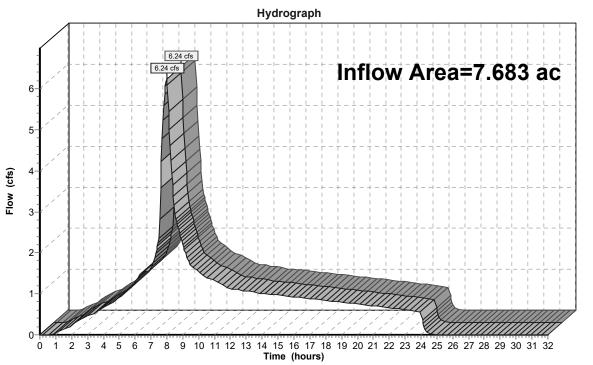
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 573

Summary for Reach 152R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 7.683 ac, 32.64% Impervious, Inflow Depth = 3.34" for 25-25 Year event


Inflow = 6.24 cfs @ 7.98 hrs, Volume= 2.138 af

Outflow = 6.24 cfs @ 7.98 hrs, Volume= 2.138 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 148R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 152R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

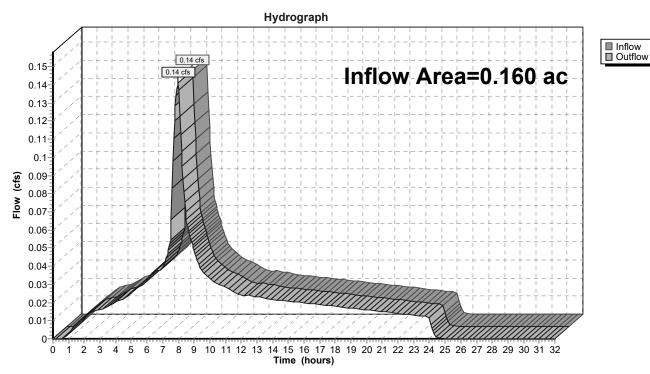
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 574

Summary for Reach 153R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.160 ac,100.00% Impervious, Inflow Depth = 3.71" for 25-25 Year event


Inflow = 0.14 cfs @ 7.98 hrs, Volume= 0.049 af

Outflow = $0.14 \text{ cfs } \overline{\textcircled{0}}$ 7.98 hrs, Volume= 0.049 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 152R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 153R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

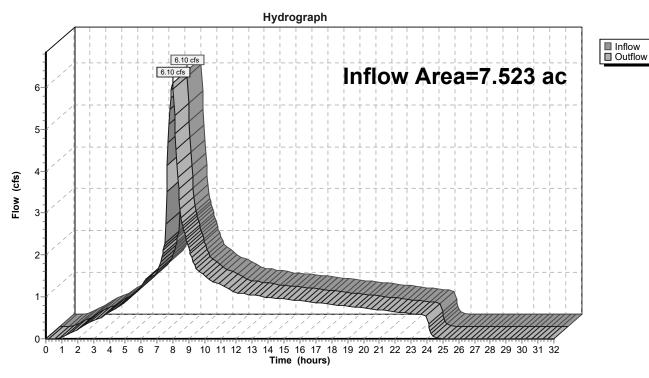
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 575

Summary for Reach 154R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 7.523 ac, 31.20% Impervious, Inflow Depth = 3.33" for 25-25 Year event


Inflow = 6.10 cfs @ 7.98 hrs, Volume= 2.088 af

Outflow = 6.10 cfs @ 7.98 hrs, Volume= 2.088 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 152R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 154R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

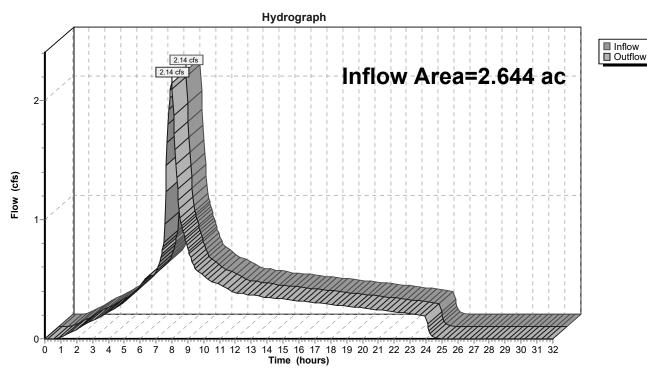
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 576

Summary for Reach 155R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.644 ac, 31.72% Impervious, Inflow Depth = 3.33" for 25-25 Year event


Inflow = 2.14 cfs @ 7.98 hrs, Volume= 0.734 af

Outflow = 2.14 cfs @ 7.98 hrs, Volume= 0.734 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 154R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 155R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

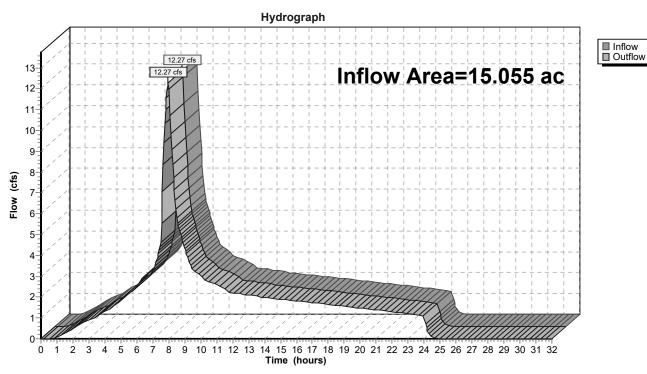
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 577

Summary for Reach 158R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 15.055 ac, 35.08% Impervious, Inflow Depth = 3.35" for 25-25 Year event


Inflow = 12.27 cfs @ 7.98 hrs, Volume= 4.206 af

Outflow = 12.27 cfs @ 7.98 hrs, Volume= 4.206 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 134R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 158R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

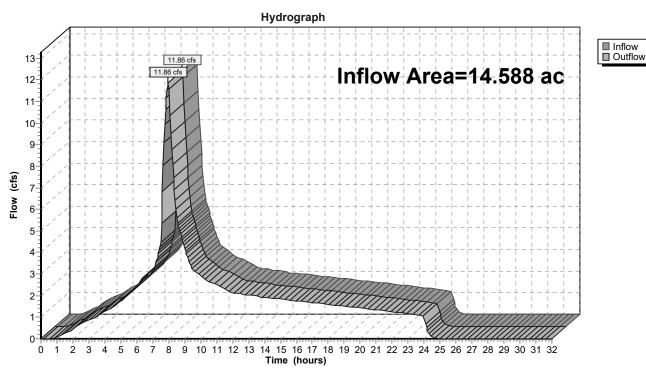
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 578

Summary for Reach 159R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.588 ac, 33.00% Impervious, Inflow Depth = 3.34" for 25-25 Year event


Inflow = 11.86 cfs @ 7.98 hrs, Volume= 4.062 af

Outflow = 11.86 cfs @ 7.98 hrs, Volume= 4.062 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 139R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 159R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

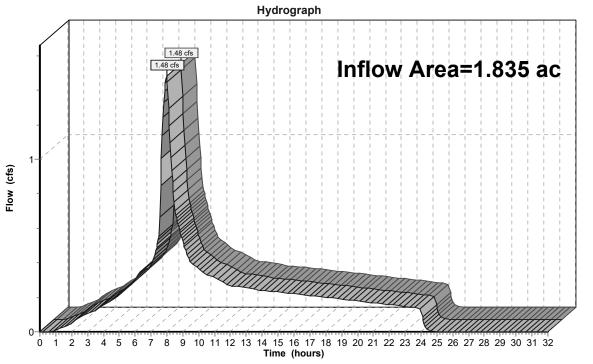
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 579

Summary for Reach 160R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.835 ac, 29.73% Impervious, Inflow Depth = 3.32" for 25-25 Year event


Inflow = 1.48 cfs @ 7.98 hrs, Volume= 0.508 af

Outflow = 1.48 cfs @ 7.98 hrs, Volume= 0.508 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 155R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 160R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

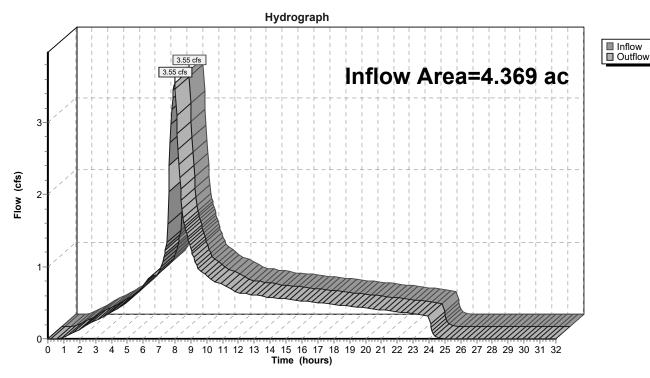
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 580

Summary for Reach 162R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.369 ac, 31.81% Impervious, Inflow Depth = 3.33" for 25-25 Year event


Inflow = 3.55 cfs @ 7.98 hrs, Volume= 1.214 af

Outflow = 3.55 cfs @ 7.98 hrs, Volume= 1.214 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 154R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 162R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

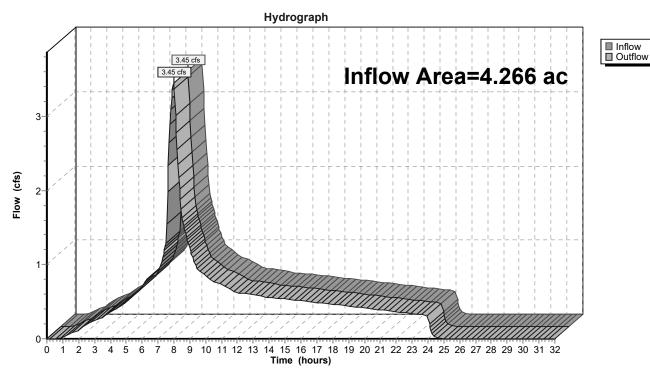
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 581

Summary for Reach 163R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.266 ac, 30.15% Impervious, Inflow Depth = 3.33" for 25-25 Year event


Inflow = 3.45 cfs @ 7.98 hrs, Volume= 1.182 af

Outflow = 3.45 cfs @ 7.98 hrs, Volume= 1.182 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 162R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 163R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

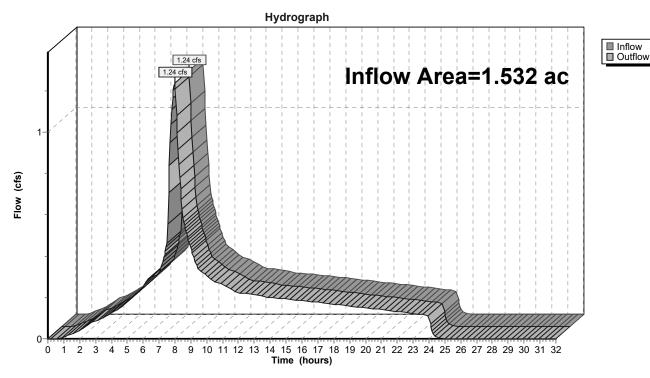
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 582

Summary for Reach 165R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.532 ac, 27.64% Impervious, Inflow Depth = 3.31" for 25-25 Year event


Inflow = 1.24 cfs @ 7.98 hrs, Volume= 0.423 af

Outflow = 1.24 cfs @ 7.98 hrs, Volume= 0.423 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 163R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 165R: 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

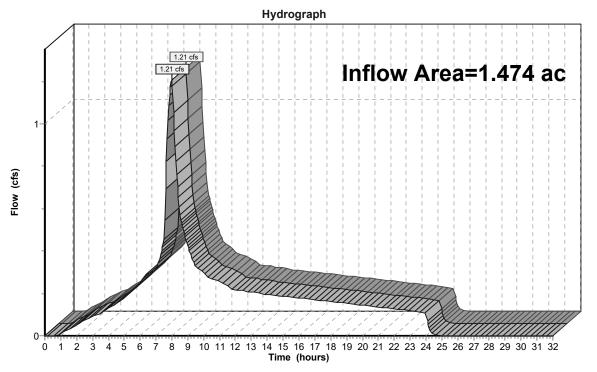
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 583

Summary for Reach 166R: Basin Future

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.474 ac, 37.85% Impervious, Inflow Depth = 3.37" for 25-25 Year event


Inflow = 1.21 cfs @ 7.98 hrs, Volume= 0.414 af

Outflow = 1.21 cfs @ 7.98 hrs, Volume= 0.414 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 163R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 166R: Basin Future

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 584

Summary for Pond 54P: Stormwater Swale 2

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=39)

Inflow Area = 0.082 ac,100.00% Impervious, Inflow Depth = 3.71" for 25-25 Year event

Inflow = 0.07 cfs @ 7.98 hrs, Volume= 0.025 af

Outflow = 0.07 cfs @ 7.98 hrs, Volume= 0.025 af, Atten= 0%, Lag= 0.4 min

Primary = 0.07 cfs @ 7.98 hrs, Volume= 0.025 af

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Peak Elev= 222.43' @ 7.98 hrs Surf.Area= 185 sf Storage= 33 cf

Flood Elev= 223.30' Surf.Area= 192 sf Storage= 88 cf

Plug-Flow detention time= 32.6 min calculated for 0.025 af (100% of inflow)

Center-of-Mass det. time= 32.8 min (698.7 - 665.9)

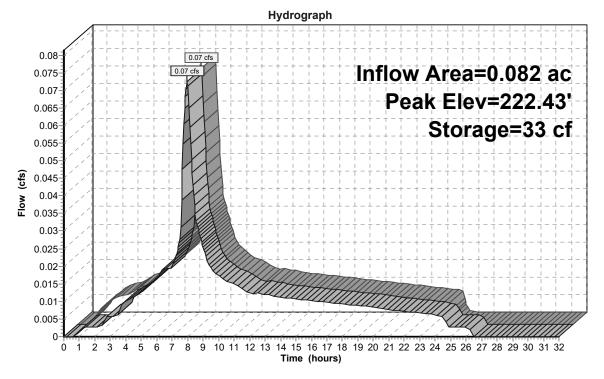
Volume	Inv	ert Avai	I.Storage	Storage Descripti	ion		
#1	222.3	30'	63 cf		rregular)Listed be		
#2	220.8	30'	10 cf	Imported Soil (Ir 101 cf Overall x	regular)Listed be	low (Recalc)	
#3	220.0)5'	15 cf	-	(Irregular)Listed b	elow (Recalc)	
			88 cf	Total Available S	torage		
Elevatio (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
222.3	0	59	33.0	0	0	59	
223.3	0	67	34.0	63	63	93	
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet Area	
(feet		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
220.8		67	34.0	0	0	67	
222.3	0	67	34.0	101	101	118	
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
220.0	<u>, </u>	58	33.0	0	0	58	
220.8	_	58	33.0	44	44	83	
Davisa	Davitina	l.e.		at Davissa			
<u>Device</u>	Routing			et Devices	Of		
#1 #2	Primary			0 in/hr Perf Pipes		ea	
#2	Primary	223		Horiz. 4"Overflow ted to weir flow at l			
#3	Primary	222	.30' 10.0	" Vert. 10" Outflo ted to weir flow at l	w Pipe C= 0.600		

Primary OutFlow Max=0.07 cfs @ 7.98 hrs HW=222.43' TW=0.00' (Dynamic Tailwater)

—1=Perf Pipes (Exfiltration Controls 0.01 cfs)

—2=4"Overflow Pipe (Controls 0.00 cfs)

-3=10" Outflow Pipe (Orifice Controls 0.06 cfs @ 1.21 fps)


Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Printed 9/6/2023

Page 585

Pond 54P: Stormwater Swale 2

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 586

Summary for Pond 60P: Stormwater Swale 1

Inflow Area = 0.085 ac,100.00% Impervious, Inflow Depth = 3.71" for 25-25 Year event

Inflow = 0.08 cfs @ 7.98 hrs, Volume= 0.026 af

Outflow = 0.08 cfs @ 7.98 hrs, Volume= 0.026 af, Atten= 0%, Lag= 0.4 min

Primary = 0.08 cfs @ 7.98 hrs, Volume= 0.026 af

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Peak Elev= 222.08' @ 7.98 hrs Surf.Area= 195 sf Storage= 35 cf

Flood Elev= 222.95' Surf.Area= 204 sf Storage= 93 cf

Plug-Flow detention time= 33.0 min calculated for 0.026 af (100% of inflow)

Center-of-Mass det. time= 33.1 min (699.0 - 665.9)

Volume	Inv	ert Avai	l.Storage	Storage Description	on		
#1	221.9	95'	67 cf	Open Storage (Iri	regular)Listed belo	ow (Recalc)	_
#2	220.4	45'	11 cf	Imported Soil (Irr		w (Recalc)	
				108 cf Overall x 1			
#3	219.7	70'	16 cf	Rock Chamber (I 45 cf Overall x 35		low (Recalc)	
			93 cf	Total Available Sto			
Elevatio	_	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
Elevation (feet			(feet)	(cubic-feet)	(cubic-feet)		
		(sq-ft)				(sq-ft)	
221.99 222.99	_	62 72	34.0 36.0	0 67	0 67	62 99	
222.93	3	12	30.0	07	07	99	
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet	:)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
220.4	5	72	36.0	0	0	72	
221.9	5	72	36.0	108	108	126	
Elevatio	0	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet Area	
(feet		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
219.70		60	34.0	0	0	60	
220.4	-	60	34.0	45	45	86	
220.1	•	00	01.0	10	10	00	
Device	Routing	In	vert Outl	et Devices			
	Primary	219	.70' 2.00	0 in/hr Perf Pipes	over Surface area	 a	
	Primary	222		Horiz. 4"Overflow			
	•			ted to weir flow at lo			
#3	Primary	221		" Vert. 10" Outflow			
			Limi	ted to weir flow at lo	ow heads		

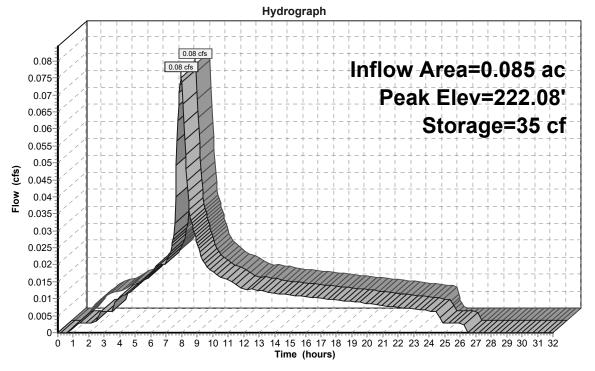
Primary OutFlow Max=0.07 cfs @ 7.98 hrs HW=222.08' TW=0.00' (Dynamic Tailwater)

⁻¹⁼Perf Pipes (Exfiltration Controls 0.01 cfs)

^{-2=4&}quot;Overflow Pipe (Controls 0.00 cfs)

^{-3=10&}quot; Outflow Pipe (Orifice Controls 0.07 cfs @ 1.22 fps)

Type IA 24-hr 25-25 Year Rainfall=3.94"


Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 587

Pond 60P: Stormwater Swale 1

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 588

Summary for Pond 63P: Detention Pond

Inflow Area = 23.038 ac, 36.38% Impervious, Inflow Depth = 3.36" for 25-25 Year event

Inflow = 18.82 cfs @ 7.98 hrs, Volume= 6.449 af

Outflow = 7.91 cfs @ 8.69 hrs, Volume= 6.448 af, Atten= 58%, Lag= 42.9 min

Primary = 7.91 cfs @ 8.69 hrs, Volume= 6.448 af

Routed to Reach 85R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Peak Elev= 224.18' @ 8.69 hrs Surf.Area= 46,853 sf Storage= 53,277 cf

Flood Elev= 225.50' Surf.Area= 48,838 sf Storage= 80,897 cf

Plug-Flow detention time= 106.9 min calculated for 6.438 af (100% of inflow)

Center-of-Mass det. time= 107.0 min (802.2 - 695.3)

<u>Volume</u>	Invert	Avail.Storage	Storage Description
#1	221.50'	75,859 cf	Open Storage (Irregular)Listed below (Recalc)
#2	220.00'	3,288 cf	Growing Medium (Irregular)Listed below (Recalc)
			32,879 cf Overall x 10.0% Voids
#3	219.00'	1,750 cf	Rock Chamber (Prismatic)Listed below (Recalc)
			5,000 cf Overall x 35.0% Voids

80,897 cf Total Available Storage

	8	0,897 ct	Total Available Sto	rage	
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
221.50	16,108	696.8	0	0	16,108
222.50	17,511	717.0	16,805	16,805	18,488
223.50	18,943	738.5	18,222	35,027	21,082
224.50	20,410	754.7	19,672	54,699	23,147
225.50	21,919	770.9	21,160	75,859	25,257
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
220.00	21,919	770.9	0	0	21,919
221.50	21,919	770.9	32,879	32,879	23,075
Elevation	Surf.Area	Inc	.Store Cum.S	tore	
(feet)	(sq-ft)	(cubic	c-feet) (cubic-f	<u>eet)</u>	
219.00	5,000		0	0	
220.00	5,000		5,000 5	,000	

Device	Routing	Invert	Outlet Devices
#1	Primary	219.00'	24.0" Round 24" Pipe
	•		L= 100.0' CPP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 219.00' / 218.80' S= 0.0020 '/' Cc= 0.900
			n= 0.010, Flow Area= 3.14 sf
#2	Device 1	219.00'	2.000 in/hr 4" Perf Pipes over Surface area
#3	Device 1	221.85'	6.0" Vert. 2x6" Orifice X 2.00 C= 0.600
			Limited to weir flow at low heads
#4	Device 1	222.78'	6.0" Vert. 6" Orifice C= 0.600 Limited to weir flow at low heads
#5	Device 1	222.95'	6.0" Vert. 6" Orifice C= 0.600 Limited to weir flow at low heads

Type IA 24-hr 25-25 Year Rainfall=3.94"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 589

#6	Device 1	223.25'	4.0" Vert. 4" Orifice C= 0.600 Limited to weir flow at low heads
#7	Device 1	223.55'	4.0" Vert. 4" Orifice C= 0.600 Limited to weir flow at low heads
#8	Device 1	223.77'	4.0" Vert. 2x4" Orifice X 2.00 C= 0.600
			Limited to weir flow at low heads
#9	Device 1	224.35'	48.0" x 48.0" Horiz. 48" Overflow C= 0.600
			Limited to weir flow at low heads

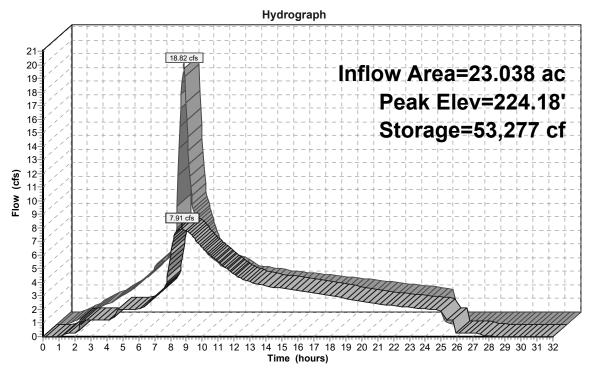
Primary OutFlow Max=7.91 cfs @ 8.69 hrs HW=224.18' TW=0.00' (Dynamic Tailwater) -1=24" Pipe (Passes 7.91 cfs of 27.29 cfs potential flow)

-2=4" Perf Pipes (Exfiltration Controls 2.17 cfs)

-3=2x6" Orifice (Orifice Controls 2.73 cfs @ 6.94 fps)

-4=6" Orifice (Orifice Controls 1.01 cfs @ 5.16 fps)

-5=6" Orifice (Orifice Controls 0.94 cfs @ 4.77 fps)


-6=4" Orifice (Orifice Controls 0.37 cfs @ 4.21 fps)

-7=4" Orifice (Orifice Controls 0.29 cfs @ 3.28 fps)

-8=2x4" Orifice (Orifice Controls 0.41 cfs @ 2.37 fps)

-9=48" Overflow (Controls 0.00 cfs)

Pond 63P: Detention Pond

Type IA 24-hr 50-50 Year Rainfall=4.38"

Printed 9/6/2023

Prepared by A&O Engineering LLC
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 590

Time span=0.00-32.00 hrs, dt=0.05 hrs, 641 points Runoff by SBUH method, Split Pervious/Imperv. Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment64S: Home Basin 20	Runoff Area=9,940 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.20 cfs 0.068 af
Subcatchment65S: Single Pond Existin Flow Length=1,526'	ng Runoff Area=23.038 ac 0.00% Impervious Runoff Depth>3.18" Slope=0.0076 '/' Tc=73.0 min CN=89/0 Runoff=9.19 cfs 6.107 af
Subcatchment67S: Home Basin 19	Runoff Area=17,197 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.35 cfs 0.118 af
Subcatchment68S: Home Basin 12	Runoff Area=18,133 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.37 cfs 0.125 af
Subcatchment69S: Home Basin 17	Runoff Area=16,661 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.34 cfs 0.114 af
Subcatchment70S: Home Basin 18	Runoff Area=11,596 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.24 cfs 0.080 af
Subcatchment71S: Home Basin 14	Runoff Area=16,444 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.33 cfs 0.113 af
Subcatchment72S: Home Basin 16	Runoff Area=20,310 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.41 cfs 0.140 af
Subcatchment73S: Home Basin 13	Runoff Area=10,807 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.22 cfs 0.074 af
Subcatchment74S: Swale Existing Flow Length=105'	Runoff Area=0.168 ac 0.00% Impervious Runoff Depth=3.18" Slope=0.0565 '/' Tc=10.0 min CN=89/0 Runoff=0.13 cfs 0.045 af
Subcatchment75S: Home Basin 11	Runoff Area=18,483 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.38 cfs 0.127 af
Subcatchment77S: Home Basin 15	Runoff Area=12,503 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.25 cfs 0.086 af
Subcatchment78S: Single Pond	Runoff Area=21,919 sf 100.00% Impervious Runoff Depth=4.14" Tc=0.0 min CN=0/98 Runoff=0.53 cfs 0.174 af
Subcatchment79S: Home Basin 30	Runoff Area=38,416 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.78 cfs 0.264 af
Subcatchment80S: Home Basin 10	Runoff Area=14,789 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.30 cfs 0.102 af
Subcatchment81S: Home Basin 9	Runoff Area=15,575 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.32 cfs 0.107 af

Printed 9/6/2023

9-6-23 HydroCAD DOMPrepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Type IA 24-hr 50-50 Year Rainfall=4.38"

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC Page 591		
Subcatchment82S: Home Basin 2	Runoff Area=20,667 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.42 cfs 0.142 af	
Subcatchment83S: Home Basin 7	Runoff Area=17,032 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.35 cfs 0.117 af	
Subcatchment84S: Home Basin 8	Runoff Area=11,668 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.24 cfs 0.080 af	
Subcatchment85S: Home Basin 29	Runoff Area=25,118 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.51 cfs 0.173 af	
Subcatchment86S: Home Basin 22	Runoff Area=16,159 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.33 cfs 0.111 af	
Subcatchment87S: Home Basin 27	Runoff Area=24,839 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.50 cfs 0.171 af	
Subcatchment88S: Home Basin 28	Runoff Area=25,318 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.51 cfs 0.174 af	
Subcatchment89S: Home Basin 24	Runoff Area=20,676 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.42 cfs 0.142 af	
Subcatchment90S: Home Basin 26	Runoff Area=14,135 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.29 cfs 0.097 af	
Subcatchment91S: Home Basin 23	Runoff Area=12,271 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.25 cfs 0.084 af	
Subcatchment92S: Home Basin 21	Runoff Area=27,019 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.55 cfs 0.186 af	
Subcatchment93S: Home Basin 25	Runoff Area=17,012 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.35 cfs 0.117 af	
Subcatchment94S: Home Basin 4	Runoff Area=19,535 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.40 cfs 0.134 af	
Subcatchment95S: Home Basin 31	Runoff Area=24,883 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.51 cfs 0.171 af	
Subcatchment96S: Basin 1	Runoff Area=15,045 sf 100.00% Impervious Runoff Depth=4.14" Tc=10.0 min CN=0/98 Runoff=0.34 cfs 0.119 af	
Subcatchment97S: Basin 2	Runoff Area=19,824 sf 100.00% Impervious Runoff Depth=4.14" Tc=10.0 min CN=0/98 Runoff=0.45 cfs 0.157 af	
Subcatchment98S: Basin 3	Runoff Area=23,416 sf 100.00% Impervious Runoff Depth=4.14" Tc=10.0 min CN=0/98 Runoff=0.53 cfs 0.186 af	

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC
HvdroCAD® 10.20-2a s/n 04993 © 2022 Hvdro

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 592

Subcatchment99S: Home Basin 6 Runoff Area=25,997 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.53 cfs 0.179 af Subcatchment100S: Basin 4 Runoff Area=3,650 sf 100.00% Impervious Runoff Depth=4.14" Tc=10.0 min CN=0/98 Runoff=0.08 cfs 0.029 af Subcatchment 101S: Basin 5 Runoff Area=3,523 sf 100.00% Impervious Runoff Depth=4.14" Tc=10.0 min CN=0/98 Runoff=0.08 cfs 0.028 af Subcatchment 102S: Home Basin 3 Runoff Area=19,559 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.40 cfs 0.134 af Runoff Area=22,288 sf 0.00% Impervious Runoff Depth=3.59" Subcatchment 103S: Home Basin 1 Tc=10.0 min CN=93/0 Runoff=0.45 cfs 0.153 af Subcatchment 104S: Home Basin 5 Runoff Area=33.512 sf 0.00% Impervious Runoff Depth=3.59" Tc=10.0 min CN=93/0 Runoff=0.68 cfs 0.230 af Subcatchment 105S: Basin 6 Runoff Area=8,965 sf 100.00% Impervious Runoff Depth=4.14" Tc=10.0 min CN=0/98 Runoff=0.20 cfs 0.071 af Runoff Area=8,177 sf 100.00% Impervious Runoff Depth=4.14" Subcatchment107S: Basin 8 Tc=10.0 min CN=0/98 Runoff=0.18 cfs 0.065 af Runoff Area=13,130 sf 100.00% Impervious Runoff Depth=4.14" Subcatchment 108S: Basin 9 Tc=10.0 min CN=0/98 Runoff=0.30 cfs 0.104 af Runoff Area=22,902 sf 100.00% Impervious Runoff Depth=4.14" Subcatchment109S: Basin 10 Tc=10.0 min CN=0/98 Runoff=0.52 cfs 0.182 af Subcatchment110S: Basin 11 Runoff Area=25,748 sf 100.00% Impervious Runoff Depth=4.14" Tc=10.0 min CN=0/98 Runoff=0.58 cfs 0.204 af Subcatchment111S: Basin 12 Runoff Area=5,562 sf 100.00% Impervious Runoff Depth=4.14" Tc=10.0 min CN=0/98 Runoff=0.13 cfs 0.044 af

Subcatchment112S: Basin 13

Runoff Area=4,702 sf 100.00% Impervious Runoff Depth=4.14" Tc=10.0 min CN=0/98 Runoff=0.11 cfs 0.037 af

Subcatchment113S: Basin 14

Runoff Area=7,669 sf $\,$ 100.00% Impervious Runoff Depth=4.14" $\,$ Tc=10.0 min $\,$ CN=0/98 $\,$ Runoff=0.17 cfs $\,$ 0.061 af

Subcatchment114S: Basin 15

Runoff Area=7,261 sf 100.00% Impervious Runoff Depth=4.14" Tc=10.0 min CN=0/98 Runoff=0.16 cfs 0.058 af

Subcatchment115S: Basin 16

Runoff Area=7,066 sf 100.00% Impervious Runoff Depth=4.14" Tc=10.0 min CN=0/98 Runoff=0.16 cfs 0.056 af

Subcatchment116S: Basin 17

Runoff Area=26,003 sf 100.00% Impervious Runoff Depth=4.14" Tc=10.0 min CN=0/98 Runoff=0.59 cfs 0.206 af

Inflow=11.00 cfs 7.337 af Outflow=11.00 cfs 7.337 af

Page 593

9-6-23 HydroCAD DOM	Type IA 2
Prepared by A&O Engineering LLC	
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Softwa	are Solutions LLC

Reach 39R: Post-ConstructionPeak Flow

Type IA 24-hr 50-50 Year Rainfall=4.38" Printed 9/6/2023

Subcatchment117S: Basin 18	Runoff Area=23,761 sf 100.00% Impervious Runoff Depth=4.14"
	Tc=10.0 min CN=0/98 Runoff=0.54 cfs 0.188 af
Subcatchment118S: Basin 19	Runoff Area=7,309 sf 100.00% Impervious Runoff Depth=4.14" Tc=10.0 min CN=0/98 Runoff=0.16 cfs 0.058 af
Subcatchment119S: Basin 20	Runoff Area=7,535 sf 100.00% Impervious Runoff Depth=4.14" Tc=10.0 min CN=0/98 Runoff=0.17 cfs 0.060 af
Subcatchment120S: Basin 21	Runoff Area=6,846 sf 100.00% Impervious Runoff Depth=4.14" Tc=10.0 min CN=0/98 Runoff=0.15 cfs 0.054 af
Subcatchment121S: Basin 22	Runoff Area=5,182 sf 100.00% Impervious Runoff Depth=4.14" Tc=10.0 min CN=0/98 Runoff=0.12 cfs 0.041 af
	10-10.0 Milli CN-0/96 Runon-0.12 dis 0.041 ai
Subcatchment122S: Basin 23	Runoff Area=5,456 sf 100.00% Impervious Runoff Depth=4.14" Tc=10.0 min CN=0/98 Runoff=0.12 cfs 0.043 af
Subcatchment123S: Basin 24	Runoff Area=4,510 sf 100.00% Impervious Runoff Depth=4.14"
Subcatchinent 1235. Basin 24	Tc=10.0 min CN=0/98 Runoff=0.10 cfs 0.036 af
Subcatchment124S: Basin 25	Runoff Area=13,271 sf 100.00% Impervious Runoff Depth=4.14"
	Tc=10.0 min CN=0/98 Runoff=0.30 cfs 0.105 af
Subcatchment125S: Basin 26	Runoff Area=18,452 sf 100.00% Impervious Runoff Depth=4.14"
	Tc=10.0 min CN=0/98 Runoff=0.42 cfs 0.146 af
Subcatchment126S: Alley Basin 1	Runoff Area=9,860 sf 100.00% Impervious Runoff Depth=4.14"
	Tc=10.0 min CN=0/98 Runoff=0.22 cfs 0.078 af
Subcatchment127S: Alley Basin 2	Runoff Area=7,461 sf 100.00% Impervious Runoff Depth=4.14"
	Tc=10.0 min CN=0/98 Runoff=0.17 cfs 0.059 af
Subcatchment 128S: Alley Basin 3	Runoff Area=6,782 sf 100.00% Impervious Runoff Depth=4.14"
	Tc=10.0 min CN=0/98 Runoff=0.15 cfs 0.054 af
Subcatchment129S: Alley Basin 4	Runoff Area=6,970 sf 100.00% Impervious Runoff Depth=4.14" Tc=10.0 min CN=0/98 Runoff=0.16 cfs 0.055 af
	1 C= 10.0 min CN=0/98 RunoII=0.16 cis 0.055 ai
Subcatchment168S: Future Lots	Runoff Area=64,223 sf 37.85% Impervious Runoff Depth=3.80" Tc=10.0 min CN=93/98 Runoff=1.36 cfs 0.467 af
Out and a horse and 4000 Co. 1. 2	
Subcatchment169S: Swale 2	Runoff Area=67 sf 100.00% Impervious Runoff Depth=4.14" Tc=0.0 min CN=0/98 Runoff=0.00 cfs 0.001 af
Subcatchment170S: Swale 1	Runoff Area=72 sf 100.00% Impervious Runoff Depth=4.14"
Subcatchinient 1703. Swale 1	Tc=0.0 min CN=0/98 Runoff=0.00 cfs 0.001 af

9-6-23 HydroCAD DOM Prepared by A&O Engineering LLC

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC	Printed 9/6/2023
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC	Page 594
Reach 42R: Pre-ConstructionPeak Flow	Inflow=9.29 cfs 6.152 af Outflow=9.29 cfs 6.152 af
Reach 58R: 1	Inflow=11.00 cfs 7.337 af Outflow=11.00 cfs 7.337 af
Reach 85R: 1	Inflow=10.92 cfs 7.279 af Outflow=10.92 cfs 7.279 af
Reach 130R: 1	Inflow=3.62 cfs 1.243 af Outflow=3.62 cfs 1.243 af
Reach 131R: 1	Inflow=3.62 cfs 1.243 af Outflow=3.62 cfs 1.243 af
Reach 132R: 1	Inflow=2.08 cfs 0.713 af Outflow=2.08 cfs 0.713 af
Reach 133R: 1	Inflow=0.34 cfs 0.119 af Outflow=0.34 cfs 0.119 af
Reach 134R: 1	Inflow=16.65 cfs 5.714 af Outflow=16.65 cfs 5.714 af
Reach 135R: 1	Inflow=2.82 cfs 0.965 af Outflow=2.82 cfs 0.965 af
Reach 136R: 1	Inflow=1.60 cfs 0.549 af Outflow=1.60 cfs 0.549 af
Reach 137R: 1	Inflow=0.97 cfs 0.335 af Outflow=0.97 cfs 0.335 af
Reach 138R: 1	Inflow=0.42 cfs 0.149 af Outflow=0.42 cfs 0.149 af
Reach 139R: 1	Inflow=13.54 cfs 4.646 af Outflow=13.54 cfs 4.646 af
Reach 140R: 1	Inflow=0.22 cfs 0.078 af Outflow=0.22 cfs 0.078 af
Reach 141R: 1	Inflow=0.17 cfs 0.059 af Outflow=0.17 cfs 0.059 af
Reach 142R: 1	Inflow=12.85 cfs 4.408 af Outflow=12.85 cfs 4.408 af
Reach 143R: 1	Inflow=2.62 cfs 0.897 af Outflow=2.62 cfs 0.897 af

9-6-23 HydroCAD DOMPrepared by A&O Engineering LLC

Type IA 24-hr 50-50 Year Rainfall=4.38"

9-6-23 HydroCAD DOM	Type IA 24-fir 50-50 Year Rainfall=4.38
Prepared by A&O Engineering LLC	Printed 9/6/2023
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solu	utions LLC Page 595
Reach 144R: 1	Inflow=1.88 cfs 0.643 af
	Outflow=1.88 cfs 0.643 af
Reach 145R: 1	Inflow=1.88 cfs 0.643 af
	Outflow=1.88 cfs 0.643 af
Reach 146R: 1	Inflow=10.23 cfs 3.511 af
	Outflow=10.23 cfs 3.511 af
Reach 147R: 1	Inflow=0.15 cfs 0.054 af
	Outflow=0.15 cfs 0.054 af
Reach 148R: 1	Inflow=10.08 cfs 3.457 af
TOWN TOTAL	Outflow=10.08 cfs 3.457 af
	Camow 10.00 010 0.107 at
Reach 149R: 1	Inflow=2.55 cfs 0.876 af
Neach 14011. 1	Outflow=2.55 cfs 0.876 af
	Outhow=2.00 613 0.070 at
Reach 150R: 1	Inflow=1,73 cfs 0,594 af
Reacti 150K. I	Outflow=1.73 cfs 0.594 af
	Outhow-1.73 dis 0.394 at
Deceb 454D: 4	Inflow=1.32 cfs 0.455 af
Reach 151R: 1	Outflow=1.32 cfs 0.455 af
	Outilow=1.32 dis 0.455 ai
Decel 450D: 4	Inflow=7.04 efc. 2.444 ef
Reach 152R: 1	Inflow=7.04 cfs 2.414 af
	Outflow=7.04 cfs 2.414 af
D I. 450D. 4	Inflame 0.40 afa 0.055 af
Reach 153R: 1	Inflow=0.16 cfs 0.055 af
	Outflow=0.16 cfs 0.055 af
Reach 154R: 1	Inflow=6.88 cfs 2.359 af
	Outflow=6.88 cfs 2.359 af
Reach 155R: 1	Inflow=2.42 cfs 0.830 af
	Outflow=2.42 cfs 0.830 af
Reach 158R: 1	Inflow=13.83 cfs 4.748 af
	Outflow=13.83 cfs 4.748 af
Reach 159R: 1	Inflow=13.37 cfs 4.587 af
	Outflow=13.37 cfs 4.587 af
Reach 160R: 1	Inflow=1.68 cfs 0.574 af
	Outflow=1.68 cfs 0.574 af
Reach 162R: 1	Inflow=4.00 cfs 1.371 af
	Outflow=4.00 cfs 1.371 af
Reach 163R: 1	Inflow=3.90 cfs 1.336 af
	Outflow=3.90 cfs 1.336 af

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 596

Reach 165R: 1 Inflow=1.40 cfs 0.478 af

Outflow=1.40 cfs 0.478 af

Reach 166R: Basin Future Inflow=1.36 cfs 0.467 af

Outflow=1.36 cfs 0.467 af

Pond 54P: Stormwater Swale 2 Peak Elev=222.44' Storage=33 cf Inflow=0.08 cfs 0.028 af

Outflow=0.08 cfs 0.028 af

Pond 60P: Stormwater Swale 1 Peak Elev=222.09' Storage=35 cf Inflow=0.08 cfs 0.030 af

Outflow=0.08 cfs 0.030 af

Pond 63P: Detention Pond Peak Elev=224.47' Storage=59,147 cf Inflow=21.21 cfs 7.280 af

Outflow=10.92 cfs 7.279 af

Total Runoff Area = 46.412 ac Runoff Volume = 13.490 af Average Runoff Depth = 3.49" 81.58% Pervious = 37.863 ac 18.42% Impervious = 8.549 ac

Type IA 24-hr 50-50 Year Rainfall=4.38"

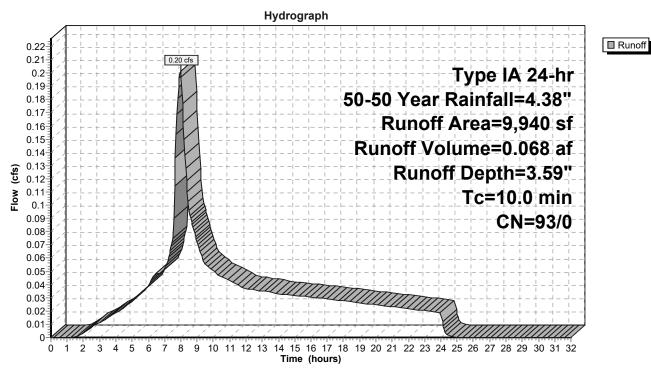
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 597

Summary for Subcatchment 64S: Home Basin 20


Runoff = 0.20 cfs @ 7.98 hrs, Volume= 0.068 af, Depth= 3.59"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	CN Description							
*		9,940	93	3 70% Lot Coverage Weighted							
		9,940	93	100.00% Pervious Area							
	Tc	9	Slope	,	. ,	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	10.0					Direct Entry,					

Subcatchment 64S: Home Basin 20

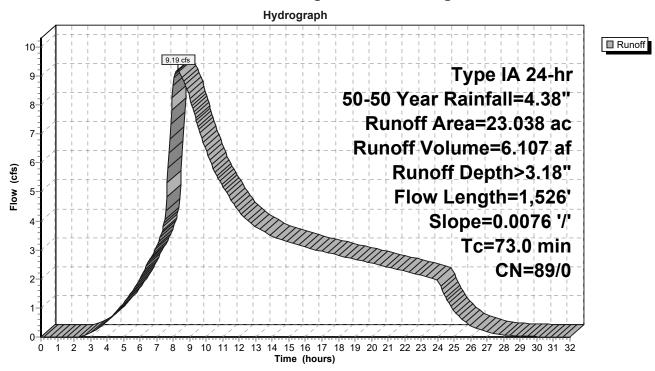
Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 598


Summary for Subcatchment 65S: Single Pond Existing Conditions

Runoff = 9.19 cfs @ 8.26 hrs, Volume= 6.107 af, Depth> 3.18" Routed to Reach 42R : Pre-Construction Peak Flow

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Area (ac) CN Description									
23.038 89 Pasture/grassland/range, Poor, HSG D										
	23.038 89 100.00% Pervious Area									
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Description					
•	39.5	300	0.0076	0.13	, ,	Sheet Flow,				
	33.5	1,226	0.0076	0.61		Grass: Short n= 0.150 P2= 2.47" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps				
	73.0	1 526	Total							

Subcatchment 65S: Single Pond Existing Conditions

Type IA 24-hr 50-50 Year Rainfall=4.38"

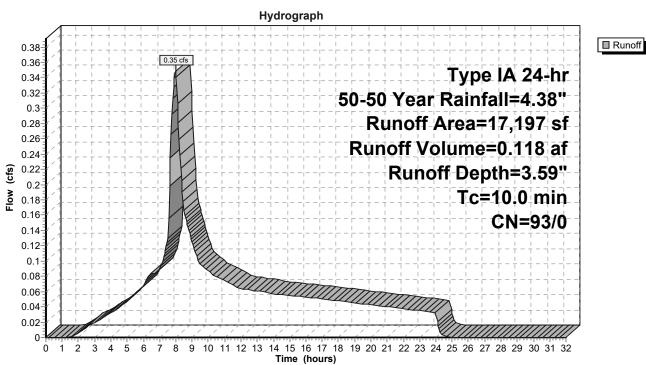
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 599

Summary for Subcatchment 67S: Home Basin 19


Runoff = 0.35 cfs @ 7.98 hrs, Volume= 0.118 af, Depth= 3.59"

Routed to Reach 159R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description							
*		17,197	93	3 70% Lot Coverage Weighted							
		17,197	93	100.00% Pervious Area							
		Length	Slope	,	. ,	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	10.0					Direct Entry,					

Subcatchment 67S: Home Basin 19

Type IA 24-hr 50-50 Year Rainfall=4.38"

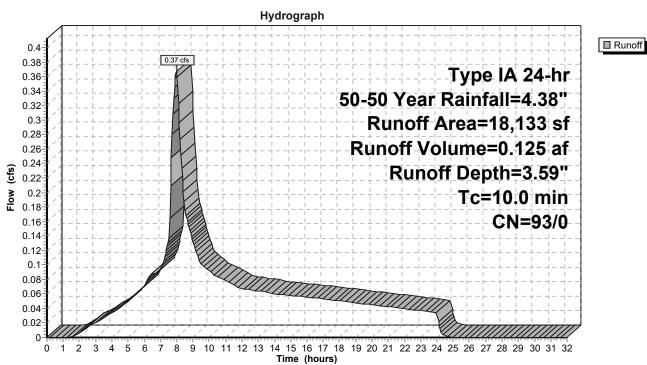
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 600

Summary for Subcatchment 68S: Home Basin 12


Runoff = 0.37 cfs @ 7.98 hrs, Volume= 0.125 af, Depth= 3.59"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description							
*		18,133	93	70% Lot Coverage Weighted							
		18,133	93	100.00% Pervious Area							
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)						Description					
_	10.0	,			· /	Direct Entry,					

Subcatchment 68S: Home Basin 12

Type IA 24-hr 50-50 Year Rainfall=4.38"

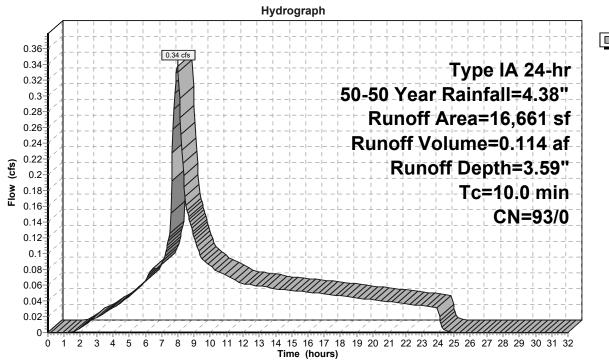
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 601

Summary for Subcatchment 69S: Home Basin 17


Runoff = 0.34 cfs @ 7.98 hrs, Volume= 0.114 af, Depth= 3.59"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description							
*		16,661	93	70% Lot Coverage Weighted							
		16,661	93	100.00% Pervious Area							
Tc Length Slope Velocity Capacity Desc (min) (feet) (ft/ft) (ft/sec) (cfs)					Capacity (cfs)	Description					
_	10.0	(1201)	(14,11)	(1200)	(0.0)	Direct Entry,					

Subcatchment 69S: Home Basin 17

■ Runoff

Type IA 24-hr 50-50 Year Rainfall=4.38"

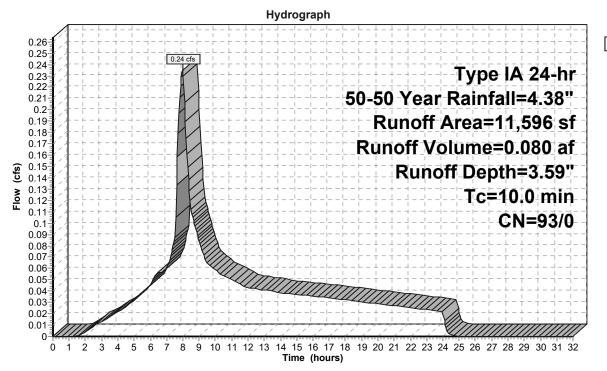
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 602

Summary for Subcatchment 70S: Home Basin 18


Runoff = 0.24 cfs @ 7.98 hrs, Volume= 0.080 af, Depth= 3.59"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description							
*		11,596	93	70% Lot Coverage Weighted							
		11,596	93	100.00% Pervious Area							
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)						Description					
	10.0					Direct Entry,					

Subcatchment 70S: Home Basin 18

■ Runoff

Type IA 24-hr 50-50 Year Rainfall=4.38"

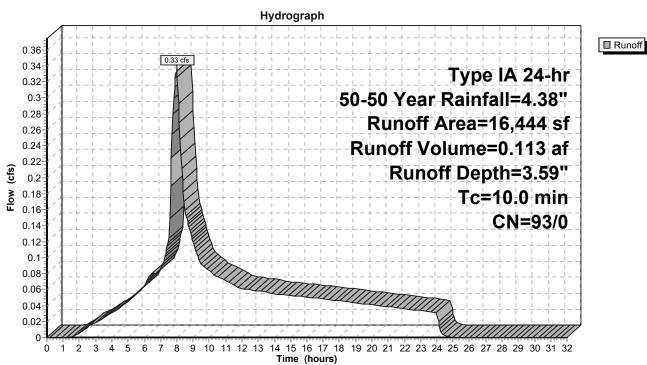
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 603

Summary for Subcatchment 71S: Home Basin 14


Runoff = 0.33 cfs @ 7.98 hrs, Volume= 0.113 af, Depth= 3.59"

Routed to Reach 148R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description							
*		16,444	93	70% Lot Coverage Weighted							
		16,444	93	100.00% Pervious Area							
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)						Description					
	10.0					Direct Entry,					

Subcatchment 71S: Home Basin 14

Type IA 24-hr 50-50 Year Rainfall=4.38"

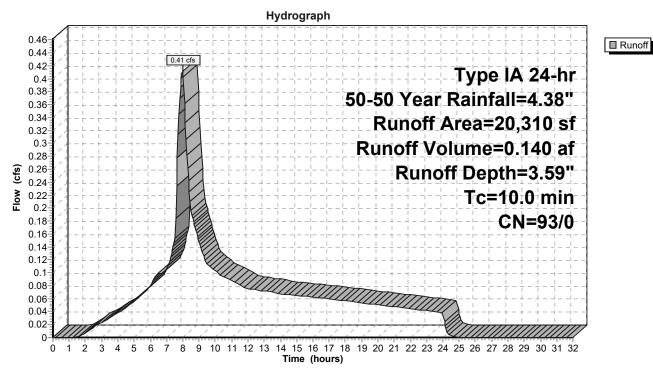
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 604

Summary for Subcatchment 72S: Home Basin 16


Runoff = 0.41 cfs @ 7.98 hrs, Volume= 0.140 af, Depth= 3.59"

Routed to Reach 150R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

	Α	rea (sf)	CN	Description						
*		20,310	93	70% Lot Coverage Weighted						
_		20,310	93	100.00% Pervious Area						
	Tc	9	Slope	,	. ,	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 72S: Home Basin 16

Type IA 24-hr 50-50 Year Rainfall=4.38"

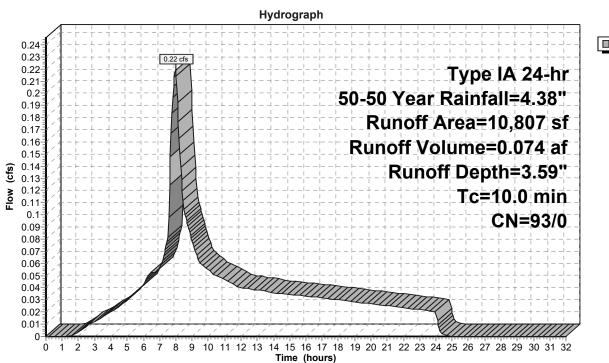
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 605

Summary for Subcatchment 73S: Home Basin 13


Runoff = 0.22 cfs @ 7.98 hrs, Volume= 0.074 af, Depth= 3.59"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description							
*		10,807	93	70% Lot Coverage Weighted							
_		10,807	93	100.00% Pervious Area							
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)						Description					
_	10.0	•				Direct Entry,					

Subcatchment 73S: Home Basin 13

■ Runoff

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

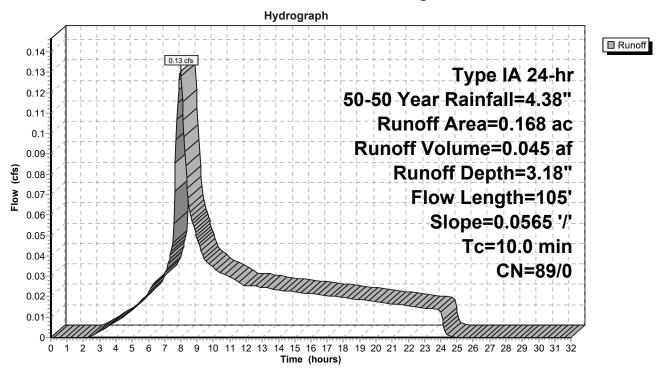
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 606

Summary for Subcatchment 74S: Swale Existing Conditions

Runoff = 0.13 cfs @ 7.99 hrs, Volume= 0.045 af, Depth= 3.18"


Routed to Reach 42R: Pre-Construction Peak Flow

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

Area	(ac) C	N Des	cription					
0.	168	89 Past	ure/grassl	and/range,	Poor, HSG D			
0.	168	89 100.	00% Pervi	ous Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
7.7	105	0.0565	0.23		Sheet Flow, Grass: Short	n= 0.150	P2= 2.47"	

7.7 105 Total, Increased to minimum Tc = 10.0 min

Subcatchment 74S: Swale Existing Conditions

Type IA 24-hr 50-50 Year Rainfall=4.38"

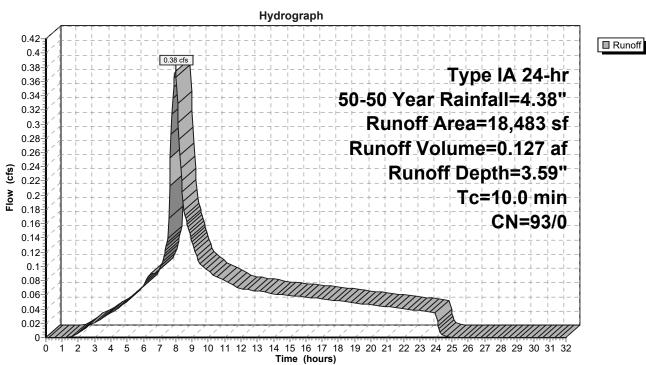
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 607

Summary for Subcatchment 75S: Home Basin 11


Runoff = 0.38 cfs @ 7.98 hrs, Volume= 0.127 af, Depth= 3.59"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

Α	rea (sf)	CN I	Description					
*	18,483	93	70% Lot Coverage Weighted					
	18,483	93	100.00% Pervious Area					
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'			
10.0					Direct Entry			

Subcatchment 75S: Home Basin 11

Type IA 24-hr 50-50 Year Rainfall=4.38"

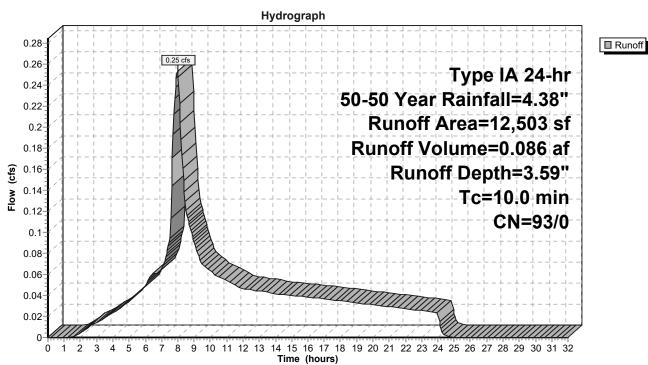
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 608

Summary for Subcatchment 77S: Home Basin 15


Runoff = 0.25 cfs @ 7.98 hrs, Volume= 0.086 af, Depth= 3.59"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description					
*		12,503	93	70% Lot Coverage Weighted					
		12,503	93	100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
_	10.0	, ,	, ,	, ,	, ,	Direct Entry,			

Subcatchment 77S: Home Basin 15

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

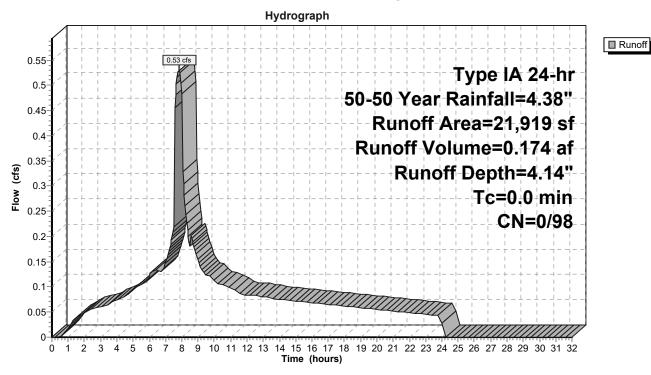
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 609

Summary for Subcatchment 78S: Single Pond

[46] Hint: Tc=0 (Instant runoff peak depends on dt)


Runoff = 0.53 cfs @ 7.80 hrs, Volume= 0.174 af, Depth= 4.14"

Routed to Pond 63P: Detention Pond

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

 Area (sf)	CN	Description
21,919	98	Water Surface, HSG D
 21,919	98	100.00% Impervious Area

Subcatchment 78S: Single Pond

Type IA 24-hr 50-50 Year Rainfall=4.38"

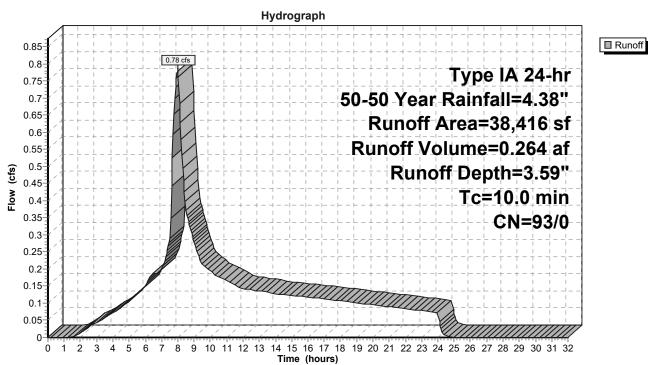
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 610

Summary for Subcatchment 79S: Home Basin 30


Runoff = 0.78 cfs @ 7.98 hrs, Volume= 0.264 af, Depth= 3.59"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description					
*		38,416	93	70% Lot Coverage Weighted					
		38,416	93	3 100.00% Pervious Area					
	Тс	Length	Slope	•		Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 79S: Home Basin 30

Type IA 24-hr 50-50 Year Rainfall=4.38"

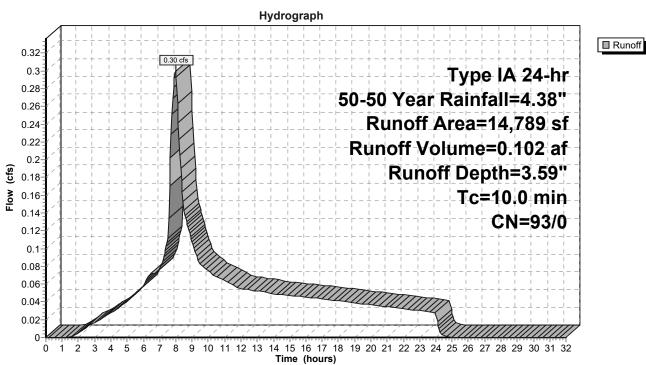
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 611

Summary for Subcatchment 80S: Home Basin 10


Runoff = 0.30 cfs @ 7.98 hrs, Volume= 0.102 af, Depth= 3.59"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN I	Description					
*		14,789	93	70% Lot Coverage Weighted					
_		14,789	93	100.00% Pervious Area					
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry.			

Subcatchment 80S: Home Basin 10

Type IA 24-hr 50-50 Year Rainfall=4.38"

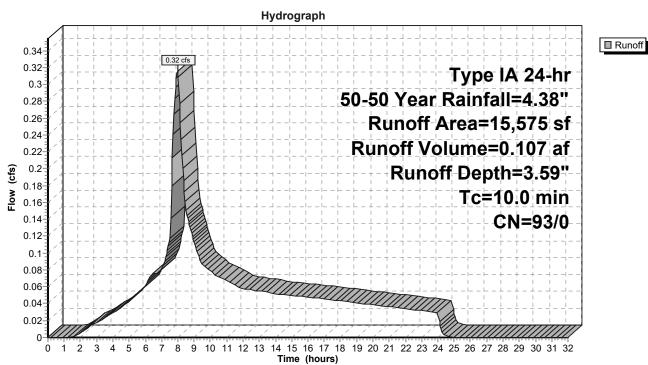
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 612

Summary for Subcatchment 81S: Home Basin 9


Runoff = 0.32 cfs @ 7.98 hrs, Volume= 0.107 af, Depth= 3.59"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description					
*		15,575	93	70% Lot Coverage Weighted					
		15,575	93	100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
	10.0	-				Direct Entry,			

Subcatchment 81S: Home Basin 9

Type IA 24-hr 50-50 Year Rainfall=4.38"

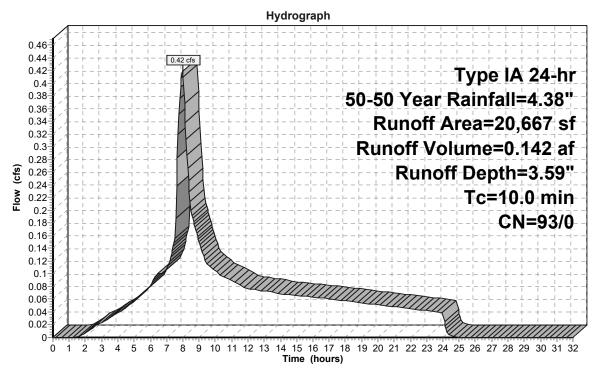
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 613

Summary for Subcatchment 82S: Home Basin 2


Runoff = 0.42 cfs @ 7.98 hrs, Volume= 0.142 af, Depth= 3.59"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description					
*		20,667	93	70% Lot Coverage Weighted					
		20,667	93	3 100.00% Pervious Area					
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 82S: Home Basin 2

Type IA 24-hr 50-50 Year Rainfall=4.38"

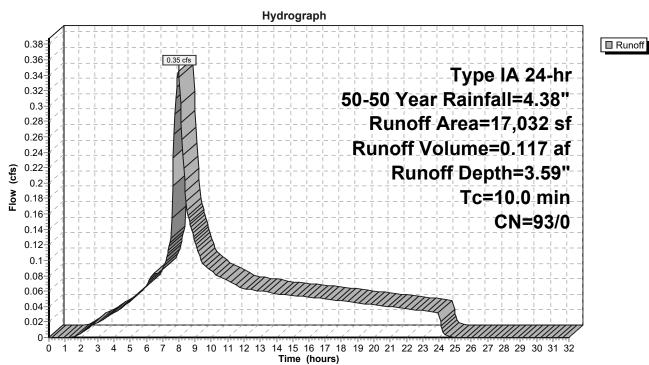
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 614

Summary for Subcatchment 83S: Home Basin 7


Runoff = 0.35 cfs @ 7.98 hrs, Volume= 0.117 af, Depth= 3.59"

Routed to Reach 154R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description					
*		17,032	93	70% Lot Coverage Weighted					
		17,032	93	100.00% Pervious Area					
_	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description			
	10.0					Direct Entry,			

Subcatchment 83S: Home Basin 7

Type IA 24-hr 50-50 Year Rainfall=4.38"

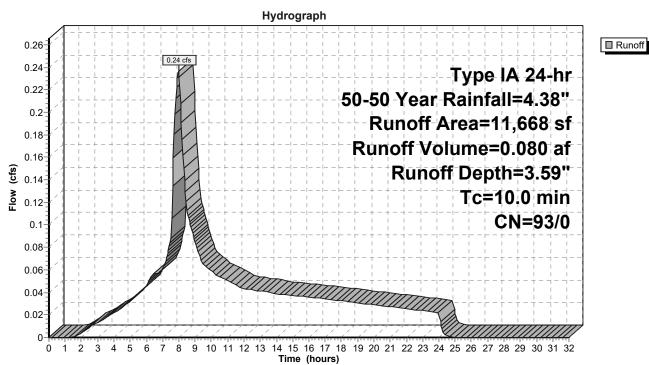
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 615

Summary for Subcatchment 84S: Home Basin 8


Runoff = 0.24 cfs @ 7.98 hrs, Volume= 0.080 af, Depth= 3.59"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description					
*		11,668	93	70% Lot Coverage Weighted					
_		11,668	93	100.00% Pervious Area					
	Тс	Length	Slope	e Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 84S: Home Basin 8

Type IA 24-hr 50-50 Year Rainfall=4.38"

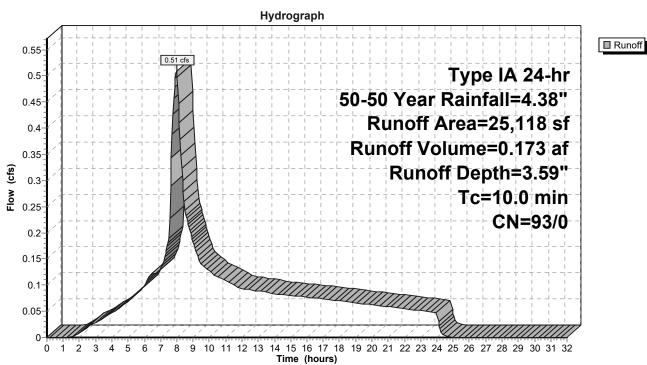
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 616

Summary for Subcatchment 85S: Home Basin 29


Runoff = 0.51 cfs @ 7.98 hrs, Volume= 0.173 af, Depth= 3.59"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

	Α	rea (sf)	CN I	Description					
*		25,118	93	70% Lot Coverage Weighted					
	25,118 93 100.00% Pervious Area				ervious Are	ea			
	Tc	J	Slope	,	. ,	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 85S: Home Basin 29

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 617

Summary for Subcatchment 86S: Home Basin 22

Runoff = 0.33 cfs @ 7.98 hrs, Volume= 0.111 af, Depth= 3.59"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN I	Description					
*		16,159	93	70% Lot Coverage Weighted					
		16,159	93	100.00% Pervious Area					
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 86S: Home Basin 22

Type IA 24-hr 50-50 Year Rainfall=4.38"

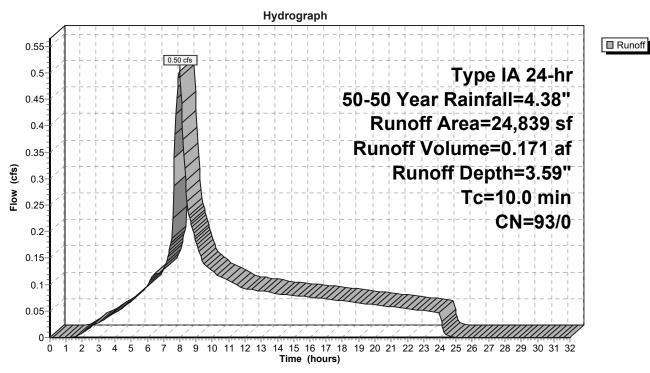
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 618

Summary for Subcatchment 87S: Home Basin 27


Runoff = 0.50 cfs @ 7.98 hrs, Volume= 0.171 af, Depth= 3.59"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description					
*		24,839	93	70% Lot Coverage Weighted					
		24,839	93	100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
-	10.0	(.551)	(10/10)	(12000)	(010)	Direct Entry			

Subcatchment 87S: Home Basin 27

Type IA 24-hr 50-50 Year Rainfall=4.38"

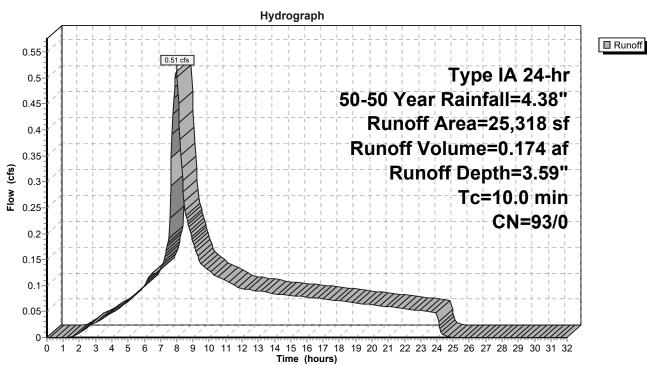
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 619

Summary for Subcatchment 88S: Home Basin 28


Runoff = 0.51 cfs @ 7.98 hrs, Volume= 0.174 af, Depth= 3.59"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description						
*		25,318	93	70% Lot Coverage Weighted						
		25,318	,318 93 100.00% Pervious Area							
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	10.0	(1001)	(14/15)	(1200)	(3.5)	Direct Entry				

Subcatchment 88S: Home Basin 28

Type IA 24-hr 50-50 Year Rainfall=4.38"

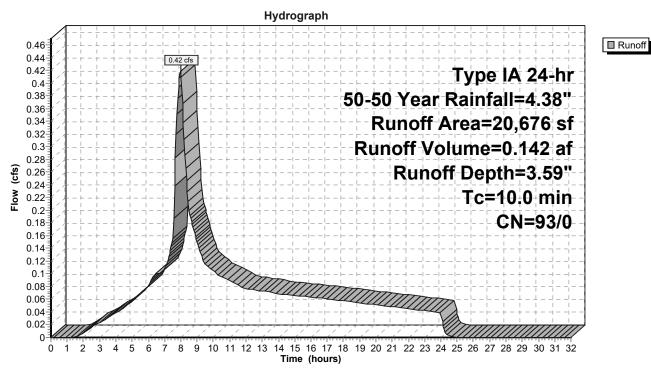
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 620

Summary for Subcatchment 89S: Home Basin 24


Runoff = 0.42 cfs @ 7.98 hrs, Volume= 0.142 af, Depth= 3.59"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

Α	rea (sf)	CN	Description						
*	20,676	93	70% Lot Coverage Weighted						
	20,676	93	3 100.00% Pervious Area						
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	2000.1940.1				
10.0	•				Direct Entry				

Subcatchment 89S: Home Basin 24

Type IA 24-hr 50-50 Year Rainfall=4.38"

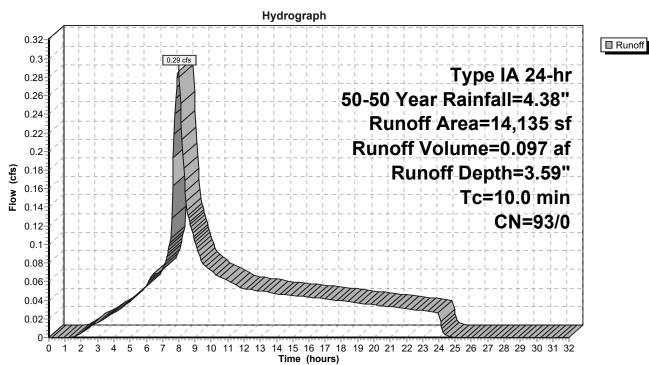
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 621

Summary for Subcatchment 90S: Home Basin 26


Runoff = 0.29 cfs @ 7.98 hrs, Volume= 0.097 af, Depth= 3.59"

Routed to Reach 136R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description						
*		14,135	93	70% Lot Coverage Weighted						
		14,135	93	100.00% Pervious Area						
_	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description				
	10.0					Direct Entry,				

Subcatchment 90S: Home Basin 26

Type IA 24-hr 50-50 Year Rainfall=4.38"

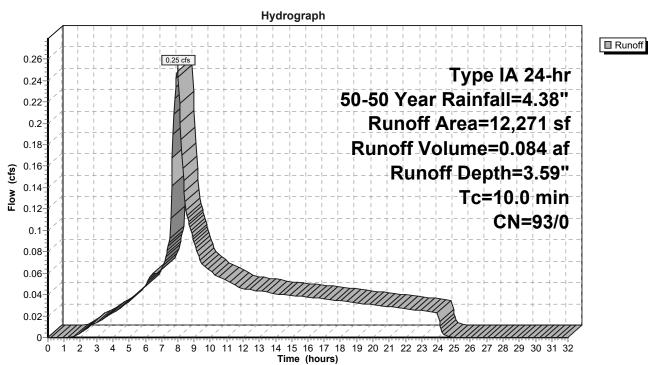
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 622

Summary for Subcatchment 91S: Home Basin 23


Runoff = 0.25 cfs @ 7.98 hrs, Volume= 0.084 af, Depth= 3.59"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description						
*		12,271	93	70% Lot Coverage Weighted						
		12,271	93	3 100.00% Pervious Area						
		Length	Slope	,	. ,	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 91S: Home Basin 23

Type IA 24-hr 50-50 Year Rainfall=4.38"

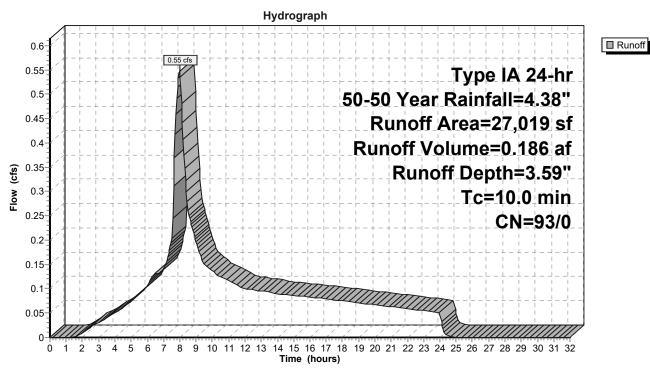
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 623

Summary for Subcatchment 92S: Home Basin 21


Runoff = 0.55 cfs @ 7.98 hrs, Volume= 0.186 af, Depth= 3.59"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description						
*		27,019	93	70% Lot Coverage Weighted						
		27,019	93	3 100.00% Pervious Area						
	Тс	9	Slope	,	. ,	Description				
_	(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 92S: Home Basin 21

Type IA 24-hr 50-50 Year Rainfall=4.38"

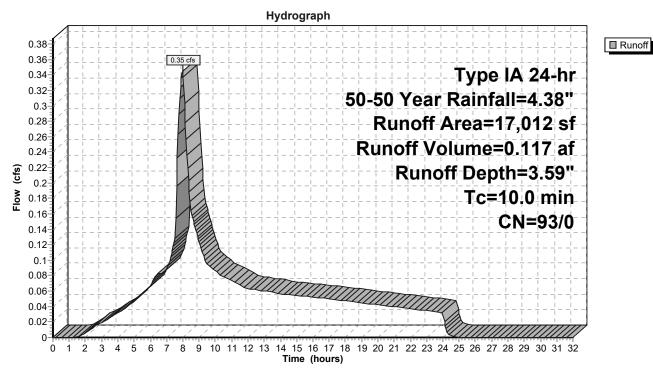
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 624

Summary for Subcatchment 93S: Home Basin 25


Runoff = 0.35 cfs @ 7.98 hrs, Volume= 0.117 af, Depth= 3.59"

Routed to Reach 136R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description						
*		17,012	93	70% Lot Coverage Weighted						
_		17,012	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description				
_	10.0					Direct Entry,				

Subcatchment 93S: Home Basin 25

Type IA 24-hr 50-50 Year Rainfall=4.38"

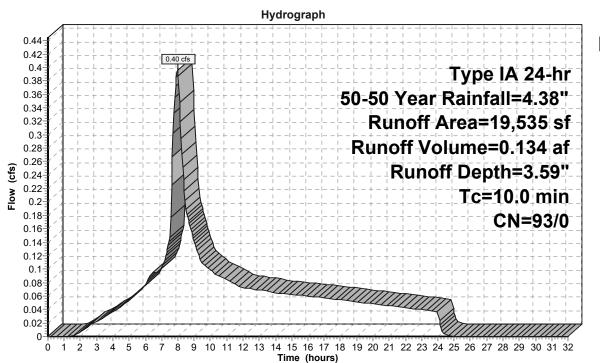
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 625

Summary for Subcatchment 94S: Home Basin 4


Runoff = 0.40 cfs @ 7.98 hrs, Volume= 0.134 af, Depth= 3.59"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description						
*		19,535	93	70% Lot Coverage Weighted						
		19,535	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0					Direct Entry,				

Subcatchment 94S: Home Basin 4

Type IA 24-hr 50-50 Year Rainfall=4.38"

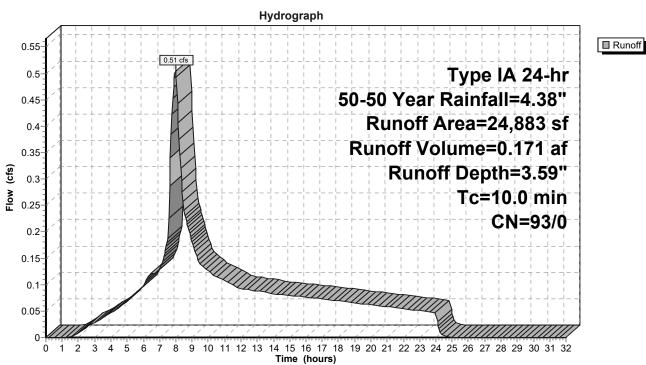
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 626

Summary for Subcatchment 95S: Home Basin 31


Runoff = 0.51 cfs @ 7.98 hrs, Volume= 0.171 af, Depth= 3.59"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description						
*		24,883	93	70% Lot Coverage Weighted						
_		24,883	93 100.00% Pervious Area							
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 95S: Home Basin 31

Type IA 24-hr 50-50 Year Rainfall=4.38"

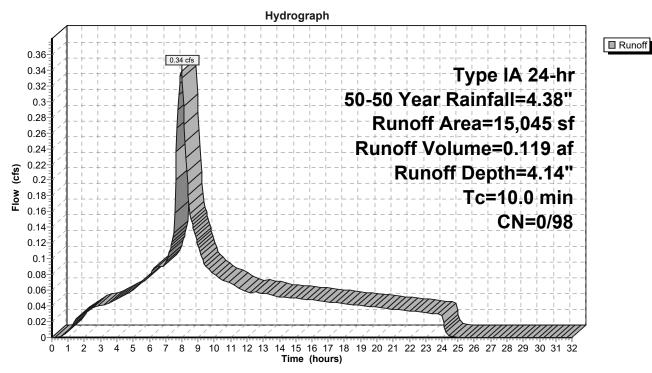
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 627

Summary for Subcatchment 96S: Basin 1


Runoff = 0.34 cfs @ 7.98 hrs, Volume= 0.119 af, Depth= 4.14"

Routed to Reach 133R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

Ar	ea (sf)	CN [Description						
	15,045	98 F	8 Paved roads w/curbs & sewers, HSG D						
	15,045 98 100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 96S: Basin 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

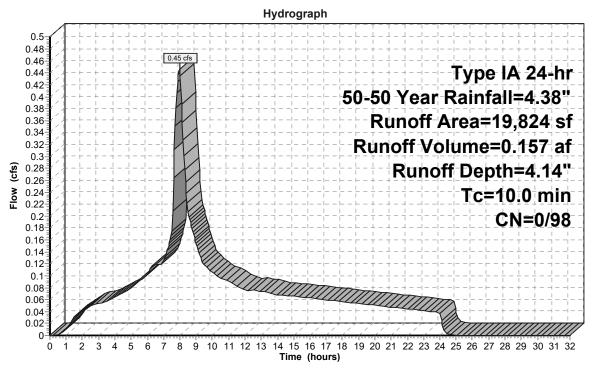
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 628

Summary for Subcatchment 97S: Basin 2


Runoff = 0.45 cfs @ 7.98 hrs, Volume= 0.157 af, Depth= 4.14"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description							
		19,824	98	8 Paved roads w/curbs & sewers, HSG D							
_	19,824 98 100.00% Impervious Area										
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description					
-	10.0					Direct Entry.					

Subcatchment 97S: Basin 2

Type IA 24-hr 50-50 Year Rainfall=4.38"

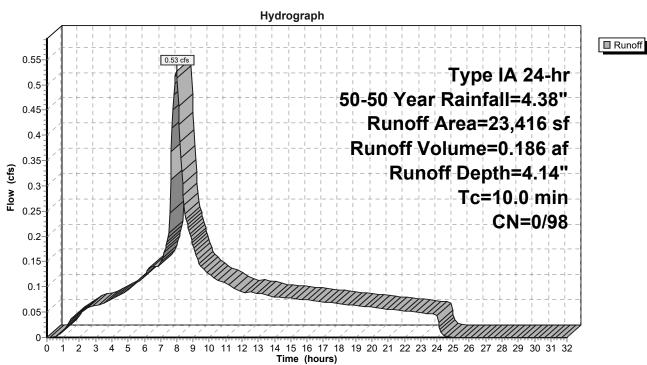
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 629

Summary for Subcatchment 98S: Basin 3


Runoff = 0.53 cfs @ 7.98 hrs, Volume= 0.186 af, Depth= 4.14"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

Are	ea (sf)	CN [Description					
2	3,416	3,416 98 Paved roads w/curbs & sewers, HSG D						
2	23,416 98 100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
10.0					Direct Entry,			

Subcatchment 98S: Basin 3

Type IA 24-hr 50-50 Year Rainfall=4.38"

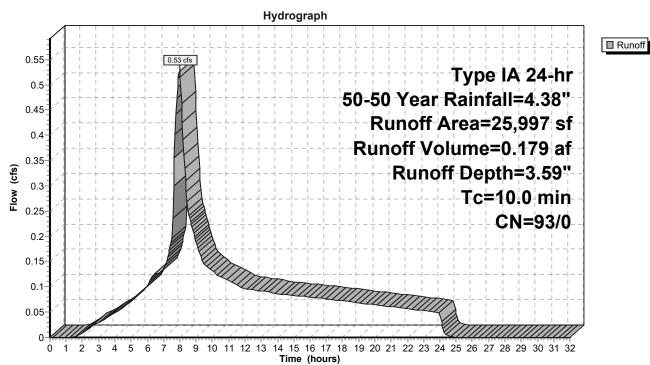
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 630

Summary for Subcatchment 99S: Home Basin 6


Runoff = 0.53 cfs @ 7.98 hrs, Volume= 0.179 af, Depth= 3.59"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN [Description						
*	,	25,997	93 7	70% Lot Coverage Weighted						
_		25,997	93 1	100.00% Pe	ervious Are	ea				
	Тс	Length	•	•	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 99S: Home Basin 6

Type IA 24-hr 50-50 Year Rainfall=4.38"

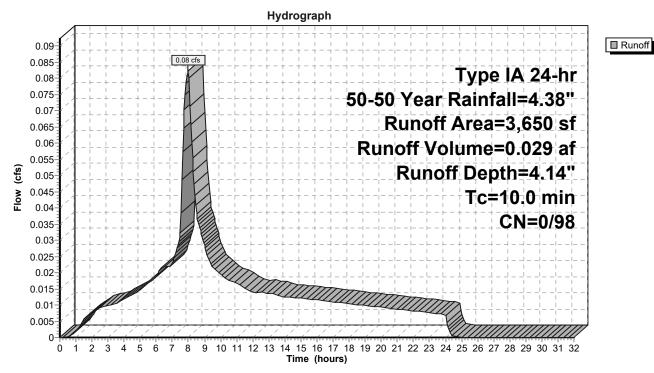
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 631

Summary for Subcatchment 100S: Basin 4


Runoff = 0.08 cfs @ 7.98 hrs, Volume= 0.029 af, Depth= 4.14"

Routed to Pond 60P: Stormwater Swale 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

A	rea (sf)	CN I	Description						
	3,650	98 F	Paved roads w/curbs & sewers, HSG D						
	3,650	98	8 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 100S: Basin 4

Type IA 24-hr 50-50 Year Rainfall=4.38"

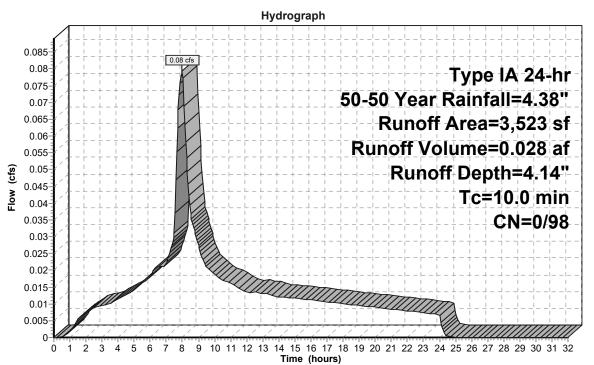
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 632

Summary for Subcatchment 101S: Basin 5


Runoff = 0.08 cfs @ 7.98 hrs, Volume= 0.028 af, Depth= 4.14"

Routed to Pond 54P: Stormwater Swale 2

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

A	rea (sf)	CN [Description						
	3,523	98 F	Paved roads w/curbs & sewers, HSG D						
	3,523	98 1	8 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 101S: Basin 5

Type IA 24-hr 50-50 Year Rainfall=4.38"

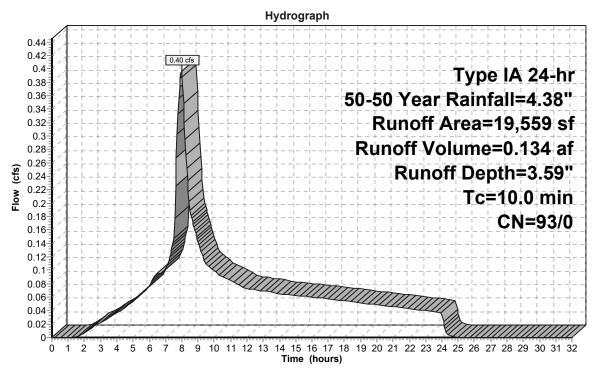
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 633

Summary for Subcatchment 102S: Home Basin 3


Runoff = 0.40 cfs @ 7.98 hrs, Volume= 0.134 af, Depth= 3.59"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

	Α	rea (sf)	CN I	Description						
	*	19,559	93	70% Lot Coverage Weighted						
		19,559	93	100.00% Pervious Area						
	To	Longth	Slope	Volocity	Canacity	Description				
	(min)	Length (feet)	(ft/ft)	(ft/sec)	(cfs)	Description				
•	10.0			,	, ,	Direct Entry				

Subcatchment 102S: Home Basin 3

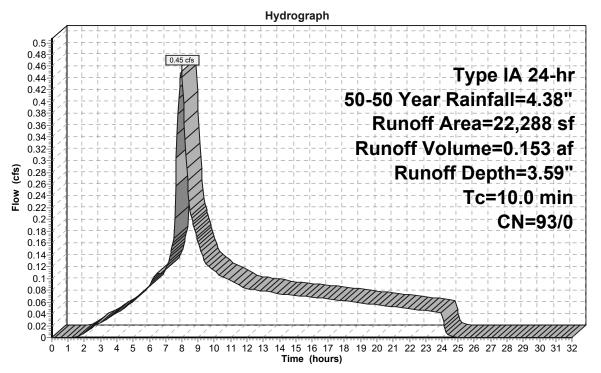
Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Printed 9/6/2023

Page 634

Summary for Subcatchment 103S: Home Basin 1


Runoff = 0.45 cfs @ 7.98 hrs, Volume= 0.153 af, Depth= 3.59"

Routed to Reach 137R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description					
*		22,288	93	70% Lot Coverage Weighted					
		22,288	93	100.00% Pervious Area					
	Тс	Length	Slope	,	. ,	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 103S: Home Basin 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

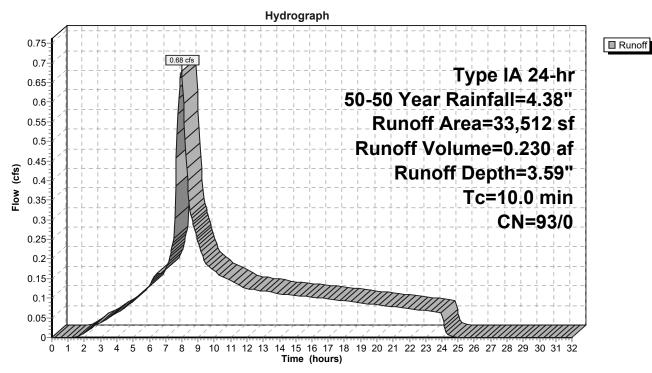
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 635

Summary for Subcatchment 104S: Home Basin 5


Runoff = 0.68 cfs @ 7.98 hrs, Volume= 0.230 af, Depth= 3.59"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description					
*		33,512	93	70% Lot Coverage Weighted					
		33,512	93	100.00% Pervious Area					
		Length	Slope	•		Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 104S: Home Basin 5

Type IA 24-hr 50-50 Year Rainfall=4.38"

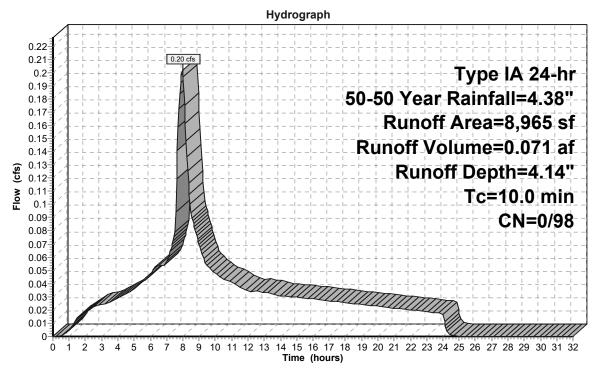
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 636

Summary for Subcatchment 105S: Basin 6


Runoff = 0.20 cfs @ 7.98 hrs, Volume= 0.071 af, Depth= 4.14"

Routed to Reach 138R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

A	rea (sf)	CN [Description						
	8,965	98 F	Paved roads w/curbs & sewers, HSG D						
	8,965	98 1	8 100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 105S: Basin 6

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

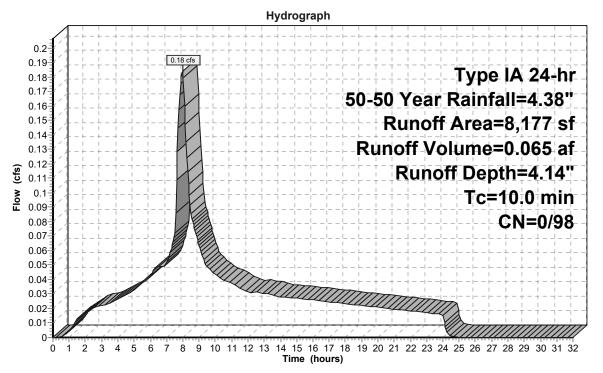
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 637

■ Runoff

Summary for Subcatchment 107S: Basin 8


Runoff = 0.18 cfs @ 7.98 hrs, Volume= 0.065 af, Depth= 4.14"

Routed to Reach 158R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

A	rea (sf)	CN I	Description					
	8,177	98 F	Paved roads w/curbs & sewers, HSG D					
	8,177	98	8 100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
10.0					Direct Entry,			

Subcatchment 107S: Basin 8

Type IA 24-hr 50-50 Year Rainfall=4.38"

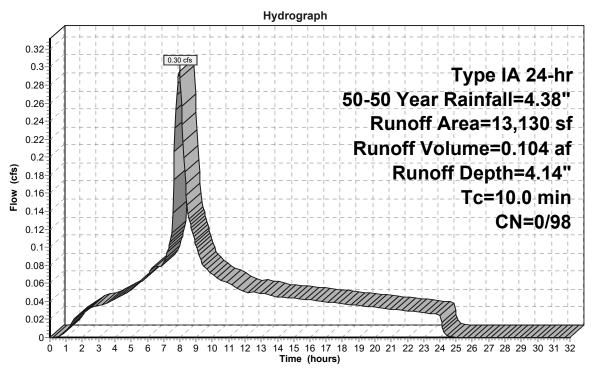
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 638

Summary for Subcatchment 108S: Basin 9


Runoff = 0.30 cfs @ 7.98 hrs, Volume= 0.104 af, Depth= 4.14"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

	Α	rea (sf)	CN I	Description						
		13,130	98 I	Paved roads w/curbs & sewers, HSG D						
_		13,130	98	100.00% Impervious Area						
	_				_					
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0			•		Direct Entry				

Subcatchment 108S: Basin 9

Type IA 24-hr 50-50 Year Rainfall=4.38"

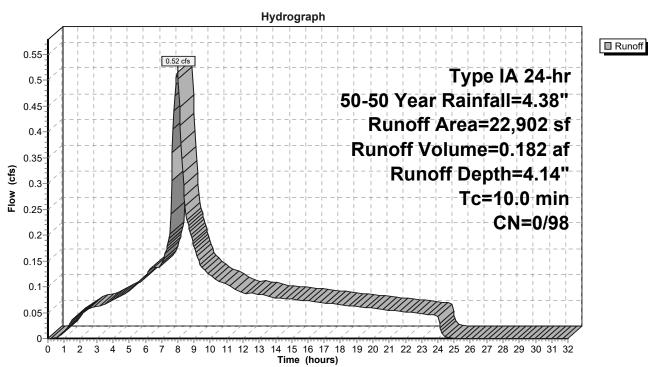
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 639

Summary for Subcatchment 109S: Basin 10


Runoff = 0.52 cfs @ 7.98 hrs, Volume= 0.182 af, Depth= 4.14"

Routed to Reach 137R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN I	Description						
		22,902	98 I	8 Paved roads w/curbs & sewers, HSG D						
		22,902	22,902 98 100.00% Impervious Area							
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	10.0					Direct Entry,				

Subcatchment 109S: Basin 10

Type IA 24-hr 50-50 Year Rainfall=4.38"

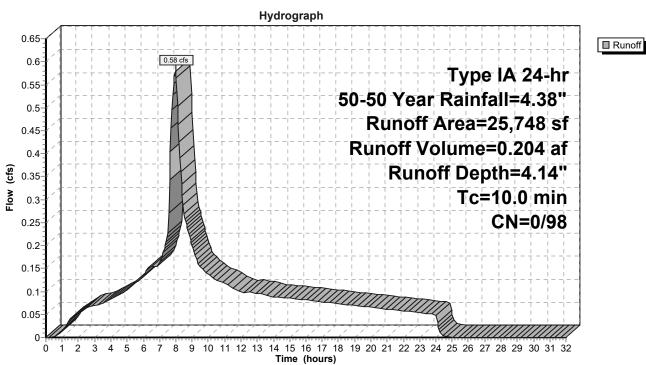
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 640

Summary for Subcatchment 110S: Basin 11


Runoff = 0.58 cfs @ 7.98 hrs, Volume= 0.204 af, Depth= 4.14"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

Are	ea (sf)	CN [Description					
2	25,748	98 F	Paved roads w/curbs & sewers, HSG D					
2	25,748	98 1	98 100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)						
10.0					Direct Entry,			

Subcatchment 110S: Basin 11

Type IA 24-hr 50-50 Year Rainfall=4.38"

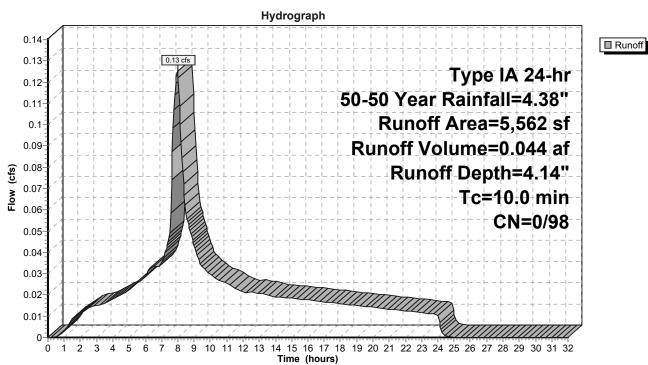
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 641

Summary for Subcatchment 111S: Basin 12


Runoff = 0.13 cfs @ 7.98 hrs, Volume= 0.044 af, Depth= 4.14"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description						
		5,562	98	Paved roads w/curbs & sewers, HSG D						
		5,562	98	8 100.00% Impervious Area						
	_									
	IC	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	ft) (ft/sec) (cfs)						
	10.0		•			Direct Entry.				

Subcatchment 111S: Basin 12

Type IA 24-hr 50-50 Year Rainfall=4.38"

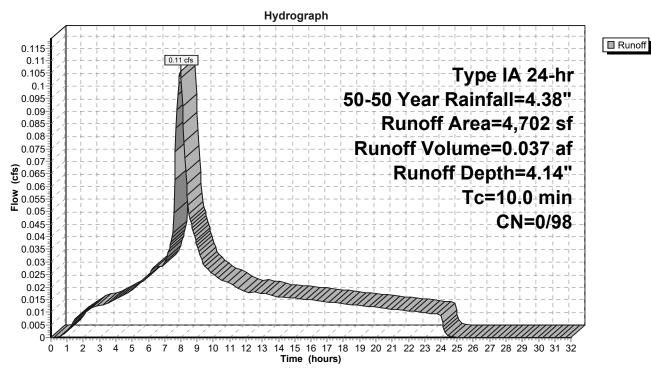
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 642

Summary for Subcatchment 112S: Basin 13


Runoff = 0.11 cfs @ 7.98 hrs, Volume= 0.037 af, Depth= 4.14"

Routed to Reach 158R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

	Area (sf)	CN [Description						
	4,702	98 F	Paved roads w/curbs & sewers, HSG D						
	4,702	98 ′	100.00% Impervious Area						
To (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 112S: Basin 13

Type IA 24-hr 50-50 Year Rainfall=4.38"

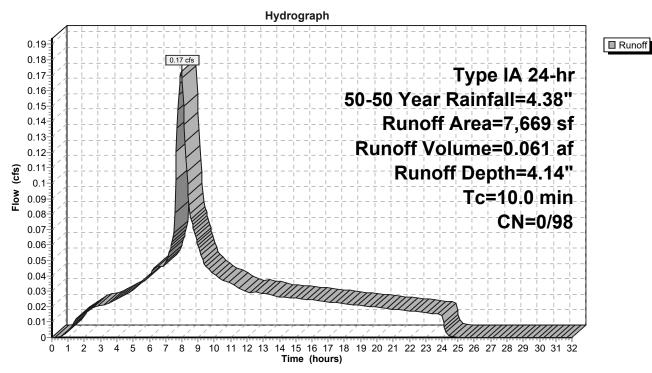
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 643

Summary for Subcatchment 113S: Basin 14


Runoff = 0.17 cfs @ 7.98 hrs, Volume= 0.061 af, Depth= 4.14"

Routed to Reach 159R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

	Area (sf)	CN [Description						
	7,669	98 F	Paved roads w/curbs & sewers, HSG D						
	7,669	98 ′	100.00% Impervious Area						
٦ (mi)	c Length	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10	.0				Direct Entry,				

Subcatchment 113S: Basin 14

Type IA 24-hr 50-50 Year Rainfall=4.38"

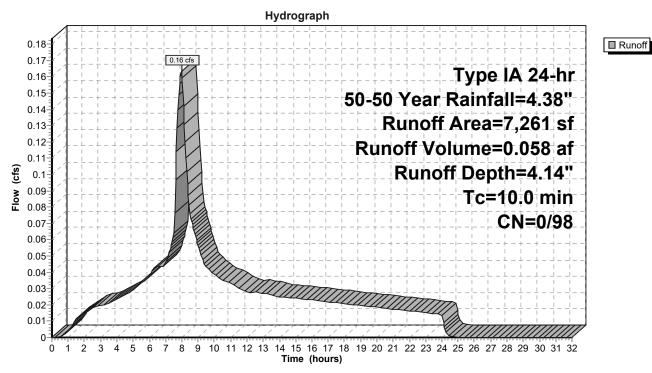
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 644

Summary for Subcatchment 114S: Basin 15


Runoff = 0.16 cfs @ 7.98 hrs, Volume= 0.058 af, Depth= 4.14"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

A	rea (sf)	CN [Description						
	7,261	98 F	Paved roads w/curbs & sewers, HSG D						
	7,261	98 1	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 114S: Basin 15

Type IA 24-hr 50-50 Year Rainfall=4.38"

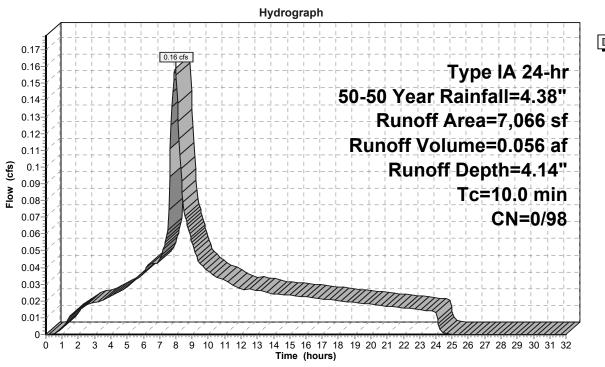
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 645

Summary for Subcatchment 115S: Basin 16


Runoff = 0.16 cfs @ 7.98 hrs, Volume= 0.056 af, Depth= 4.14"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

A	rea (sf)	CN [Description						
	7,066	98 F	Paved roads w/curbs & sewers, HSG D						
	7,066	98 1	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0			Direct Entry,						

Subcatchment 115S: Basin 16

■ Runoff

Type IA 24-hr 50-50 Year Rainfall=4.38"

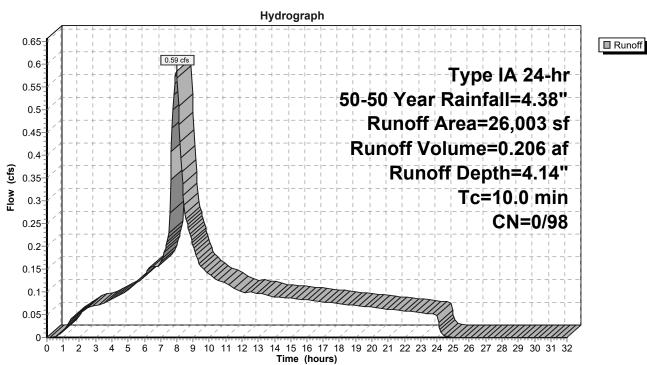
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 646

Summary for Subcatchment 116S: Basin 17


Runoff = 0.59 cfs @ 7.98 hrs, Volume= 0.206 af, Depth= 4.14"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description							
		26,003	98	8 Paved roads w/curbs & sewers, HSG D							
		26,003 98 100.00% Impervious Area									
	Tc (min)										
	10.0	•		Direct Entry,							

Subcatchment 116S: Basin 17

Type IA 24-hr 50-50 Year Rainfall=4.38"

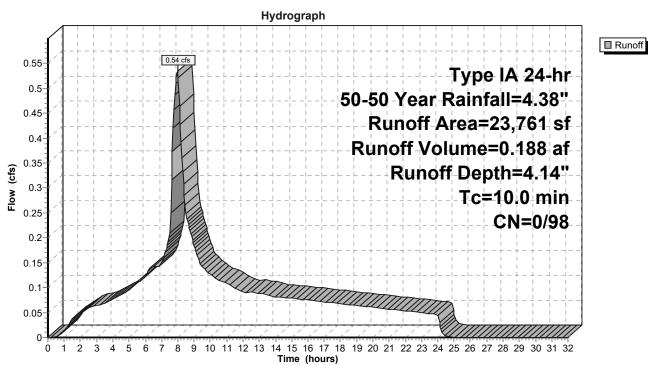
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 647

Summary for Subcatchment 117S: Basin 18


Runoff = 0.54 cfs @ 7.98 hrs, Volume= 0.188 af, Depth= 4.14"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description							
		23,761	98	Paved roads w/curbs & sewers, HSG D							
_		23,761 98 100.00% Impervious Area									
	_					-					
	IC	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	10.0					Direct Entry					

Subcatchment 117S: Basin 18

Type IA 24-hr 50-50 Year Rainfall=4.38"

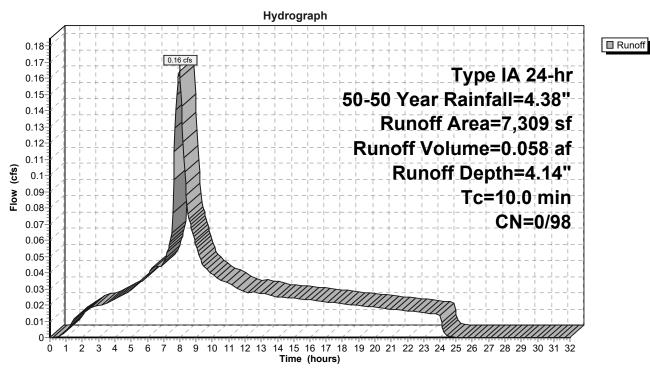
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 648

Summary for Subcatchment 118S: Basin 19


Runoff = 0.16 cfs @ 7.98 hrs, Volume= 0.058 af, Depth= 4.14"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

A	rea (sf)	CN [Description						
	7,309	98 F	Paved roads w/curbs & sewers, HSG D						
	7,309	98 1	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0			Direct Entry,						

Subcatchment 118S: Basin 19

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

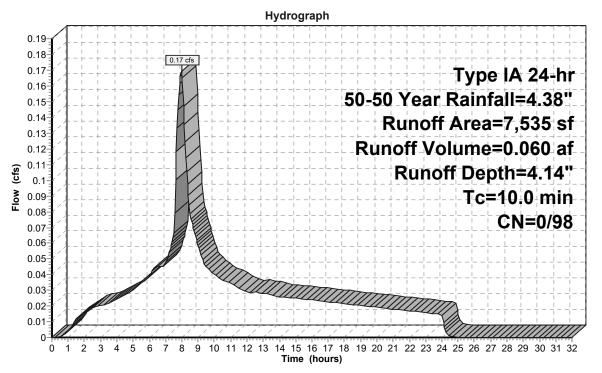
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 649

■ Runoff

Summary for Subcatchment 119S: Basin 20


Runoff = 0.17 cfs @ 7.98 hrs, Volume= 0.060 af, Depth= 4.14"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

A	rea (sf)	CN [Description						
	7,535	98 F	Paved roads w/curbs & sewers, HSG D						
	7,535	98 1	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0			Direct Entry,						

Subcatchment 119S: Basin 20

Type IA 24-hr 50-50 Year Rainfall=4.38"

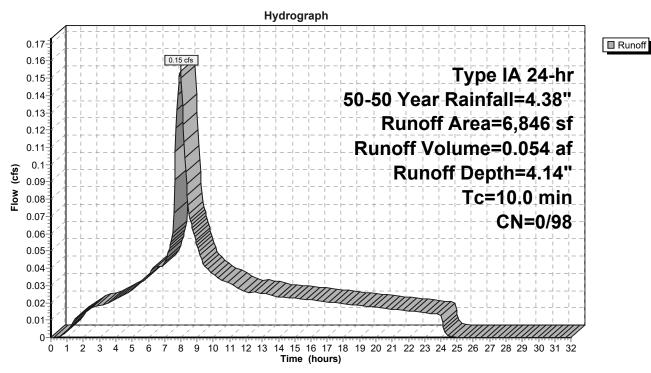
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 650

Summary for Subcatchment 120S: Basin 21


Runoff = 0.15 cfs @ 7.98 hrs, Volume= 0.054 af, Depth= 4.14"

Routed to Reach 148R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

A	rea (sf)	CN I	Description							
	6,846	98 F	Paved roads w/curbs & sewers, HSG D							
	6,846	98 -	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 120S: Basin 21

Type IA 24-hr 50-50 Year Rainfall=4.38"

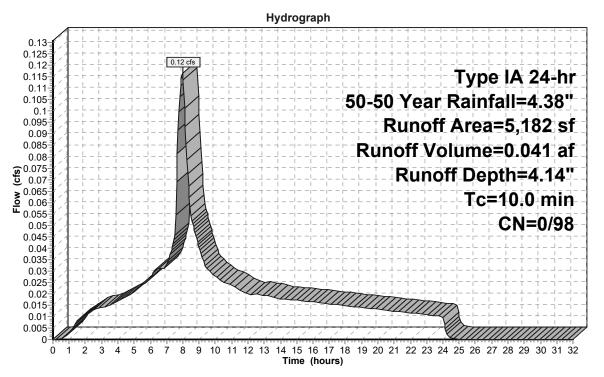
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 651

Summary for Subcatchment 121S: Basin 22


Runoff = 0.12 cfs @ 7.98 hrs, Volume= 0.041 af, Depth= 4.14"

Routed to Reach 154R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN	Description		Description						
		5,182	98	Paved roads w/curbs & sewers, HSG D								
		5,182	98	100.00% Impervious Area								
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
	10.0			Direct Entry,								

Subcatchment 121S: Basin 22

■ Runoff

Type IA 24-hr 50-50 Year Rainfall=4.38"

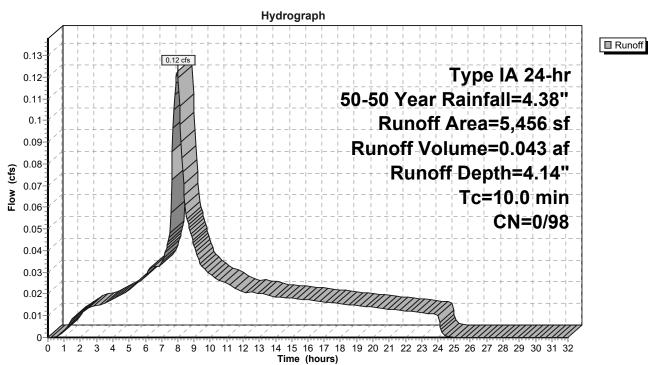
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 652

Summary for Subcatchment 122S: Basin 23


Runoff = 0.12 cfs @ 7.98 hrs, Volume= 0.043 af, Depth= 4.14"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

A	rea (sf)	CN [Description						
	5,456	98 F	Paved roads w/curbs & sewers, HSG D						
•	5,456	98 1	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0			Direct Entry,						

Subcatchment 122S: Basin 23

Type IA 24-hr 50-50 Year Rainfall=4.38"

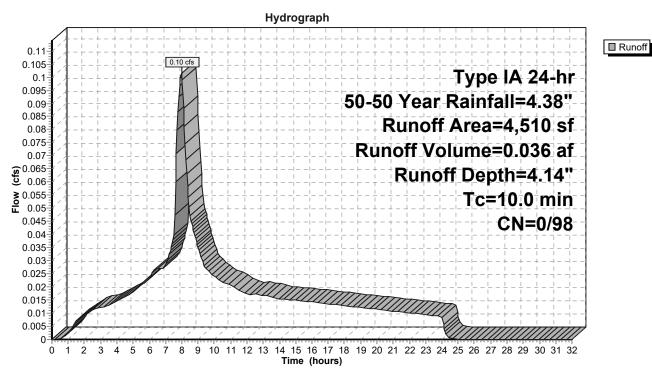
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 653

Summary for Subcatchment 123S: Basin 24


Runoff = 0.10 cfs @ 7.98 hrs, Volume= 0.036 af, Depth= 4.14"

Routed to Reach 162R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN I	Description							
		4,510	98 I	Paved roads w/curbs & sewers, HSG D							
		4,510	98	100.00% Impervious Area							
	_		-			-					
	IC	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	10.0					Direct Entry.					

Subcatchment 123S: Basin 24

Type IA 24-hr 50-50 Year Rainfall=4.38"

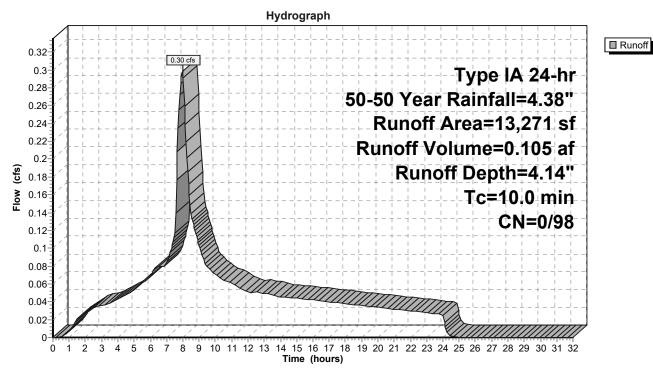
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 654

Summary for Subcatchment 124S: Basin 25


Runoff = 0.30 cfs @ 7.98 hrs, Volume= 0.105 af, Depth= 4.14"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

	Α	rea (sf)	CN	Description								
		13,271	98	98 Paved roads w/curbs & sewers, HSG D								
		13,271 98 100.00% Impervious Area										
	_											
	Тс		Slope	•		Description						
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	10.0					Direct Entry.						

Subcatchment 124S: Basin 25

Type IA 24-hr 50-50 Year Rainfall=4.38"

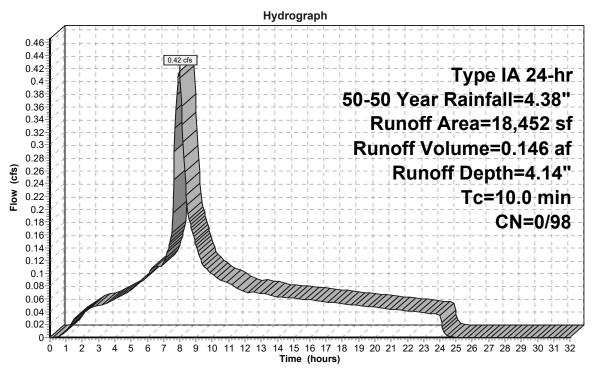
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 655

Summary for Subcatchment 125S: Basin 26


Runoff = 0.42 cfs @ 7.98 hrs, Volume= 0.146 af, Depth= 4.14"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

A	rea (sf)	CN [Description		
	18,452	98 F	Paved road	s w/curbs &	& sewers, HSG D
•	18,452	98 ′	100.00% Im	pervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry,

Subcatchment 125S: Basin 26

■ Runoff

Type IA 24-hr 50-50 Year Rainfall=4.38"

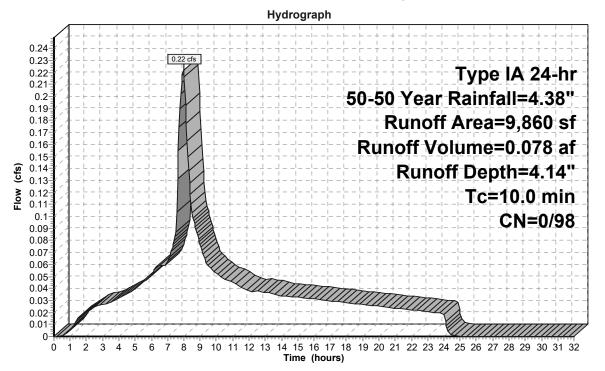
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 656

Summary for Subcatchment 126S: Alley Basin 1


Runoff = 0.22 cfs @ 7.98 hrs, Volume= 0.078 af, Depth= 4.14"

Routed to Reach 140R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

A	rea (sf)	CN [Description		
	9,860	98 F	Paved road	s w/curbs &	& sewers, HSG D
	9,860	98 1	00.00% Im	pervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
10.0					Direct Entry,

Subcatchment 126S: Alley Basin 1

■ Runoff

Type IA 24-hr 50-50 Year Rainfall=4.38"

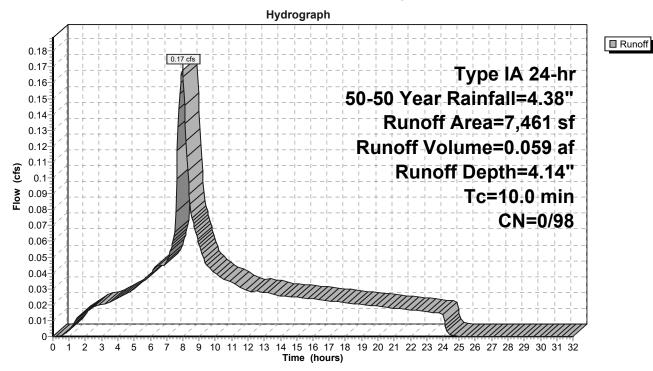
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 657

Summary for Subcatchment 127S: Alley Basin 2


Runoff = 0.17 cfs @ 7.98 hrs, Volume= 0.059 af, Depth= 4.14"

Routed to Reach 141R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

 Α	rea (sf)	CN	Description		
	7,461	98	Paved road	s w/curbs &	& sewers, HSG D
	7,461	98	100.00% In	npervious A	Area
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.0					Direct Entry

Subcatchment 127S: Alley Basin 2

Type IA 24-hr 50-50 Year Rainfall=4.38"

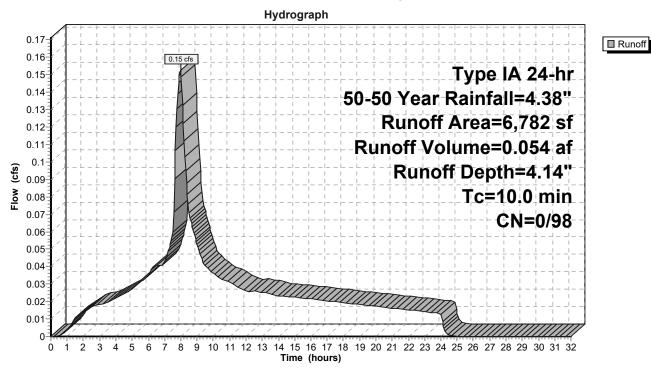
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 658

Summary for Subcatchment 128S: Alley Basin 3


Runoff = 0.15 cfs @ 7.98 hrs, Volume= 0.054 af, Depth= 4.14"

Routed to Reach 147R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

A	rea (sf)	CN [Description				
	6,782	98 F	98 Paved roads w/curbs & sewers, HSG D				
	6,782	98 ′	100.00% Im	pervious A	Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
10.0					Direct Entry,		

Subcatchment 128S: Alley Basin 3

Type IA 24-hr 50-50 Year Rainfall=4.38"

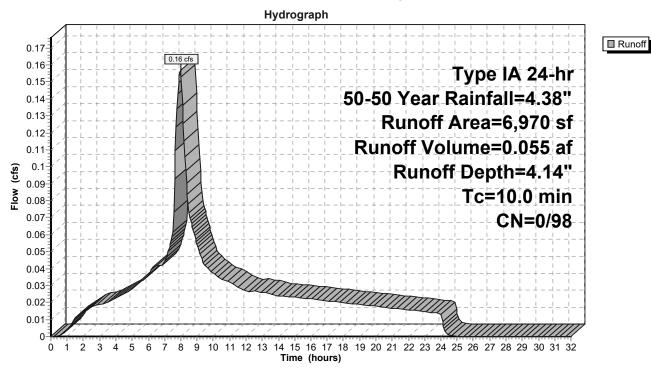
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 659

Summary for Subcatchment 129S: Alley Basin 4


Runoff = 0.16 cfs @ 7.98 hrs, Volume= 0.055 af, Depth= 4.14"

Routed to Reach 153R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

_	Α	rea (sf)	CN I	Description		
		6,970	98 I	Paved road	s w/curbs &	& sewers, HSG D
_		6,970	98	100.00% In	pervious A	rea
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.0					Direct Entry.

Subcatchment 129S: Alley Basin 4

Type IA 24-hr 50-50 Year Rainfall=4.38"

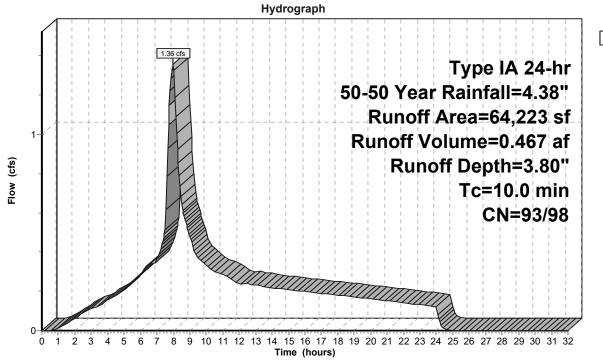
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 660

Summary for Subcatchment 168S: Future Lots


Runoff = 1.36 cfs @ 7.98 hrs, Volume= 0.467 af, Depth= 3.80"

Routed to Reach 166R: Basin Future

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

	Area (sf)	CN	Description		
*	39,915	93	70% Lot Co	verage We	/eighted
	24,308	98	Paved road	s w/curbs &	& sewers, HSG D
	64,223	95	Weighted A	verage	
	39,915	93	62.15% Per	vious Area	a
	24,308	98	37.85% Imp	ervious Ar	rea
	Tc Length	Slop	e Velocity	Capacity	Description
	(min) (feet)	(ft/1	ft) (ft/sec)	(cfs)	
	10.0				Direct Entry.

Subcatchment 168S: Future Lots

■ Runoff

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

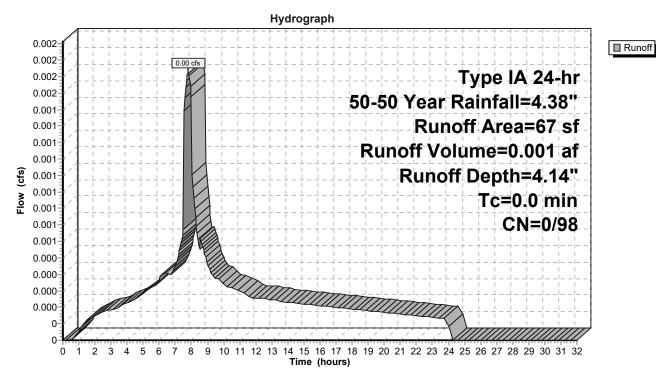
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 661

Summary for Subcatchment 169S: Swale 2

[46] Hint: Tc=0 (Instant runoff peak depends on dt)


Runoff = 0.00 cfs @ 7.80 hrs, Volume= 0.001 af, Depth= 4.14"

Routed to Pond 54P: Stormwater Swale 2

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

	Area (sf)	CN	Description
	67	98	Water Surface, HSG D
-	67	98	100 00% Impervious Area

Subcatchment 169S: Swale 2

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

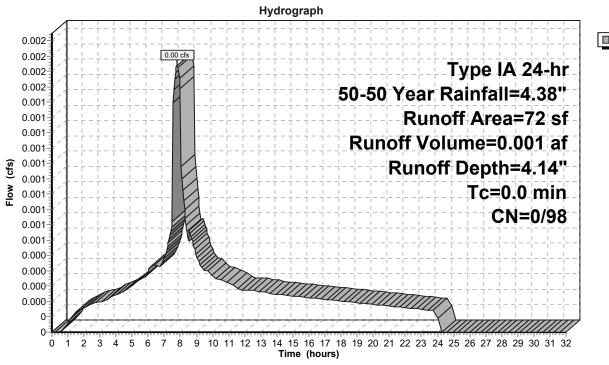
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 662

Summary for Subcatchment 170S: Swale 1

[46] Hint: Tc=0 (Instant runoff peak depends on dt)


Runoff = 0.00 cfs @ 7.80 hrs, Volume= 0.0 Routed to Pond 60P : Stormwater Swale 1

0.001 af, Depth= 4.14"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 50-50 Year Rainfall=4.38"

Area (sf)	CN	Description
72	98	Water Surface, HSG D
 72	98	100.00% Impervious Area

Subcatchment 170S: Swale 1

■ Runoff

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

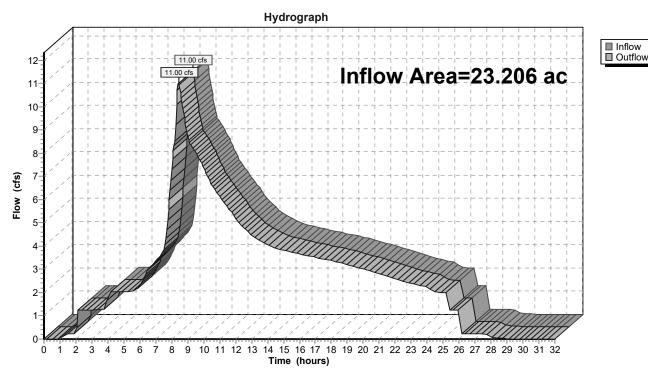
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 663

Summary for Reach 39R: Post-Construction Peak Flow

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 23.206 ac, 36.84% Impervious, Inflow Depth > 3.79" for 50-50 Year event

Inflow = 11.00 cfs @ 8.43 hrs, Volume= 7.337 af

Outflow = 11.00 cfs @ 8.43 hrs, Volume= 7.337 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 39R: Post-Construction Peak Flow

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

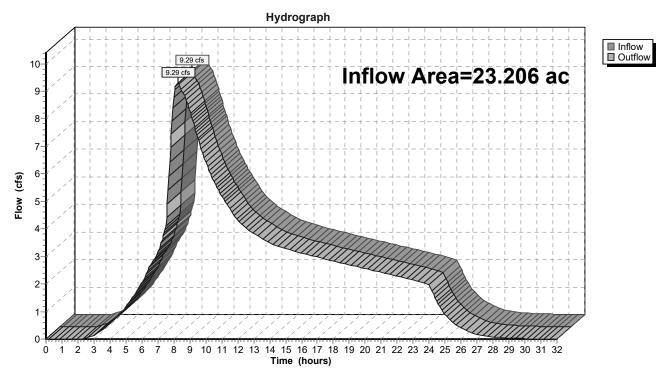
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 664

Summary for Reach 42R: Pre-Construction Peak Flow

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 23.206 ac, 0.00% Impervious, Inflow Depth > 3.18" for 50-50 Year event

Inflow = 9.29 cfs @ 8.24 hrs, Volume= 6.152 af

Outflow = 9.29 cfs @ 8.24 hrs, Volume= 6.152 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 42R: Pre-Construction Peak Flow

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

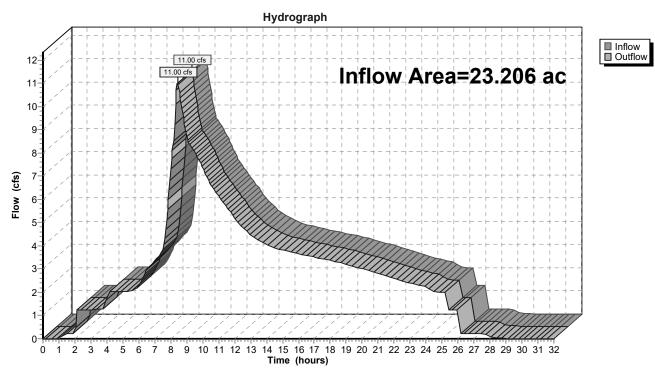
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 665

Summary for Reach 58R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 23.206 ac, 36.84% Impervious, Inflow Depth > 3.79" for 50-50 Year event


Inflow = 11.00 cfs @ 8.43 hrs, Volume= 7.337 af

Outflow = 11.00 cfs @ 8.43 hrs, Volume= 7.337 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 39R: Post-Construction Peak Flow

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 58R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

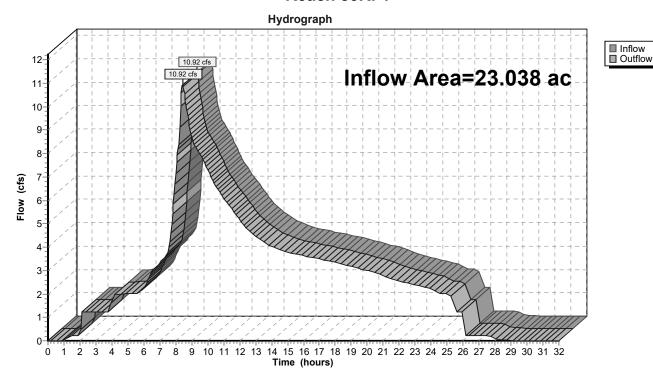
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 666

Summary for Reach 85R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 23.038 ac, 36.38% Impervious, Inflow Depth > 3.79" for 50-50 Year event


Inflow = 10.92 cfs @ 8.43 hrs, Volume= 7.279 af

Outflow = 10.92 cfs @ 8.43 hrs, Volume= 7.279 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 85R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

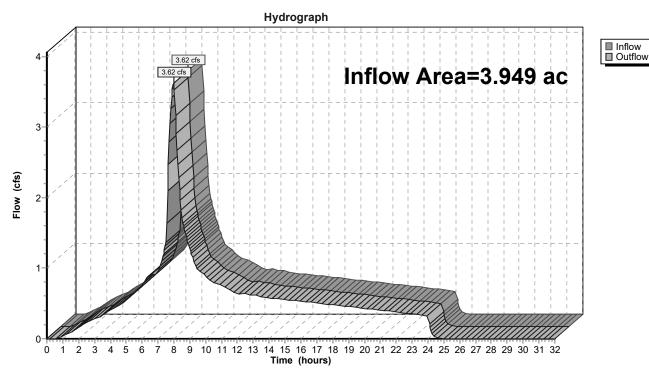
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 667

Summary for Reach 130R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.949 ac, 33.88% Impervious, Inflow Depth = 3.78" for 50-50 Year event


Inflow = 3.62 cfs @ 7.98 hrs, Volume= 1.243 af

Outflow = 3.62 cfs @ 7.98 hrs, Volume= 1.243 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 130R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

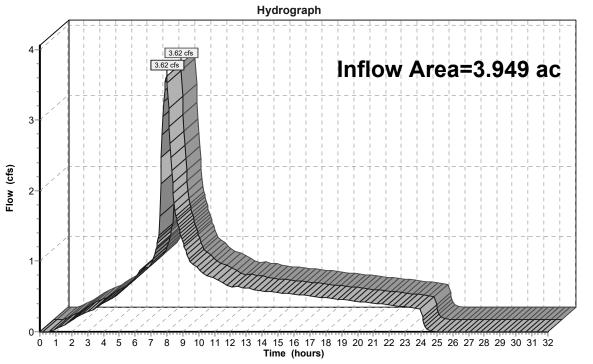
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 668

Summary for Reach 131R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.949 ac, 33.88% Impervious, Inflow Depth = 3.78" for 50-50 Year event


Inflow = 3.62 cfs @ 7.98 hrs, Volume= 1.243 af

Outflow = 3.62 cfs @ 7.98 hrs, Volume= 1.243 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 130R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 131R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

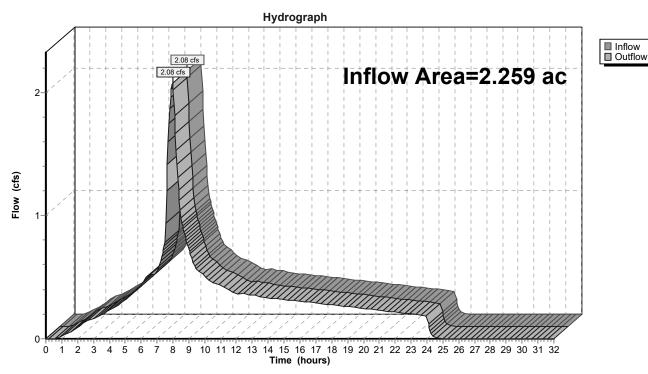
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 669

Summary for Reach 132R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.259 ac, 35.43% Impervious, Inflow Depth = 3.79" for 50-50 Year event


Inflow = 2.08 cfs @ 7.98 hrs, Volume= 0.713 af

Outflow = 2.08 cfs @ 7.98 hrs, Volume= 0.713 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 131R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 132R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

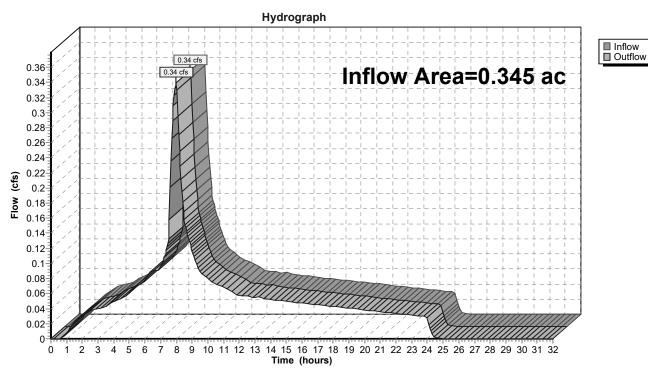
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 670

Summary for Reach 133R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.345 ac,100.00% Impervious, Inflow Depth = 4.14" for 50-50 Year event


Inflow = 0.34 cfs @ 7.98 hrs, Volume= 0.119 af

Outflow = 0.34 cfs @ 7.98 hrs, Volume= 0.119 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 132R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 133R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

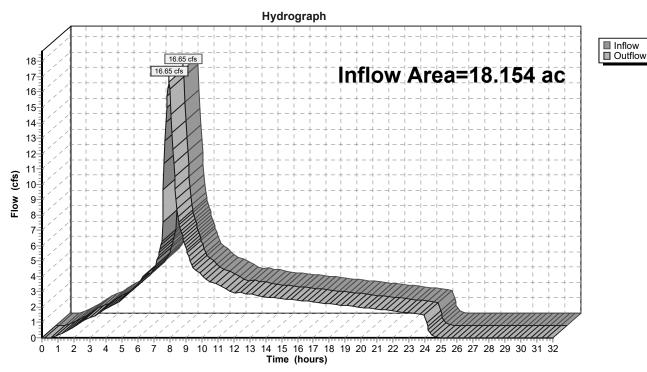
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 671

Summary for Reach 134R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 18.154 ac, 33.65% Impervious, Inflow Depth = 3.78" for 50-50 Year event


Inflow = 16.65 cfs @ 7.98 hrs, Volume= 5.714 af

Outflow = 16.65 cfs @ 7.98 hrs, Volume= 5.714 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 134R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

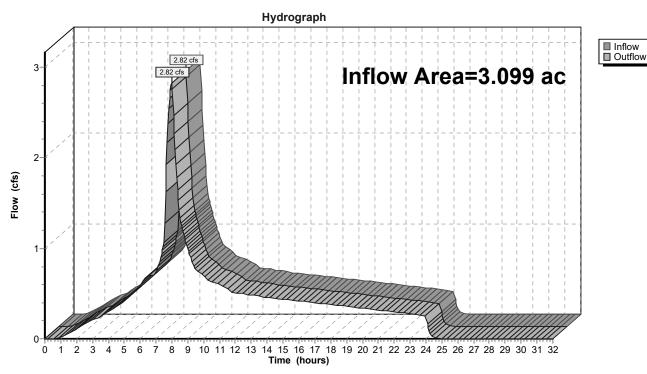
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 672

Summary for Reach 135R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.099 ac, 26.69% Impervious, Inflow Depth = 3.74" for 50-50 Year event


Inflow = 2.82 cfs @ 7.98 hrs, Volume= 0.965 af

Outflow = 2.82 cfs @ 7.98 hrs, Volume= 0.965 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 134R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 135R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

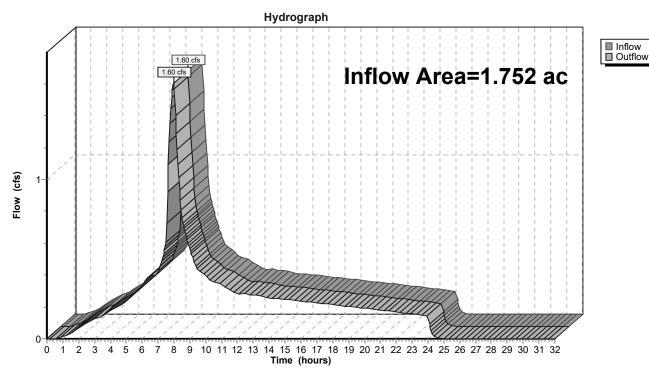
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 673

Summary for Reach 136R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.752 ac, 30.00% Impervious, Inflow Depth = 3.76" for 50-50 Year event


Inflow = 1.60 cfs @ 7.98 hrs, Volume= 0.549 af

Outflow = 1.60 cfs @ 7.98 hrs, Volume= 0.549 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 135R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 136R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

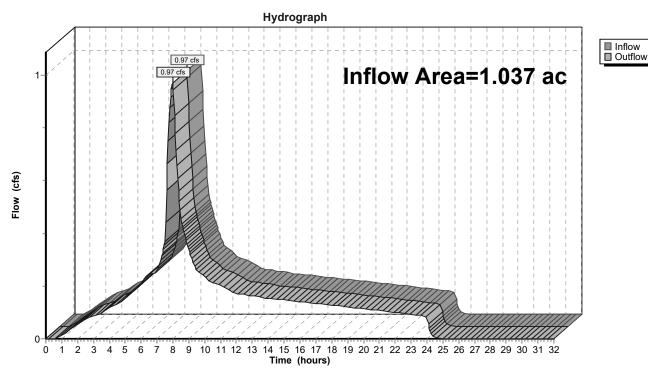
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 674

Summary for Reach 137R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.037 ac, 50.68% Impervious, Inflow Depth = 3.87" for 50-50 Year event


Inflow = 0.97 cfs @ 7.98 hrs, Volume= 0.335 af

Outflow = 0.97 cfs @ 7.98 hrs, Volume= 0.335 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 136R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 137R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

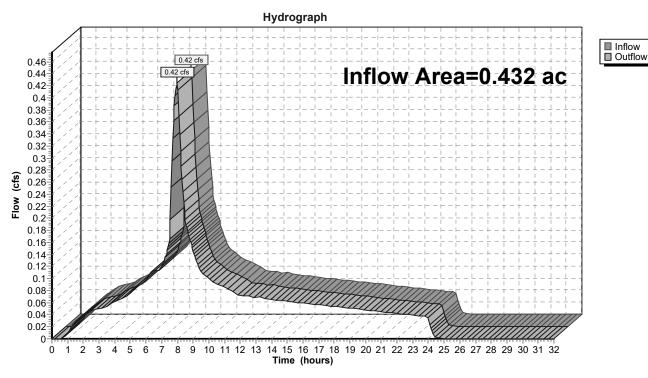
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 675

Summary for Reach 138R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.432 ac,100.00% Impervious, Inflow Depth = 4.14" for 50-50 Year event


Inflow = 0.42 cfs @ 7.98 hrs, Volume= 0.149 af

Outflow = 0.42 cfs @ 7.98 hrs, Volume= 0.149 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 138R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

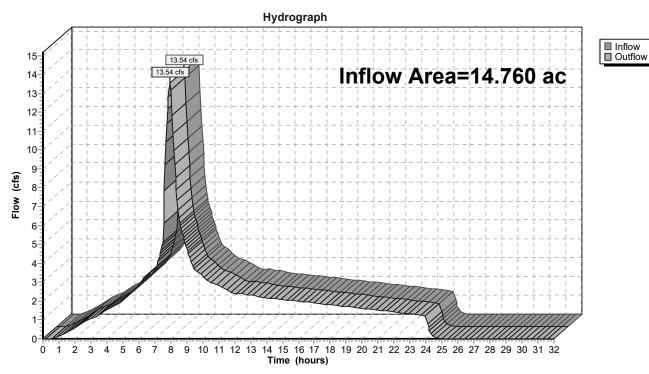
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 676

Summary for Reach 139R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.760 ac, 33.78% Impervious, Inflow Depth = 3.78" for 50-50 Year event


Inflow = 13.54 cfs @ 7.98 hrs, Volume= 4.646 af

Outflow = 13.54 cfs @ 7.98 hrs, Volume= 4.646 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 158R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 139R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

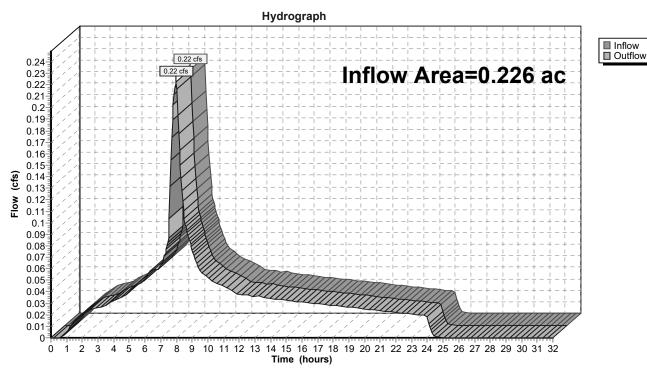
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 677

Summary for Reach 140R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.226 ac,100.00% Impervious, Inflow Depth = 4.14" for 50-50 Year event


Inflow = 0.22 cfs @ 7.98 hrs, Volume= 0.078 af

Outflow = 0.22 cfs @ 7.98 hrs, Volume= 0.078 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 138R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 140R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

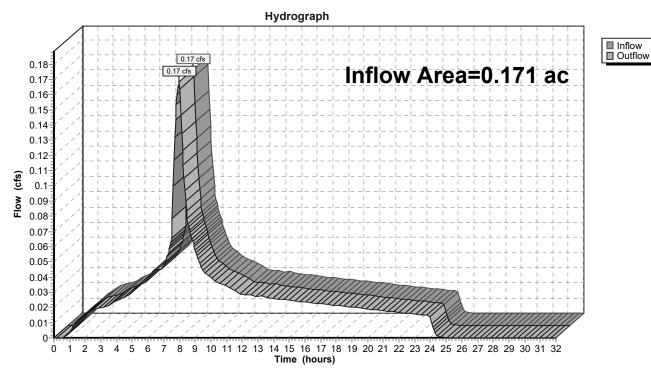
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 678

Summary for Reach 141R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.171 ac,100.00% Impervious, Inflow Depth = 4.14" for 50-50 Year event


Inflow = 0.17 cfs @ 7.98 hrs, Volume= 0.059 af

Outflow = 0.17 cfs @ 7.98 hrs, Volume= 0.059 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 139R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 141R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

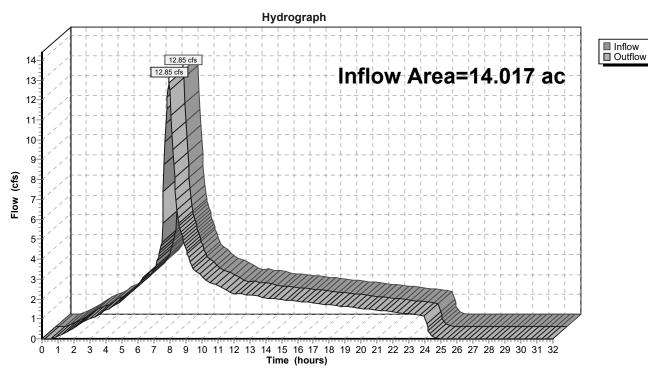
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 679

Summary for Reach 142R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.017 ac, 33.09% Impervious, Inflow Depth = 3.77" for 50-50 Year event


Inflow = 12.85 cfs @ 7.98 hrs, Volume= 4.408 af

Outflow = 12.85 cfs @ 7.98 hrs, Volume= 4.408 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 159R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 142R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

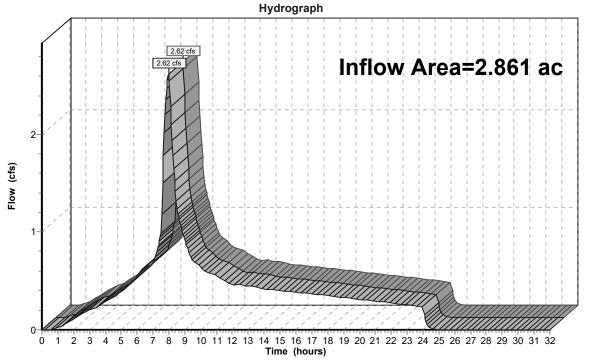
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 680

Summary for Reach 143R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.861 ac, 30.95% Impervious, Inflow Depth = 3.76" for 50-50 Year event


Inflow = 2.62 cfs @ 7.98 hrs, Volume= 0.897 af

Outflow = 2.62 cfs @ 7.98 hrs, Volume= 0.897 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 142R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 143R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

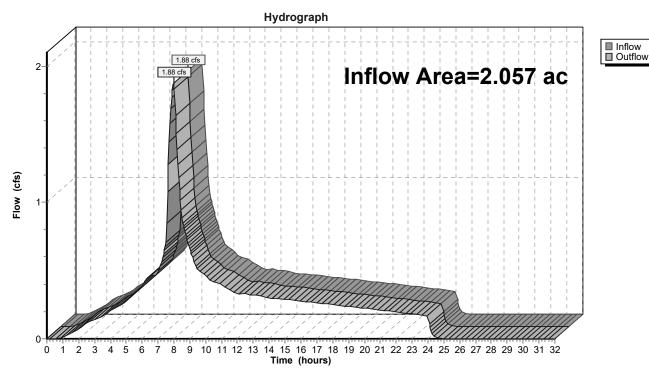
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 681

Summary for Reach 144R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.057 ac, 28.74% Impervious, Inflow Depth = 3.75" for 50-50 Year event


Inflow = 1.88 cfs @ 7.98 hrs, Volume= 0.643 af

Outflow = 1.88 cfs @ 7.98 hrs, Volume= 0.643 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 143R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 144R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

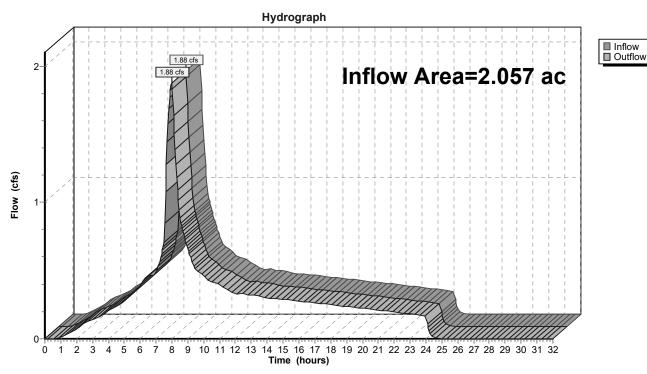
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 682

Summary for Reach 145R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.057 ac, 28.74% Impervious, Inflow Depth = 3.75" for 50-50 Year event


Inflow = 1.88 cfs @ 7.98 hrs, Volume= 0.643 af

Outflow = 1.88 cfs @ 7.98 hrs, Volume= 0.643 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 144R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 145R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

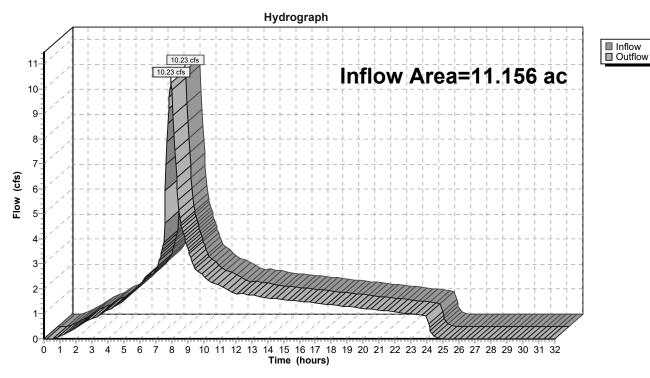
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 683

Summary for Reach 146R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 11.156 ac, 33.63% Impervious, Inflow Depth = 3.78" for 50-50 Year event


Inflow = 10.23 cfs @ 7.98 hrs, Volume= 3.511 af

Outflow = 10.23 cfs @ 7.98 hrs, Volume= 3.511 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 142R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 146R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

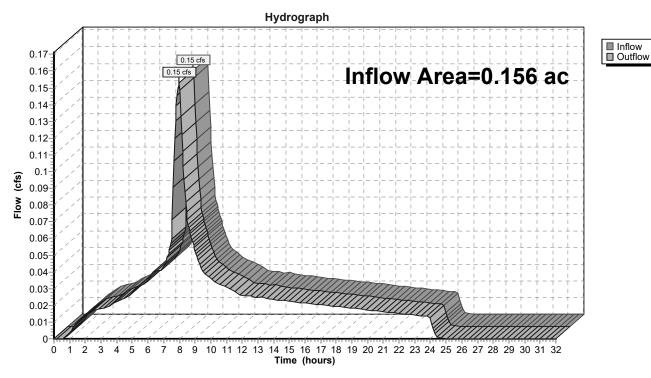
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 684

Summary for Reach 147R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.156 ac,100.00% Impervious, Inflow Depth = 4.14" for 50-50 Year event


Inflow = 0.15 cfs @ 7.98 hrs, Volume= 0.054 af

Outflow = 0.15 cfs @ 7.98 hrs, Volume= 0.054 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 146R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 147R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

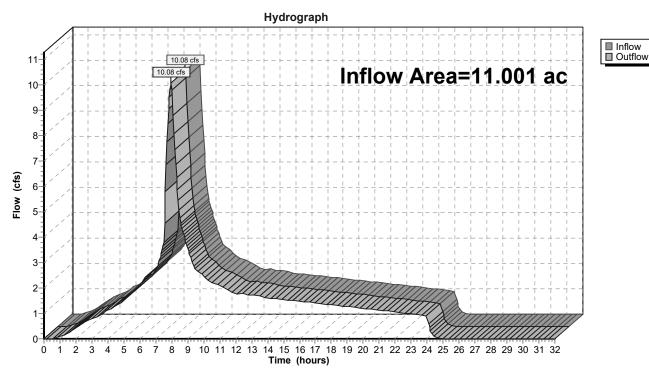
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 685

Summary for Reach 148R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 11.001 ac, 32.69% Impervious, Inflow Depth = 3.77" for 50-50 Year event


Inflow = 10.08 cfs @ 7.98 hrs, Volume= 3.457 af

Outflow = 10.08 cfs @ 7.98 hrs, Volume= 3.457 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 146R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 148R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

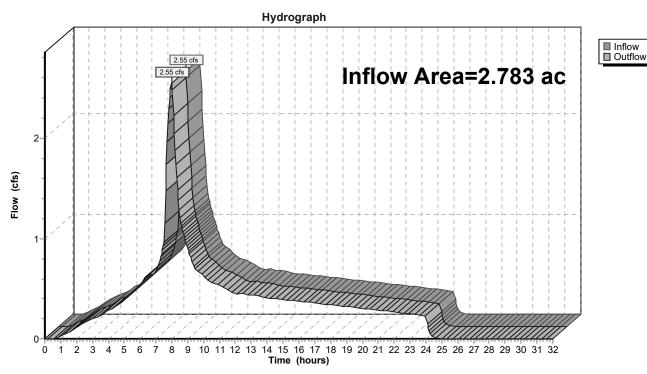
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 686

Summary for Reach 149R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.783 ac, 33.49% Impervious, Inflow Depth = 3.78" for 50-50 Year event


Inflow = 2.55 cfs @ 7.98 hrs, Volume= 0.876 af

Outflow = 2.55 cfs @ 7.98 hrs, Volume= 0.876 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 148R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 149R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

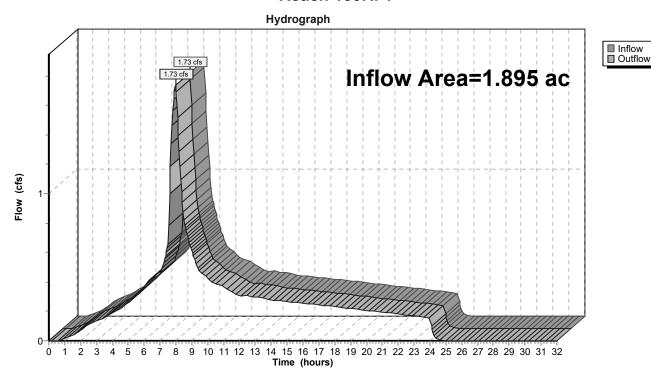
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 687

Summary for Reach 150R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.895 ac, 31.51% Impervious, Inflow Depth = 3.76" for 50-50 Year event


Inflow = 1.73 cfs @ 7.98 hrs, Volume= 0.594 af

Outflow = 1.73 cfs @ 7.98 hrs, Volume= 0.594 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 149R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 150R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

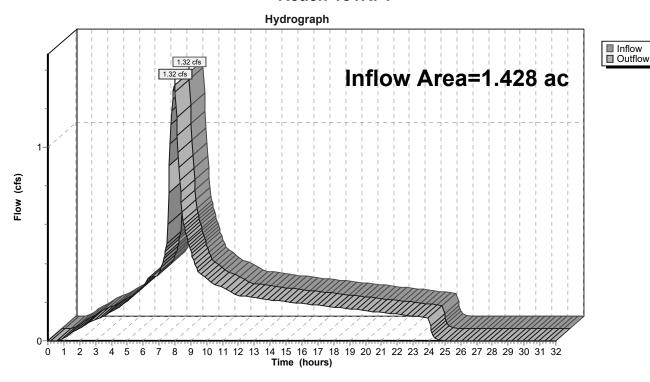
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 688

Summary for Reach 151R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.428 ac, 41.79% Impervious, Inflow Depth = 3.82" for 50-50 Year event


Inflow = 1.32 cfs @ 7.98 hrs, Volume= 0.455 af

Outflow = 1.32 cfs @ 7.98 hrs, Volume= 0.455 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 150R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 151R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

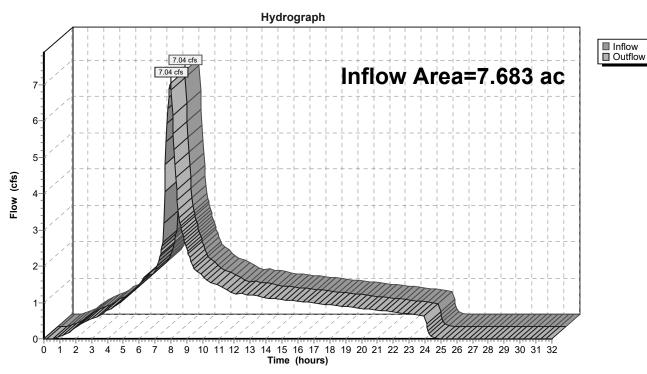
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 689

Summary for Reach 152R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 7.683 ac, 32.64% Impervious, Inflow Depth = 3.77" for 50-50 Year event


Inflow = 7.04 cfs @ 7.98 hrs, Volume= 2.414 af

Outflow = 7.04 cfs @ 7.98 hrs, Volume= 2.414 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 148R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 152R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

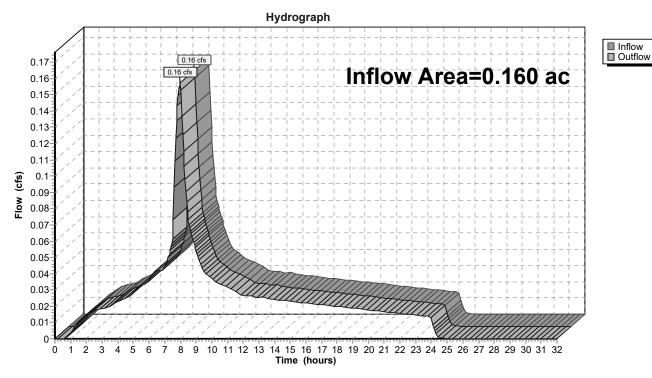
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 690

Summary for Reach 153R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.160 ac,100.00% Impervious, Inflow Depth = 4.14" for 50-50 Year event


Inflow = 0.16 cfs @ 7.98 hrs, Volume= 0.055 af

Outflow = $0.16 \text{ cfs } \overline{\textcircled{0}}$ 7.98 hrs, Volume= 0.055 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 152R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 153R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

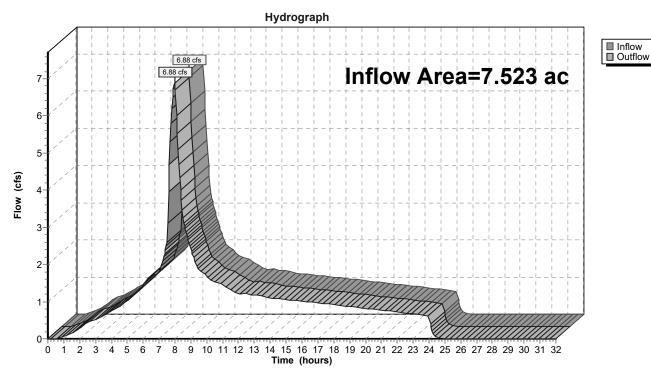
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 691

Summary for Reach 154R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 7.523 ac, 31.20% Impervious, Inflow Depth = 3.76" for 50-50 Year event


Inflow = 6.88 cfs @ 7.98 hrs, Volume= 2.359 af

Outflow = 6.88 cfs @ 7.98 hrs, Volume= 2.359 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 152R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 154R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

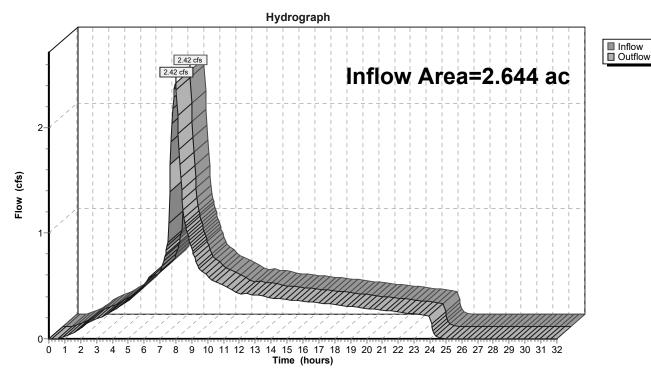
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 692

Summary for Reach 155R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.644 ac, 31.72% Impervious, Inflow Depth = 3.77" for 50-50 Year event


Inflow = 2.42 cfs @ 7.98 hrs, Volume= 0.830 af

Outflow = 2.42 cfs @ 7.98 hrs, Volume= 0.830 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 154R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 155R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

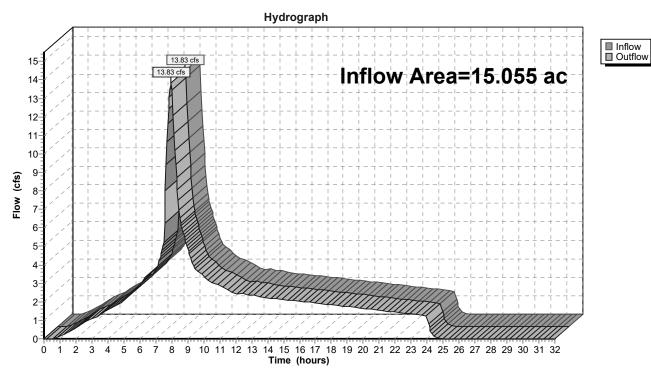
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 693

Summary for Reach 158R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 15.055 ac, 35.08% Impervious, Inflow Depth = 3.78" for 50-50 Year event


Inflow = 13.83 cfs @ 7.98 hrs, Volume= 4.748 af

Outflow = 13.83 cfs @ 7.98 hrs, Volume= 4.748 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 134R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 158R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

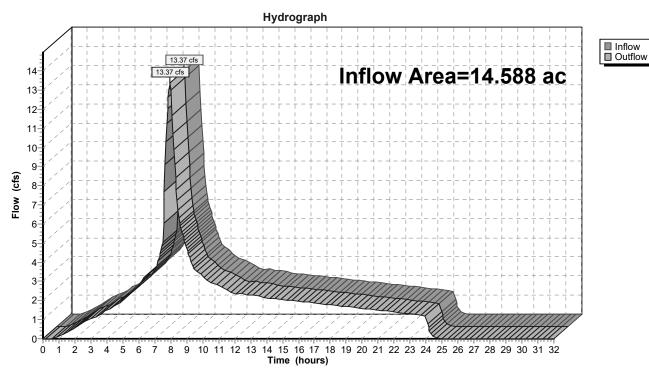
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 694

Summary for Reach 159R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.588 ac, 33.00% Impervious, Inflow Depth = 3.77" for 50-50 Year event


Inflow = 13.37 cfs @ 7.98 hrs, Volume= 4.587 af

Outflow = 13.37 cfs @ 7.98 hrs, Volume= 4.587 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 139R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 159R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

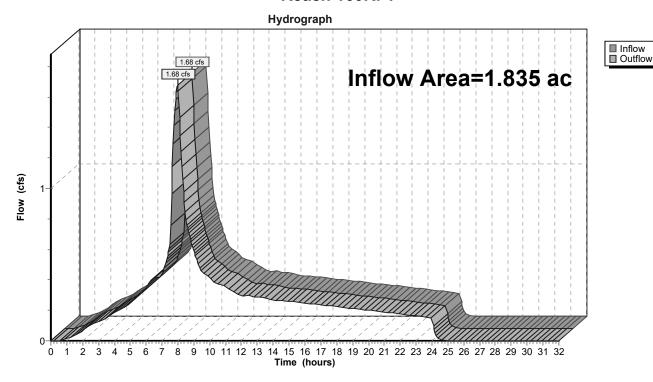
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 695

Summary for Reach 160R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.835 ac, 29.73% Impervious, Inflow Depth = 3.76" for 50-50 Year event


Inflow = 1.68 cfs @ 7.98 hrs, Volume= 0.574 af

Outflow = 1.68 cfs @ 7.98 hrs, Volume= 0.574 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 155R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 160R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

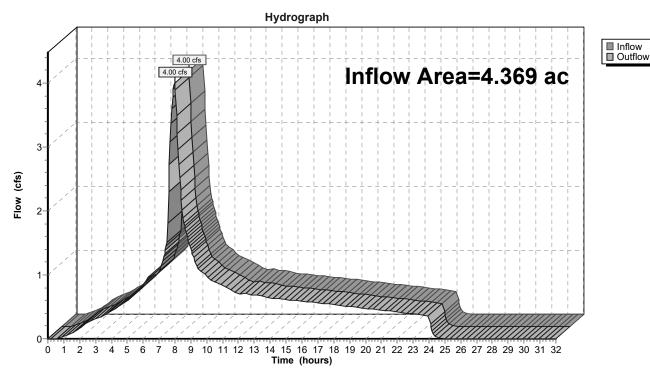
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 696

Summary for Reach 162R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.369 ac, 31.81% Impervious, Inflow Depth = 3.77" for 50-50 Year event


Inflow = 4.00 cfs @ 7.98 hrs, Volume= 1.371 af

Outflow = 4.00 cfs @ 7.98 hrs, Volume= 1.371 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 154R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 162R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

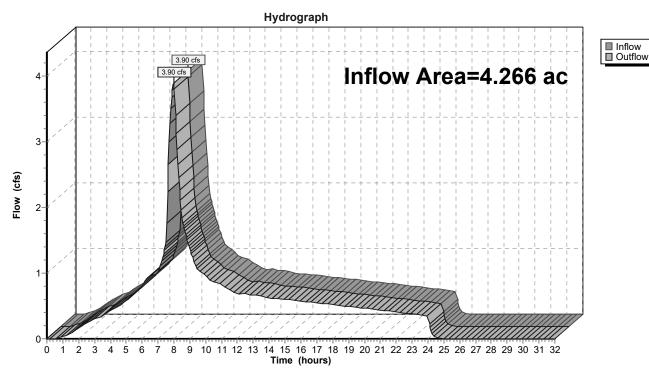
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 697

Summary for Reach 163R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.266 ac, 30.15% Impervious, Inflow Depth = 3.76" for 50-50 Year event


Inflow = 3.90 cfs @ 7.98 hrs, Volume= 1.336 af

Outflow = 3.90 cfs @ 7.98 hrs, Volume= 1.336 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 162R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 163R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

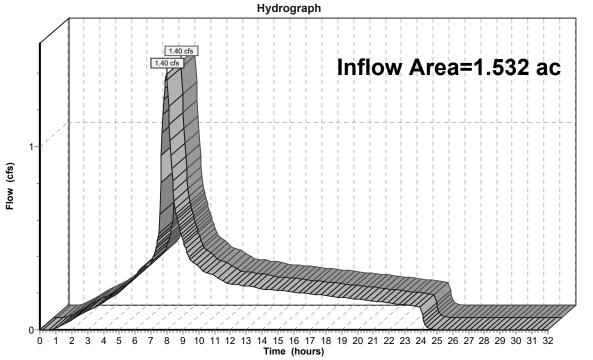
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 698

Summary for Reach 165R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.532 ac, 27.64% Impervious, Inflow Depth = 3.74" for 50-50 Year event


Inflow = 1.40 cfs @ 7.98 hrs, Volume= 0.478 af

Outflow = 1.40 cfs @ 7.98 hrs, Volume= 0.478 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 163R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 165R: 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

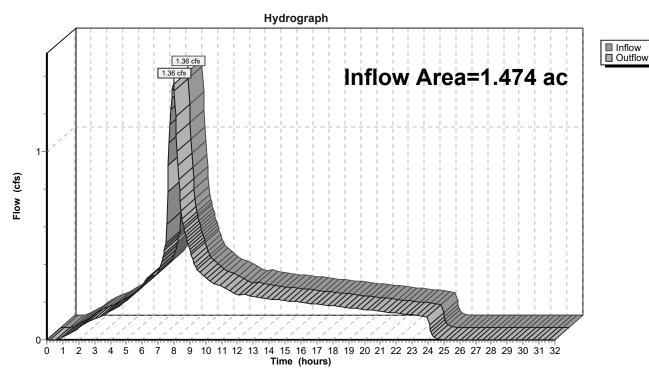
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 699

Summary for Reach 166R: Basin Future

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.474 ac, 37.85% Impervious, Inflow Depth = 3.80" for 50-50 Year event


Inflow = 1.36 cfs @ 7.98 hrs, Volume= 0.467 af

Outflow = 1.36 cfs @ 7.98 hrs, Volume= 0.467 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 163R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 166R: Basin Future

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 700

Summary for Pond 54P: Stormwater Swale 2

Inflow Area = 0.082 ac,100.00% Impervious, Inflow Depth = 4.14" for 50-50 Year event

Inflow = 0.08 cfs @ 7.98 hrs, Volume= 0.028 af

Outflow = 0.08 cfs @ 7.98 hrs, Volume= 0.028 af, Atten= 0%, Lag= 0.4 min

Primary = 0.08 cfs @ 7.98 hrs, Volume= 0.028 af

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Peak Elev= 222.44' @ 7.98 hrs Surf.Area= 185 sf Storage= 33 cf

Flood Elev= 223.30' Surf.Area= 192 sf Storage= 88 cf

Plug-Flow detention time= 29.8 min calculated for 0.028 af (100% of inflow)

Center-of-Mass det. time= 30.1 min (693.5 - 663.5)

Volume	Inv	ert Avai	I.Storage	Storage Descripti	on		
#1	222.3	30'	63 cf	Open Storage (Ir	rregular)Listed belo	ow (Recalc)	
#2	220.8	80'	10 cf	Imported Soil (Ir	regular)Listed belo		
				101 cf Overall x	10.0% Voids		
#3	220.0	05'	15 cf	Rock Chamber (44 cf Overall x 35	Irregular)Listed be 5.0% Voids	low (Recalc)	
			88 cf	Total Available St	torage		
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet	t)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
222.3	0	59	33.0	0	0	59	
223.3	0	67	34.0	63	63	93	
Elevatio		Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
220.8	-	67	34.0	0	0	67	
222.3	0	67	34.0	101	101	118	
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet		(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
220.0	5	58	33.0	0	Ó	58	
220.8	0	58	33.0	44	44	83	
Device	Routing	Inv	vert Outl	et Devices			
					O		
#1	Primary	220			over Surface are	a	
#2	Primary	223		Horiz. 4"Overflow ted to weir flow at I			
#3	Primary	222		" Vert. 10" Outflo			
•		- 		ted to weir flow at I			

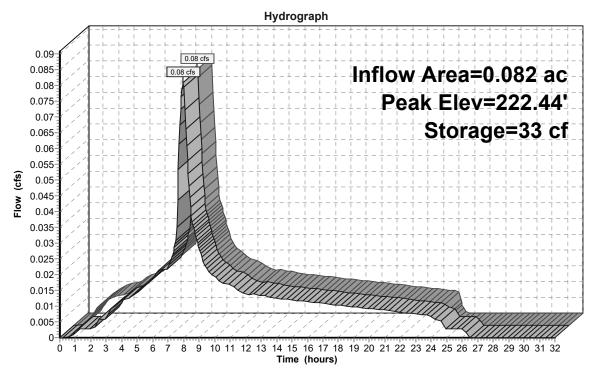
Primary OutFlow Max=0.08 cfs @ 7.98 hrs HW=222.44' TW=0.00' (Dynamic Tailwater)

-1=Perf Pipes (Exfiltration Controls 0.01 cfs)

-2=4"Overflow Pipe (Controls 0.00 cfs)

-3=10" Outflow Pipe (Orifice Controls 0.07 cfs @ 1.25 fps)

Type IA 24-hr 50-50 Year Rainfall=4.38"


Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 701

Pond 54P: Stormwater Swale 2

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 702

Summary for Pond 60P: Stormwater Swale 1

Inflow Area = 0.085 ac,100.00% Impervious, Inflow Depth = 4.14" for 50-50 Year event

Inflow = 0.08 cfs @ 7.98 hrs, Volume= 0.030 af

Outflow = 0.08 cfs @ 7.98 hrs, Volume= 0.030 af, Atten= 0%, Lag= 0.4 min

Primary = 0.08 cfs @ 7.98 hrs, Volume= 0.030 af

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Peak Elev= 222.09' @ 7.98 hrs Surf.Area= 195 sf Storage= 35 cf

Flood Elev= 222.95' Surf.Area= 204 sf Storage= 93 cf

Plug-Flow detention time= 30.2 min calculated for 0.029 af (100% of inflow)

Center-of-Mass det. time= 30.4 min (693.9 - 663.5)

Volume	Inv	ert Avai	il.Storage	Storage Descripti	on		
#1	221.9	95' 67 cf		Open Storage (li	rregular)Listed be	low (Recalc)	
#2	220.4	45'	11 cf	Imported Soil (Ir 108 cf Overall x	regular) Listed bel	low (Recalc)	
#3	219.7	70'	16 cf		Irregular)Listed b	elow (Recalc)	
			93 cf	Total Available St	torage		
Elevation (feet		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
221.9	5	62	34.0	0	0	62	
222.9	5	72	36.0	67	67	99	
Elevation		Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet	<i>'</i>	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
220.4	_	72	36.0	0	0	72	
221.9	5	72	36.0	108	108	126	
Elevatio	n	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet	:)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
219.70	0	60	34.0	0	0	60	
220.4	5	60	34.0	45	45	86	
Device	Routing	In	vert Outl	et Devices			
#1	Primary	219	0.70' 2.00	0 in/hr Perf Pipes	over Surface are	ea	
#2	Primary	222	2.70' 4.0"	Horiz. 4"Overflow	v Pipe C= 0.600		
	-		Limi	ted to weir flow at I	ow heads		
#3	Primary	221		" Vert. 10" Outflo ted to weir flow at I			

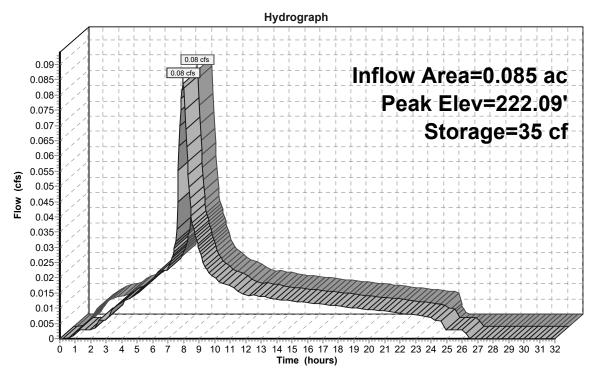
Primary OutFlow Max=0.08 cfs @ 7.98 hrs HW=222.09' TW=0.00' (Dynamic Tailwater)

1=Perf Pipes (Exfiltration Controls 0.01 cfs)

-2=4"Overflow Pipe (Controls 0.00 cfs)

-3=10" Outflow Pipe (Orifice Controls 0.07 cfs @ 1.26 fps)

Type IA 24-hr 50-50 Year Rainfall=4.38"


Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 703

Pond 60P: Stormwater Swale 1

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 704

Summary for Pond 63P: Detention Pond

Inflow Area = 23.038 ac, 36.38% Impervious, Inflow Depth = 3.79" for 50-50 Year event

Inflow 21.21 cfs @ 7.98 hrs, Volume= 7.280 af

8.43 hrs, Volume= Outflow 10.92 cfs @ 7.279 af, Atten= 49%, Lag= 27.3 min

Primary 10.92 cfs @ 8.43 hrs, Volume= 7.279 af

Routed to Reach 85R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Peak Elev= 224.47' @ 8.43 hrs Surf.Area= 47,286 sf Storage= 59,147 cf

Flood Elev= 225.50' Surf.Area= 48,838 sf Storage= 80,897 cf

Plug-Flow detention time= 107.7 min calculated for 7.267 af (100% of inflow)

Center-of-Mass det. time= 107.8 min (798.9 - 691.1)

Volume	Invert	Avail.Storage	Storage Description
#1	221.50'	75,859 cf	Open Storage (Irregular)Listed below (Recalc)
#2	220.00'	3,288 cf	Growing Medium (Irregular)Listed below (Recalc)
			32,879 cf Overall x 10.0% Voids
#3	219.00'	1,750 cf	Rock Chamber (Prismatic)Listed below (Recalc)
			5,000 cf Overall x 35.0% Voids

	8	0,897 cf	Total Available Sto	rage	
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
221.50	16,108	696.8	0	0	16,108
222.50	17,511	717.0	16,805	16,805	18,488
223.50	18,943	738.5	18,222	35,027	21,082
224.50	20,410	754.7	19,672	54,699	23,147
225.50	21,919	770.9	21,160	75,859	25,257
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
Licvation	Sui i.Ai ea	Penni.	1110.51016	Culli.Sidie	wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
(feet) 220.00 221.50	(sq-ft) 21,919 21,919	(feet) 770.9 770.9	(cubic-feet) 0 32,879	(cubic-feet) 0 32,879	(sq-ft) 21,919
(feet) 220.00 221.50 Elevation	(sq-ft) 21,919 21,919 Surf.Area	(feet) 770.9 770.9 Inc	(cubic-feet) 0 32,879 .Store Cum.S	(cubic-feet) 0 32,879 tore	(sq-ft) 21,919
(feet) 220.00 221.50 Elevation (feet)	(sq-ft) 21,919 21,919 Surf.Area (sq-ft)	(feet) 770.9 770.9 Inc	(cubic-feet) 0 32,879 Store Cum.S c-feet) (cubic-f	(cubic-feet) 0 32,879 tore eet)	(sq-ft) 21,919
(feet) 220.00 221.50 Elevation (feet) 219.00	(sq-ft) 21,919 21,919 Surf.Area (sq-ft) 5,000	(feet) 770.9 770.9 Inc	(cubic-feet) 0 32,879 Store Cum.S c-feet) (cubic-f	(cubic-feet) 0 32,879 tore eet) 0	(sq-ft) 21,919
(feet) 220.00 221.50 Elevation (feet)	(sq-ft) 21,919 21,919 Surf.Area (sq-ft)	(feet) 770.9 770.9 Inc	(cubic-feet) 0 32,879 Store Cum.S c-feet) (cubic-f	(cubic-feet) 0 32,879 tore eet)	(sq-ft) 21,919

Device	Routing	Invert	Outlet Devices
#1	Primary	219.00'	24.0" Round 24" Pipe
	•		L= 100.0' CPP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 219.00' / 218.80' S= 0.0020 '/' Cc= 0.900
			n= 0.010, Flow Area= 3.14 sf
#2	Device 1	219.00'	2.000 in/hr 4" Perf Pipes over Surface area
#3	Device 1	221.85'	6.0" Vert. 2x6" Orifice X 2.00 C= 0.600
			Limited to weir flow at low heads
#4	Device 1	222.78'	6.0" Vert. 6" Orifice C= 0.600 Limited to weir flow at low heads
#5	Device 1	222.95'	6.0" Vert. 6" Orifice C= 0.600 Limited to weir flow at low heads

Type IA 24-hr 50-50 Year Rainfall=4.38"

Prepared by A&O Engineering LLC

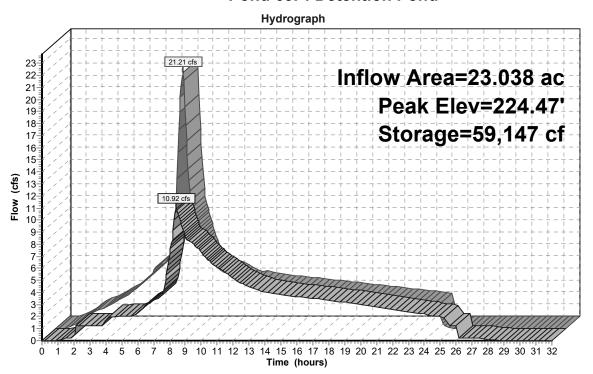
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 705

#6	Device 1	223.25'	4.0" Vert. 4" Orifice C= 0.600 Limited to weir flow at low heads
#7	Device 1	223.55'	4.0" Vert. 4" Orifice C= 0.600 Limited to weir flow at low heads
#8	Device 1	223.77'	4.0" Vert. 2x4" Orifice X 2.00 C= 0.600
	5	004051	Limited to weir flow at low heads
#9	Device 1	224.35	48.0" x 48.0" Horiz. 48" Overflow C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=10.90 cfs @ 8.43 hrs HW=224.47' TW=0.00' (Dynamic Tailwater)


—1=24" Pipe (Passes 10.90 cfs of 28.22 cfs potential flow)
—2=4" Perf Pipes (Exfiltration Controls 2.19 cfs)
—3=2x6" Orifice (Orifice Controls 2.91 cfs @ 7.41 fps)
—4=6" Orifice (Orifice Controls 1.13 cfs @ 5.78 fps)
—5=6" Orifice (Orifice Controls 1.07 cfs @ 5.43 fps)

-6=4" Orifice (Orifice Controls 0.43 cfs @ 4.94 fps)

-7=4" Orifice (Orifice Controls 0.36 cfs @ 4.18 fps) **-8=2x4" Orifice** (Orifice Controls 0.61 cfs @ 3.52 fps)

-9=48" Overflow (Weir Controls 2.19 cfs @ 1.13 fps)

Pond 63P: Detention Pond

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 706

Time span=0.00-32.00 hrs, dt=0.05 hrs, 641 points
Runoff by SBUH method, Split Pervious/Imperv.
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Reach routing by Dyn-Stor-	ind method - Ford fouting by Dyn-Stor-Ind method
Subcatchment64S: Home Basin 20	Runoff Area=9,940 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.21 cfs 0.071 af
Subcatchment65S: Single Pond Existin Flow Length=1,526'	ng Runoff Area=23.038 ac 0.00% Impervious Runoff Depth>3.30" Slope=0.0076 '/' Tc=73.0 min CN=89/0 Runoff=9.55 cfs 6.326 af
Subcatchment67S: Home Basin 19	Runoff Area=17,197 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.36 cfs 0.122 af
Subcatchment68S: Home Basin 12	Runoff Area=18,133 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.38 cfs 0.129 af
Subcatchment69S: Home Basin 17	Runoff Area=16,661 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.35 cfs 0.118 af
Subcatchment70S: Home Basin 18	Runoff Area=11,596 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.24 cfs 0.082 af
Subcatchment71S: Home Basin 14	Runoff Area=16,444 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.34 cfs 0.117 af
Subcatchment72S: Home Basin 16	Runoff Area=20,310 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.43 cfs 0.144 af
Subcatchment73S: Home Basin 13	Runoff Area=10,807 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.23 cfs 0.077 af
Subcatchment74S: Swale Existing Flow Length=105'	Runoff Area=0.168 ac 0.00% Impervious Runoff Depth=3.30" Slope=0.0565 '/' Tc=10.0 min CN=89/0 Runoff=0.14 cfs 0.046 af
Subcatchment75S: Home Basin 11	Runoff Area=18,483 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.39 cfs 0.131 af
Subcatchment77S: Home Basin 15	Runoff Area=12,503 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.26 cfs 0.089 af
Subcatchment78S: Single Pond	Runoff Area=21,919 sf 100.00% Impervious Runoff Depth=4.26" Tc=0.0 min CN=0/98 Runoff=0.54 cfs 0.179 af
Subcatchment79S: Home Basin 30	Runoff Area=38,416 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.81 cfs 0.272 af
Subcatchment80S: Home Basin 10	Runoff Area=14,789 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.31 cfs 0.105 af
Subcatchment81S: Home Basin 9	Runoff Area=15,575 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.33 cfs 0.110 af

Subcatchment83S: Home Basin 7

Type IA 24-hr 100-Year Rainfall=4.50"

Runoff Area=17,032 sf 0.00% Impervious Runoff Depth=3.71"

Tc=10.0 min CN=93/0 Runoff=0.36 cfs 0.121 af

Printed 9/6/2023 Prepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC Page 707 Runoff Area=20,667 sf 0.00% Impervious Runoff Depth=3.71" Subcatchment82S: Home Basin 2 Tc=10.0 min CN=93/0 Runoff=0.43 cfs 0.147 af

Subcatchment84S: Home Basin 8 Runoff Area=11,668 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.24 cfs 0.083 af

Subcatchment85S: Home Basin 29 Runoff Area=25,118 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.53 cfs 0.178 af

Runoff Area=16,159 sf 0.00% Impervious Runoff Depth=3.71" Subcatchment86S: Home Basin 22 Tc=10.0 min CN=93/0 Runoff=0.34 cfs 0.115 af

Runoff Area=24,839 sf 0.00% Impervious Runoff Depth=3.71" Subcatchment87S: Home Basin 27 Tc=10.0 min CN=93/0 Runoff=0.52 cfs 0.176 af

Subcatchment88S: Home Basin 28 Runoff Area=25,318 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.53 cfs 0.180 af

Runoff Area=20,676 sf 0.00% Impervious Runoff Depth=3.71" Subcatchment89S: Home Basin 24 Tc=10.0 min CN=93/0 Runoff=0.43 cfs 0.147 af

Runoff Area=14.135 sf 0.00% Impervious Runoff Depth=3.71" Subcatchment90S: Home Basin 26 Tc=10.0 min CN=93/0 Runoff=0.30 cfs 0.100 af

Runoff Area=12,271 sf 0.00% Impervious Runoff Depth=3.71" Subcatchment91S: Home Basin 23 Tc=10.0 min CN=93/0 Runoff=0.26 cfs 0.087 af

Subcatchment92S: Home Basin 21 Runoff Area=27,019 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.57 cfs 0.192 af

Subcatchment93S: Home Basin 25 Runoff Area=17,012 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.36 cfs 0.121 af

Subcatchment94S: Home Basin 4 Runoff Area=19,535 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.41 cfs 0.139 af

Subcatchment95S: Home Basin 31 Runoff Area=24,883 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.52 cfs 0.177 af

Subcatchment96S: Basin 1 Runoff Area=15,045 sf 100.00% Impervious Runoff Depth=4.26" Tc=10.0 min CN=0/98 Runoff=0.35 cfs 0.123 af

Subcatchment97S: Basin 2 Runoff Area=19,824 sf 100.00% Impervious Runoff Depth=4.26" Tc=10.0 min CN=0/98 Runoff=0.46 cfs 0.162 af

Subcatchment98S: Basin 3 Runoff Area=23,416 sf 100.00% Impervious Runoff Depth=4.26" Tc=10.0 min CN=0/98 Runoff=0.54 cfs 0.191 af

9-6-23 HydroCAD DOM

Type IA 24-hr 100-Year Rainfall=4.50"

9-6-23 HydroCAD DOM	Type IA 24-hr 100-Year Rainfall=4.50"
Prepared by A&O Engineering LLC	Printed 9/6/2023
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD® 10.20-2g s/n 04993	droCAD Software Solutions LLC Page 708
Subcatchment99S: Home Basin 6	Runoff Area=25,997 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.54 cfs 0.184 af
Subcatchment100S: Basin 4	Runoff Area=3,650 sf 100.00% Impervious Runoff Depth=4.26" Tc=10.0 min CN=0/98 Runoff=0.08 cfs 0.030 af
Subcatchment101S: Basin 5	Runoff Area=3,523 sf 100.00% Impervious Runoff Depth=4.26" Tc=10.0 min CN=0/98 Runoff=0.08 cfs 0.029 af
Subcatchment102S: Home Basin 3	Runoff Area=19,559 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.41 cfs 0.139 af
Subcatchment103S: Home Basin 1	Runoff Area=22,288 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.47 cfs 0.158 af
Subcatchment104S: Home Basin 5	Runoff Area=33,512 sf 0.00% Impervious Runoff Depth=3.71" Tc=10.0 min CN=93/0 Runoff=0.70 cfs 0.238 af
Subcatchment105S: Basin 6	Runoff Area=8,965 sf 100.00% Impervious Runoff Depth=4.26" Tc=10.0 min CN=0/98 Runoff=0.21 cfs 0.073 af
Subcatchment107S: Basin 8	Runoff Area=8,177 sf 100.00% Impervious Runoff Depth=4.26" Tc=10.0 min CN=0/98 Runoff=0.19 cfs 0.067 af
Subcatchment108S: Basin 9	Runoff Area=13,130 sf 100.00% Impervious Runoff Depth=4.26" Tc=10.0 min CN=0/98 Runoff=0.30 cfs 0.107 af
Subcatchment109S: Basin 10	Runoff Area=22,902 sf 100.00% Impervious Runoff Depth=4.26" Tc=10.0 min CN=0/98 Runoff=0.53 cfs 0.187 af
Subcatchment110S: Basin 11	Runoff Area=25,748 sf 100.00% Impervious Runoff Depth=4.26" Tc=10.0 min CN=0/98 Runoff=0.60 cfs 0.210 af
Subcatchment111S: Basin 12	Runoff Area=5,562 sf 100.00% Impervious Runoff Depth=4.26" Tc=10.0 min CN=0/98 Runoff=0.13 cfs 0.045 af
Subcatchment112S: Basin 13	Runoff Area=4,702 sf 100.00% Impervious Runoff Depth=4.26" Tc=10.0 min CN=0/98 Runoff=0.11 cfs 0.038 af
Subcatchment113S: Basin 14	Runoff Area=7,669 sf 100.00% Impervious Runoff Depth=4.26" Tc=10.0 min CN=0/98 Runoff=0.18 cfs 0.063 af
Subcatchment114S: Basin 15	Runoff Area=7,261 sf 100.00% Impervious Runoff Depth=4.26" Tc=10.0 min CN=0/98 Runoff=0.17 cfs 0.059 af
Subcatchment115S: Basin 16	Runoff Area=7,066 sf 100.00% Impervious Runoff Depth=4.26" Tc=10.0 min CN=0/98 Runoff=0.16 cfs 0.058 af
Subcatchment116S: Basin 17	Runoff Area=26,003 sf 100.00% Impervious Runoff Depth=4.26" Tc=10.0 min CN=0/98 Runoff=0.60 cfs 0.212 af

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 709

Subcatchment117S: Basin 18 Runoff Area=23,761 sf 100.00% Impervious Runoff Depth=4.26"

Tc=10.0 min CN=0/98 Runoff=0.55 cfs 0.194 af

Subcatchment118S: Basin 19 Runoff Area=7,309 sf 100.00% Impervious Runoff Depth=4.26"

Tc=10.0 min CN=0/98 Runoff=0.17 cfs 0.060 af

Subcatchment119S: Basin 20 Runoff Area=7,535 sf 100.00% Impervious Runoff Depth=4.26"

Tc=10.0 min CN=0/98 Runoff=0.17 cfs 0.061 af

Subcatchment120S: Basin 21 Runoff Area=6,846 sf 100.00% Impervious Runoff Depth=4.26"

Tc=10.0 min CN=0/98 Runoff=0.16 cfs 0.056 af

Subcatchment121S: Basin 22 Runoff Area=5,182 sf 100.00% Impervious Runoff Depth=4.26"

Tc=10.0 min CN=0/98 Runoff=0.12 cfs 0.042 af

Subcatchment122S: Basin 23 Runoff Area=5,456 sf 100.00% Impervious Runoff Depth=4.26"

Tc=10.0 min CN=0/98 Runoff=0.13 cfs 0.045 af

Subcatchment123S: Basin 24 Runoff Area=4,510 sf 100.00% Impervious Runoff Depth=4.26"

Tc=10.0 min CN=0/98 Runoff=0.10 cfs 0.037 af

Subcatchment124S: Basin 25 Runoff Area=13,271 sf 100.00% Impervious Runoff Depth=4.26"

Tc=10.0 min CN=0/98 Runoff=0.31 cfs 0.108 af

Subcatchment125S: Basin 26 Runoff Area=18,452 sf 100.00% Impervious Runoff Depth=4.26"

Tc=10.0 min CN=0/98 Runoff=0.43 cfs 0.151 af

Subcatchment126S: Alley Basin 1 Runoff Area=9,860 sf 100.00% Impervious Runoff Depth=4.26"

Tc=10.0 min CN=0/98 Runoff=0.23 cfs 0.080 af

Subcatchment127S: Alley Basin 2 Runoff Area=7,461 sf 100.00% Impervious Runoff Depth=4.26"

Tc=10.0 min CN=0/98 Runoff=0.17 cfs 0.061 af

Subcatchment128S: Alley Basin 3 Runoff Area=6,782 sf 100.00% Impervious Runoff Depth=4.26"

Tc=10.0 min CN=0/98 Runoff=0.16 cfs 0.055 af

Subcatchment129S: Alley Basin 4 Runoff Area=6,970 sf 100.00% Impervious Runoff Depth=4.26"

Tc=10.0 min CN=0/98 Runoff=0.16 cfs 0.057 af

Subcatchment168S: Future Lots Runoff Area=64,223 sf 37.85% Impervious Runoff Depth=3.92"

Tc=10.0 min CN=93/98 Runoff=1.40 cfs 0.481 af

Subcatchment169S: Swale 2 Runoff Area=67 sf 100.00% Impervious Runoff Depth=4.26"

Tc=0.0 min CN=0/98 Runoff=0.00 cfs 0.001 af

Subcatchment170S: Swale 1 Runoff Area=72 sf 100.00% Impervious Runoff Depth=4.26"

Tc=0.0 min CN=0/98 Runoff=0.00 cfs 0.001 af

Reach 39R: Post-ConstructionPeak Flow Inflow=12.39 cfs 7.565 af Outflow=12.39 cfs 7.565 af

9-6-23	Hydro	CAD	DOM

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC	Printed 9/6/2023 Page 710
Reach 42R: Pre-ConstructionPeak Flow	Inflow=9.64 cfs 6.372 af Outflow=9.64 cfs 6.372 af
Reach 58R: 1	Inflow=12.39 cfs 7.565 af Outflow=12.39 cfs 7.565 af
Reach 85R: 1	Inflow=12.30 cfs 7.506 af Outflow=12.30 cfs 7.506 af
Reach 130R: 1	Inflow=3.73 cfs 1.282 af Outflow=3.73 cfs 1.282 af
Reach 131R: 1	Inflow=3.73 cfs 1.282 af Outflow=3.73 cfs 1.282 af
Reach 132R: 1	Inflow=2.14 cfs 0.735 af Outflow=2.14 cfs 0.735 af
Reach 133R: 1	Inflow=0.35 cfs 0.123 af Outflow=0.35 cfs 0.123 af
Reach 134R: 1	Inflow=17.16 cfs 5.892 af Outflow=17.16 cfs 5.892 af
Reach 135R: 1	Inflow=2.91 cfs 0.996 af Outflow=2.91 cfs 0.996 af
Reach 136R: 1	Inflow=1.65 cfs 0.566 af Outflow=1.65 cfs 0.566 af
Reach 137R: 1	Inflow=1.00 cfs 0.345 af Outflow=1.00 cfs 0.345 af
Reach 138R: 1	Inflow=0.44 cfs 0.154 af Outflow=0.44 cfs 0.154 af
Reach 139R: 1	Inflow=13.96 cfs 4.792 af Outflow=13.96 cfs 4.792 af
Reach 140R: 1	Inflow=0.23 cfs 0.080 af Outflow=0.23 cfs 0.080 af
Reach 141R: 1	Inflow=0.17 cfs 0.061 af Outflow=0.17 cfs 0.061 af
Reach 142R: 1	Inflow=13.24 cfs 4.546 af Outflow=13.24 cfs 4.546 af
Reach 143R: 1	Inflow=2.70 cfs 0.925 af Outflow=2.70 cfs 0.925 af

9-6-23 HydroCAD DOM	
Prenared by A&O Engineering LLC	

Type IA 24-hr 100-Year Rainfall=4.50"
Printed 9/6/2023

Prepared by A&O Engineering LLC	Printed 9/6/2023
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC	Page 711
D 1444D 4	1 (1 400 (000 (
Reach 144R: 1	Inflow=1.93 cfs 0.663 af Outflow=1.93 cfs 0.663 af
	Outilow=1.93 cis 0.003 ai
Reach 145R: 1	Inflow=1.93 cfs 0.663 af
	Outflow=1.93 cfs 0.663 af
Reach 146R: 1	Inflow=10.55 cfs 3.621 af
	Outflow=10.55 cfs 3.621 af
Reach 147R: 1	Inflow=0.16 cfs 0.055 af
Reach 14/R. I	Outflow=0.16 cfs 0.055 af
	Cutilow 0.10 dis 0.000 di
Reach 148R: 1	Inflow=10.39 cfs 3.566 af
	Outflow=10.39 cfs 3.566 af
Reach 149R: 1	Inflow=2.63 cfs 0.903 af
	Outflow=2.63 cfs 0.903 af
Reach 150R: 1	Inflow=1.79 cfs 0.613 af
Todon 1001t. 1	Outflow=1.79 cfs 0.613 af
Reach 151R: 1	Inflow=1.36 cfs 0.469 af
	Outflow=1.36 cfs 0.469 af
Decelo 450D: 4	Inflam-7.20 etc. 2.400 et
Reach 152R: 1	Inflow=7.26 cfs 2.490 af Outflow=7.26 cfs 2.490 af
	Outilow=7.20 cis 2.490 ai
Reach 153R: 1	Inflow=0.16 cfs 0.057 af
	Outflow=0.16 cfs 0.057 af
Reach 154R: 1	Inflow=7.09 cfs 2.433 af
	Outflow=7.09 cfs 2.433 af
Reach 155R: 1	Inflow=2.49 cfs 0.856 af
Reach 1991. 1	Outflow=2.49 cfs 0.856 af
Reach 158R: 1	Inflow=14.25 cfs 4.897 af
	Outflow=14.25 cfs 4.897 af
D. a.d. 450D. 4	luffa40.70 efc. 4.704 ef
Reach 159R: 1	Inflow=13.78 cfs 4.731 af Outflow=13.78 cfs 4.731 af
	Outilow=13.76 cis 4.731 ai
Reach 160R: 1	Inflow=1.73 cfs 0.592 af
	Outflow=1.73 cfs 0.592 af
Reach 162R: 1	Inflow=4.12 cfs 1.414 af
	Outflow=4.12 cfs 1.414 af
Reach 163R: 1	Inflow=4.02 cfs 1.378 af
NGGGII 100N. I	Outflow=4.02 cfs 1.378 af
	Camen 1.02 010 1.070 al

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 712

Reach 165R: 1 Inflow=1.44 cfs 0.493 af

Outflow=1.44 cfs 0.493 af

Reach 166R: Basin Future Inflow=1.40 cfs 0.481 af

Outflow=1.40 cfs 0.481 af

Pond 54P: Stormwater Swale 2 Peak Elev=222.44' Storage=33 cf Inflow=0.08 cfs 0.029 af

Outflow=0.08 cfs 0.029 af

Pond 60P: Stormwater Swale 1 Peak Elev=222.09' Storage=35 cf Inflow=0.09 cfs 0.030 af

Outflow=0.09 cfs 0.030 af

Pond 63P: Detention Pond Peak Elev=224.51' Storage=60,024 cf Inflow=21.86 cfs 7.507 af

Outflow=12.30 cfs 7.506 af

Total Runoff Area = 46.412 ac Runoff Volume = 13.939 af Average Runoff Depth = 3.60" 81.58% Pervious = 37.863 ac 18.42% Impervious = 8.549 ac

Type IA 24-hr 100-Year Rainfall=4.50"

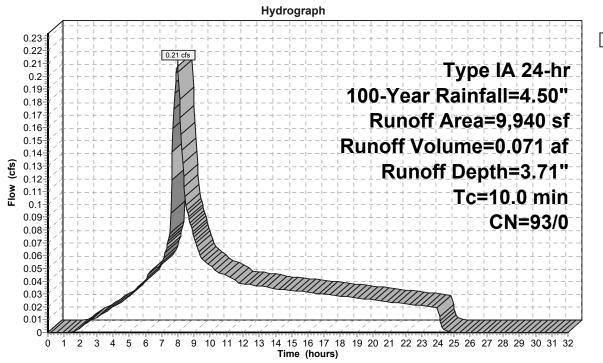
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 713

Summary for Subcatchment 64S: Home Basin 20


Runoff = 0.21 cfs @ 7.98 hrs, Volume= 0.071 af, Depth= 3.71"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description				
*		9,940	93	70% Lot Coverage Weighted				
		9,940	93	100.00% Pervious Area				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
_	10.0	(.501)	(10/10)	(.2000)	(0.0)	Direct Entry,		

Subcatchment 64S: Home Basin 20

■ Runoff

Type IA 24-hr 100-Year Rainfall=4.50"

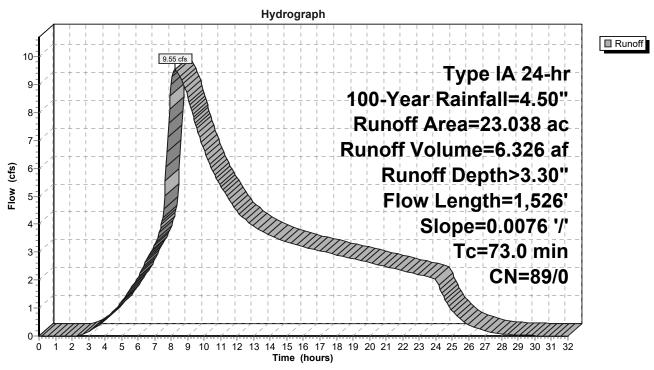
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 714

Summary for Subcatchment 65S: Single Pond Existing Conditions


Runoff = 9.55 cfs @ 8.26 hrs, Volume= 6.326 af, Depth> 3.30" Routed to Reach 42R : Pre-Construction Peak Flow

reduced to reduce 12.1.1.10 Containable in Calif. 16.11

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

	Area	(ac) C	N Des	cription		
	23.038 89 Pasture/grassland/range, Poor, HSG D					
	23.038 89 100.00% Pervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	39.5	300	0.0076	0.13	, ,	Sheet Flow,
	33.5	1,226	0.0076	0.61		Grass: Short n= 0.150 P2= 2.47" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
Ī	73.0	1,526	Total			

Subcatchment 65S: Single Pond Existing Conditions

Type IA 24-hr 100-Year Rainfall=4.50"

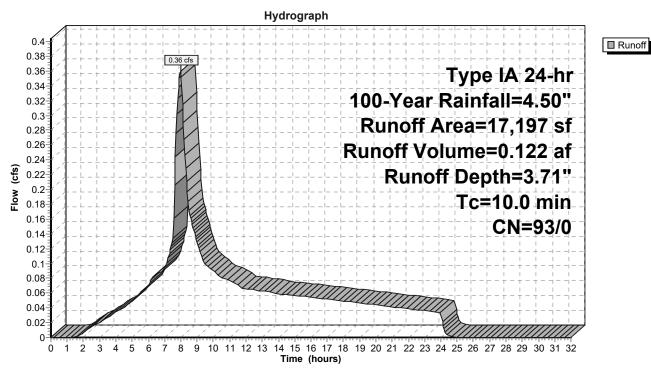
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 715

Summary for Subcatchment 67S: Home Basin 19


Runoff = 0.36 cfs @ 7.98 hrs, Volume= 0.122 af, Depth= 3.71"

Routed to Reach 159R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

	Α	rea (sf)	CN	Description						
3	k	17,197	93	70% Lot Coverage Weighted						
-		17,197	93	100.00% Pervious Area						
	Tc	Length	Slone	Velocity	Canacity	Description				
	(min)	(feet)	(ft/ft)	,	(cfs)	Description				
	10.0					Direct Entry				

Subcatchment 67S: Home Basin 19

Type IA 24-hr 100-Year Rainfall=4.50"

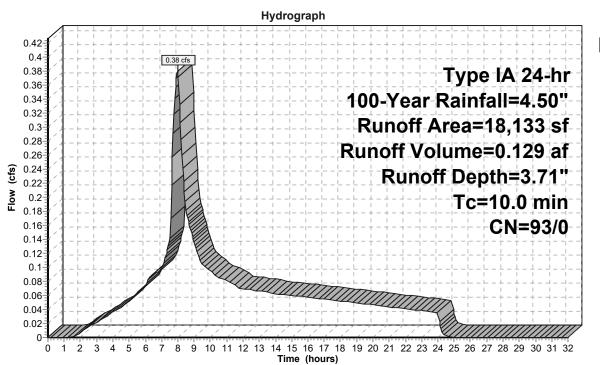
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 716

Summary for Subcatchment 68S: Home Basin 12


Runoff = 0.38 cfs @ 7.98 hrs, Volume= 0.129 af, Depth= 3.71"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description						
*		18,133	93	70% Lot Co	0% Lot Coverage Weighted					
		18,133	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
_	10.0	, ,	, /	, ,	· /	Direct Entry,				

Subcatchment 68S: Home Basin 12

■ Runoff

Type IA 24-hr 100-Year Rainfall=4.50"

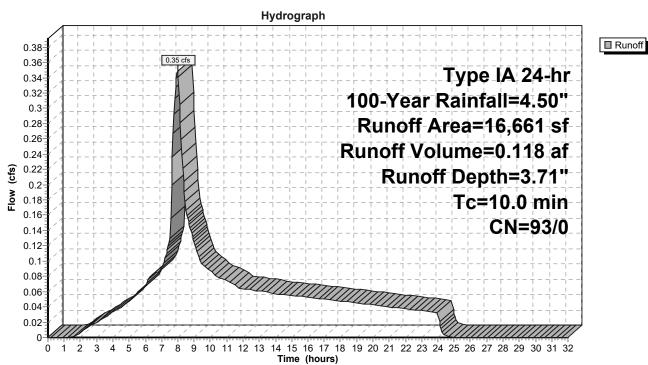
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 717

Summary for Subcatchment 69S: Home Basin 17


Runoff = 0.35 cfs @ 7.98 hrs, Volume= 0.118 af, Depth= 3.71"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

	Α	rea (sf)	CN	Description					
*		16,661	93	70% Lot Coverage Weighted					
		16,661	93	100.00% Pervious Area					
	Тс	9	Slope	,	. ,	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.0					Direct Entry,			

Subcatchment 69S: Home Basin 17

Type IA 24-hr 100-Year Rainfall=4.50"

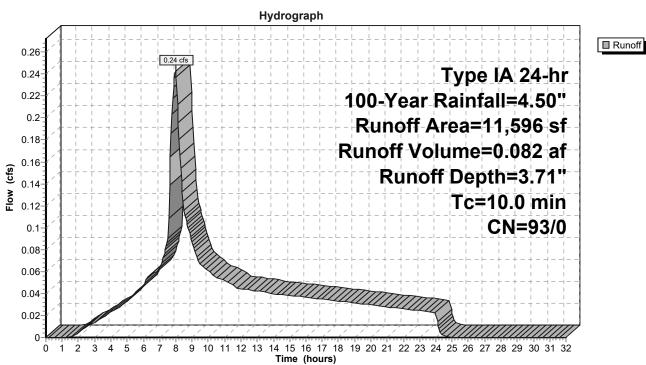
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 718

Summary for Subcatchment 70S: Home Basin 18


Runoff = 0.24 cfs @ 7.98 hrs, Volume= 0.082 af, Depth= 3.71"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

	Α	rea (sf)	CN	Description						
3	k	11,596	93	70% Lot Coverage Weighted						
-		11,596	93	00.00% Pervious Area						
	Tc	Length	Slope	Velocity	Canacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0	Direct Entry								

Subcatchment 70S: Home Basin 18

Type IA 24-hr 100-Year Rainfall=4.50"

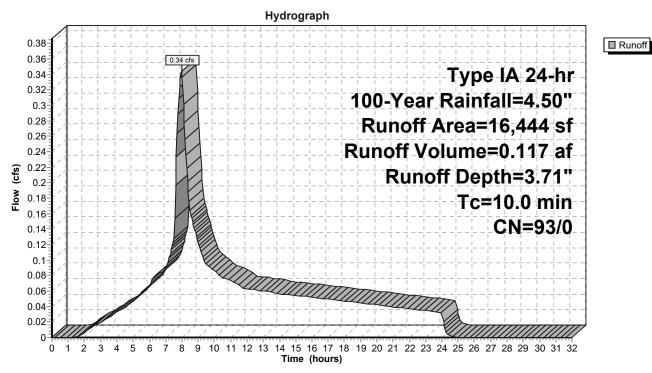
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 719

Summary for Subcatchment 71S: Home Basin 14


Runoff = 0.34 cfs @ 7.98 hrs, Volume= 0.117 af, Depth= 3.71"

Routed to Reach 148R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description						
*		16,444	93	70% Lot Coverage Weighted						
		16,444	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0					Direct Entry,				

Subcatchment 71S: Home Basin 14

Type IA 24-hr 100-Year Rainfall=4.50"

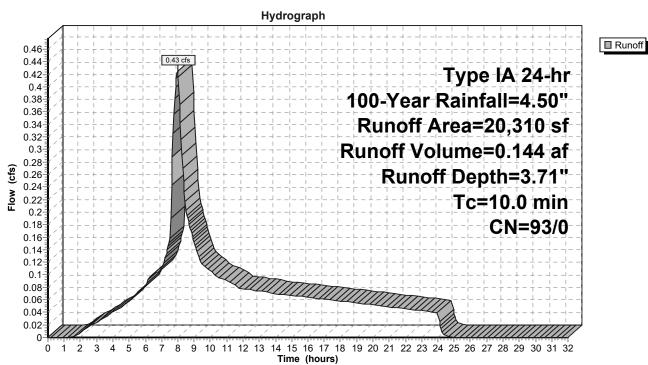
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 720

Summary for Subcatchment 72S: Home Basin 16


Runoff = 0.43 cfs @ 7.98 hrs, Volume= 0.144 af, Depth= 3.71"

Routed to Reach 150R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description						
*		20,310	93	0% Lot Coverage Weighted						
_		20,310	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
_	10.0	•	•			Direct Entry,				

Subcatchment 72S: Home Basin 16

Type IA 24-hr 100-Year Rainfall=4.50"

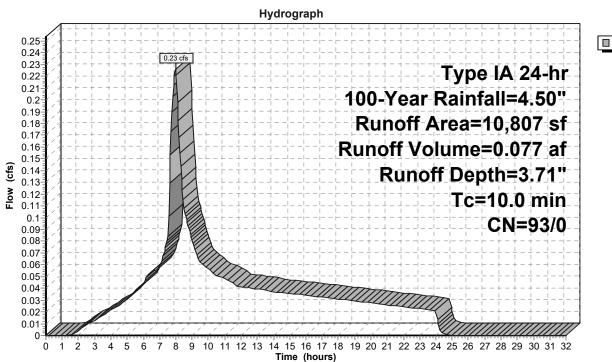
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 721

Summary for Subcatchment 73S: Home Basin 13


Runoff = 0.23 cfs @ 7.98 hrs, Volume= 0.077 af, Depth= 3.71"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description							
*		10,807	93	0% Lot Coverage Weighted							
_		10,807	93	100.00% Pe	00.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description					
_	10.0	•	•			Direct Entry,					

Subcatchment 73S: Home Basin 13

■ Runoff

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

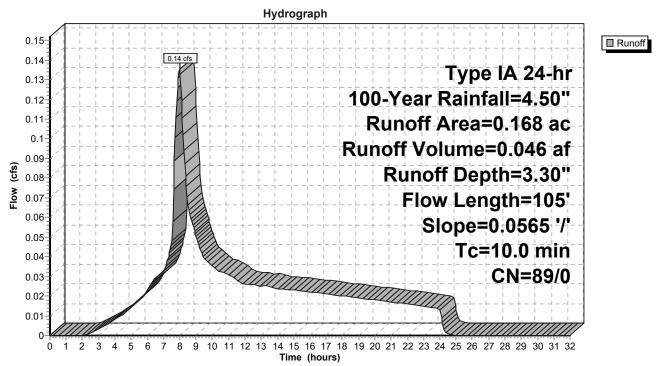
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 722

Summary for Subcatchment 74S: Swale Existing Conditions

Runoff = 0.14 cfs @ 7.98 hrs, Volume= 0.046 af, Depth= 3.30"


Routed to Reach 42R: Pre-Construction Peak Flow

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

Area	(ac) C	N Desc	cription					
0.	168 8	9 Past	ure/grassla	and/range,	Poor, HSG D			
0.168 89 100.00% Pervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
7.7	105	0.0565	0.23		Sheet Flow, Grass: Short	n= 0.150	P2= 2.47"	

7.7 105 Total, Increased to minimum Tc = 10.0 min

Subcatchment 74S: Swale Existing Conditions

Type IA 24-hr 100-Year Rainfall=4.50"

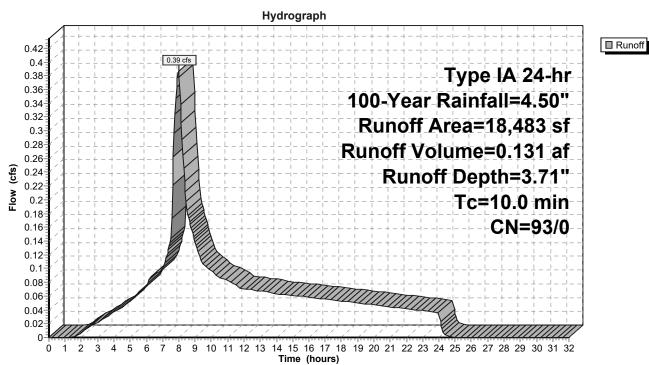
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 723

Summary for Subcatchment 75S: Home Basin 11


Runoff = 0.39 cfs @ 7.98 hrs, Volume= 0.131 af, Depth= 3.71"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description							
*		18,483	93	0% Lot Coverage Weighted							
		18,483	93	100.00% Pe	00.00% Pervious Area						
_	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description					
	10.0		•			Direct Entry,					

Subcatchment 75S: Home Basin 11

Type IA 24-hr 100-Year Rainfall=4.50"

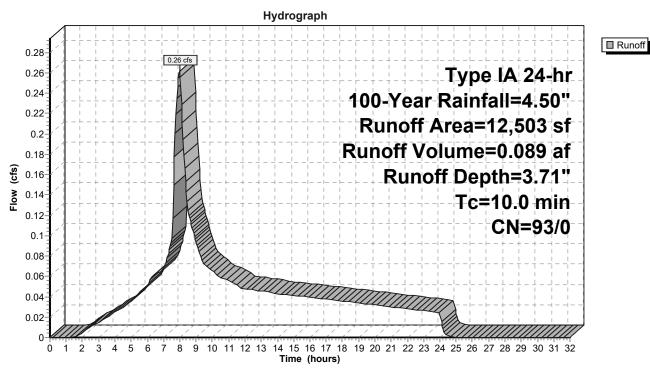
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 724

Summary for Subcatchment 77S: Home Basin 15


Runoff = 0.26 cfs @ 7.98 hrs, Volume= 0.089 af, Depth= 3.71"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description						
*		12,503	93	70% Lot Coverage Weighted						
_		12,503	93	100.00% Pervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 77S: Home Basin 15

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

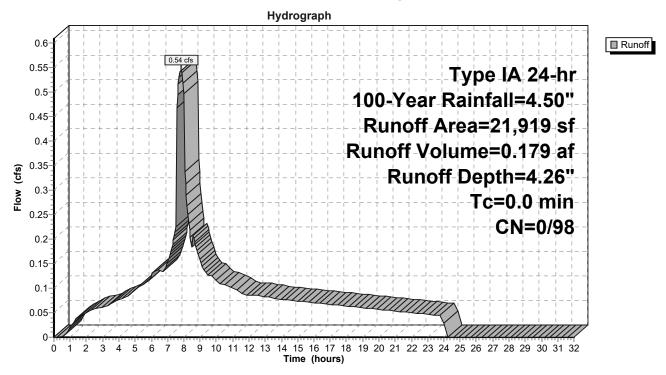
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 725

Summary for Subcatchment 78S: Single Pond

[46] Hint: Tc=0 (Instant runoff peak depends on dt)


Runoff = 0.54 cfs @ 7.80 hrs, Volume= 0.179 af, Depth= 4.26"

Routed to Pond 63P: Detention Pond

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

 Area (sf)	CN	Description
21,919	98	Water Surface, HSG D
 21,919	98	100.00% Impervious Area

Subcatchment 78S: Single Pond

Type IA 24-hr 100-Year Rainfall=4.50"

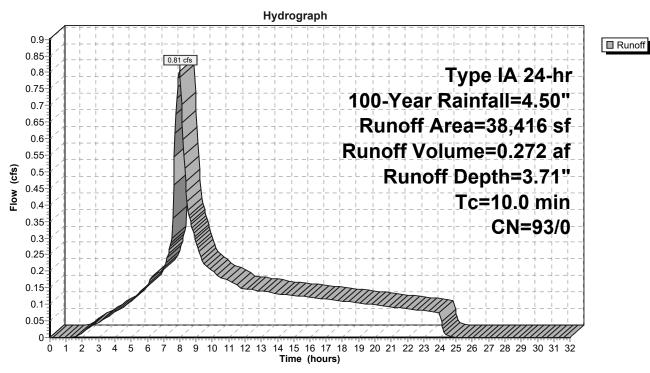
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 726

Summary for Subcatchment 79S: Home Basin 30


Runoff = 0.81 cfs @ 7.98 hrs, Volume= 0.272 af, Depth= 3.71"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

	Α	rea (sf)	CN	Description						
*		38,416	93	70% Lot Coverage Weighted						
		38,416	38,416 93 100.00% Pervious Area							
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	10.0	(ICCI)	(10/11)	(10/300)	(013)	Direct Entry,				

Subcatchment 79S: Home Basin 30

Type IA 24-hr 100-Year Rainfall=4.50"

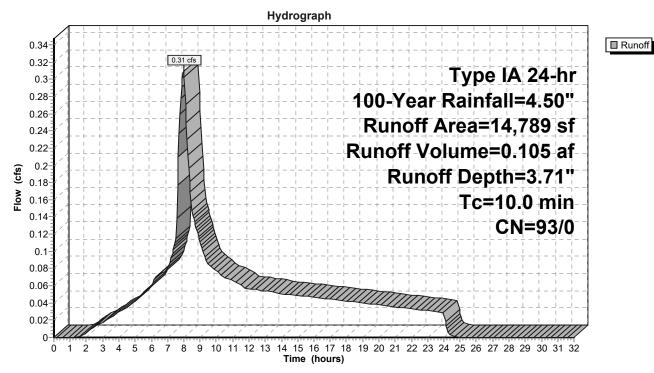
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 727

Summary for Subcatchment 80S: Home Basin 10


Runoff = 0.31 cfs @ 7.98 hrs, Volume= 0.105 af, Depth= 3.71"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

	Α	rea (sf)	CN	Description						
*		14,789	93	70% Lot Coverage Weighted						
		14,789	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description				
_	10.0	,	, ,	,	, ,	Direct Entry,				

Subcatchment 80S: Home Basin 10

Type IA 24-hr 100-Year Rainfall=4.50"

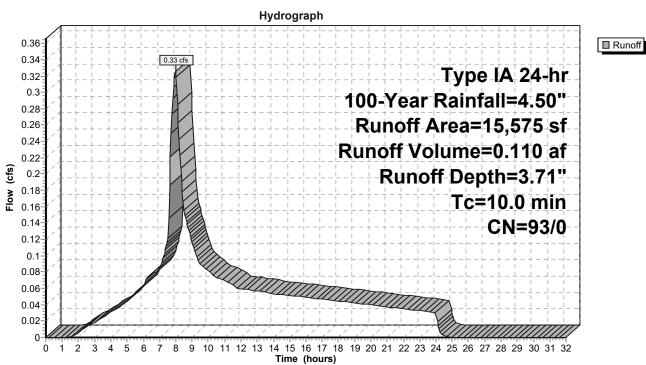
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 728

Summary for Subcatchment 81S: Home Basin 9


Runoff = 0.33 cfs @ 7.98 hrs, Volume= 0.110 af, Depth= 3.71"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description						
*		15,575	93	70% Lot Coverage Weighted						
		15,575	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0	-				Direct Entry,				

Subcatchment 81S: Home Basin 9

Type IA 24-hr 100-Year Rainfall=4.50"

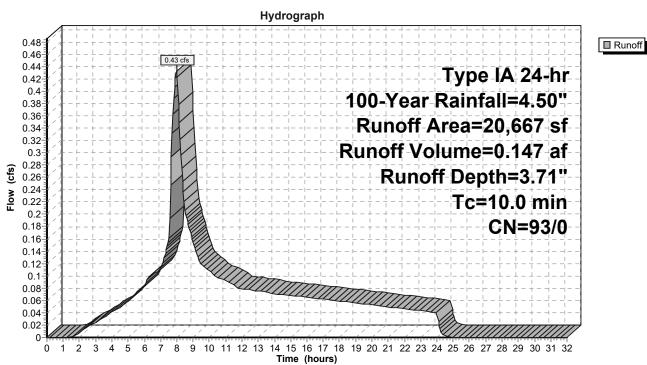
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 729

Summary for Subcatchment 82S: Home Basin 2


Runoff = 0.43 cfs @ 7.98 hrs, Volume= 0.147 af, Depth= 3.71"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN I	Description						
*		20,667	93	70% Lot Coverage Weighted						
		20,667 93 100.00% Pervious Area								
		Length	•	•		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 82S: Home Basin 2

Type IA 24-hr 100-Year Rainfall=4.50"

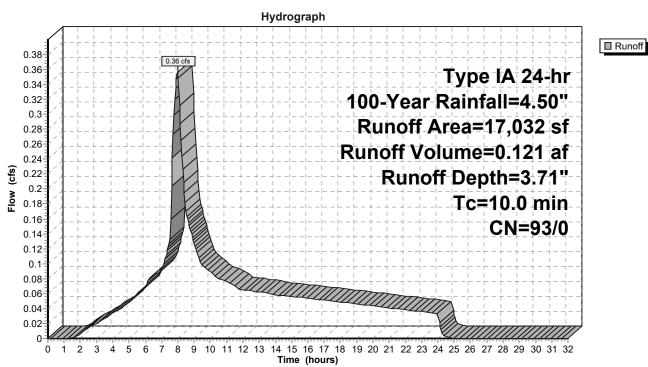
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 730

Summary for Subcatchment 83S: Home Basin 7


Runoff = 0.36 cfs @ 7.98 hrs, Volume= 0.121 af, Depth= 3.71"

Routed to Reach 154R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description						
*		17,032	93	70% Lot Coverage Weighted						
_		17,032	93	100.00% Pervious Area						
		Length	Slope	,	. ,	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 83S: Home Basin 7

Type IA 24-hr 100-Year Rainfall=4.50"

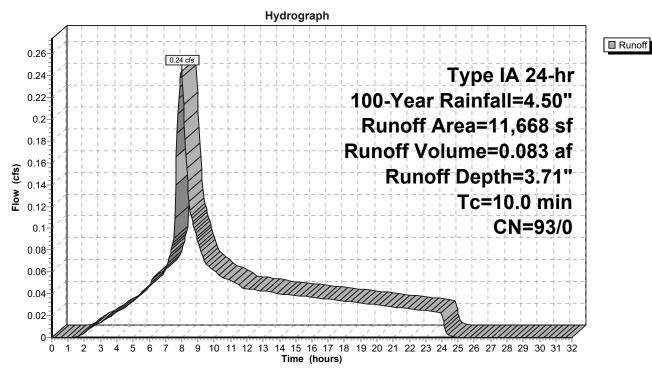
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 731

Summary for Subcatchment 84S: Home Basin 8


Runoff = 0.24 cfs @ 7.98 hrs, Volume= 0.083 af, Depth= 3.71"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

	Α	rea (sf)	CN	Description						
*		11,668	93	70% Lot Coverage Weighted						
		11,668	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
_	10.0	(ICCI)	(1011)	(11/360)	(013)	Direct Entry				

Subcatchment 84S: Home Basin 8

Type IA 24-hr 100-Year Rainfall=4.50"

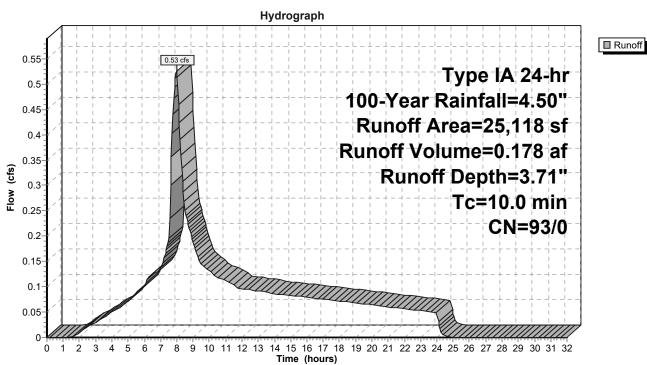
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 732

Summary for Subcatchment 85S: Home Basin 29


Runoff = 0.53 cfs @ 7.98 hrs, Volume= 0.178 af, Depth= 3.71"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description						
*	•	25,118	93	70% Lot Coverage Weighted						
_		25,118 93 100.00% Pervious Area								
_	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description				
	10.0					Direct Entry,				

Subcatchment 85S: Home Basin 29

Type IA 24-hr 100-Year Rainfall=4.50"

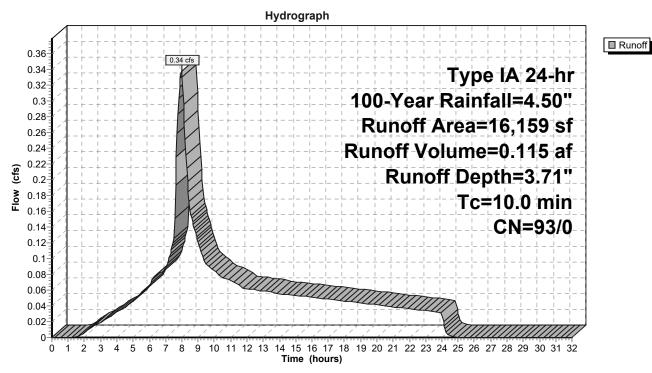
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 733

Summary for Subcatchment 86S: Home Basin 22


Runoff = 0.34 cfs @ 7.98 hrs, Volume= 0.115 af, Depth= 3.71"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description						
*		16,159	93	70% Lot Coverage Weighted						
		16,159	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0	-			-	Direct Entry,				

Subcatchment 86S: Home Basin 22

Type IA 24-hr 100-Year Rainfall=4.50"

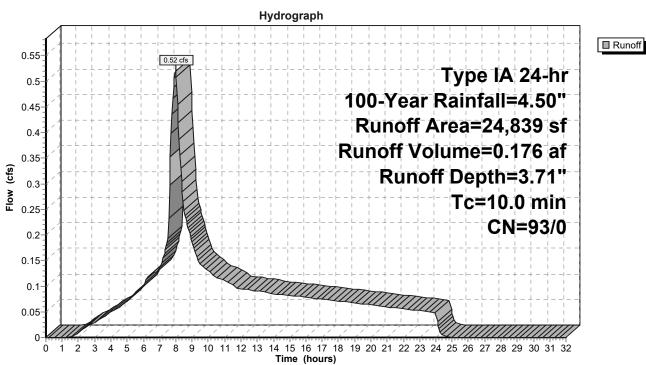
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 734

Summary for Subcatchment 87S: Home Basin 27


Runoff = 0.52 cfs @ 7.98 hrs, Volume= 0.176 af, Depth= 3.71"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description						
*		24,839	93	70% Lot Coverage Weighted						
		24,839	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
-	10.0	(.551)	(10/10)	(12000)	(010)	Direct Entry				

Subcatchment 87S: Home Basin 27

Type IA 24-hr 100-Year Rainfall=4.50"

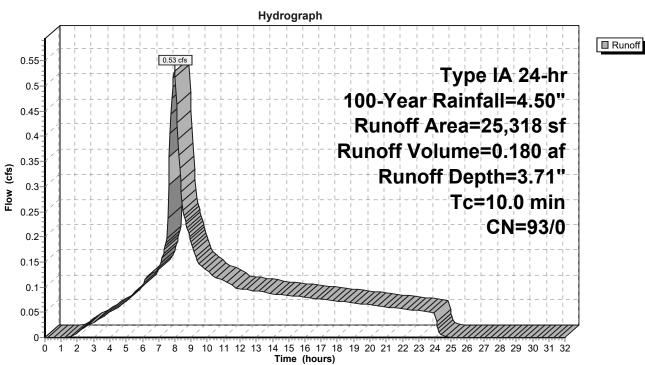
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 735

Summary for Subcatchment 88S: Home Basin 28


Runoff = 0.53 cfs @ 7.98 hrs, Volume= 0.180 af, Depth= 3.71"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description						
*		25,318	93	70% Lot Coverage Weighted						
		25,318	93	100.00% Pervious Area						
	Тс	Length	Slope	•		Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 88S: Home Basin 28

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 736

Summary for Subcatchment 89S: Home Basin 24

Runoff = 0.43 cfs @ 7.98 hrs, Volume= 0.147 af, Depth= 3.71"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

Α	rea (sf)	CN	Description						
*	20,676	93	70% Lot Coverage Weighted						
	20,676	93	100.00% Pervious Area						
Tc	Length	Slope	Velocity	Capacity	Description				
(min)					2 00011				
10.0	Direct Entry								

Subcatchment 89S: Home Basin 24

■ Runoff

Type IA 24-hr 100-Year Rainfall=4.50"

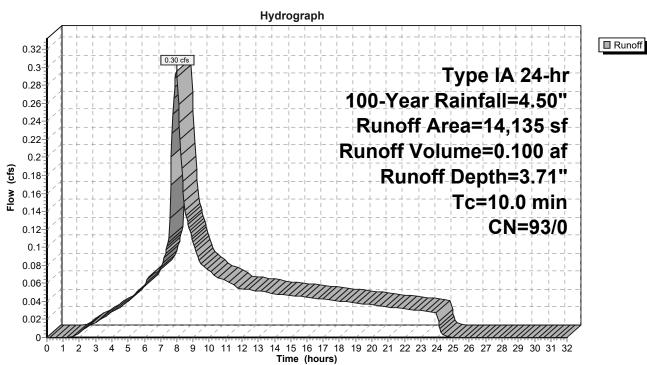
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 737

Summary for Subcatchment 90S: Home Basin 26


Runoff = 0.30 cfs @ 7.98 hrs, Volume= 0.100 af, Depth= 3.71"

Routed to Reach 136R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

	Α	rea (sf)	CN	Description						
*		14,135	93	70% Lot Coverage Weighted						
		14,135	93	100.00% Pervious Area						
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 90S: Home Basin 26

Type IA 24-hr 100-Year Rainfall=4.50"

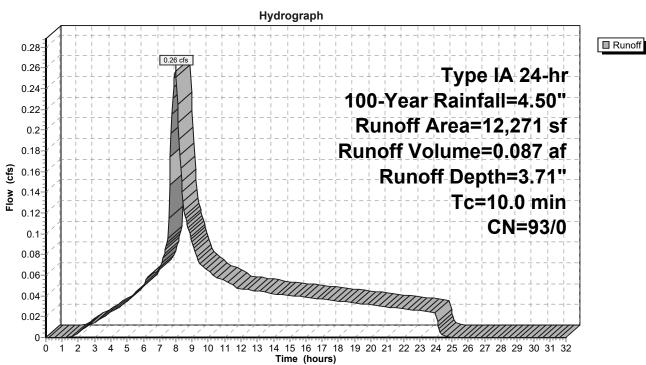
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 738

Summary for Subcatchment 91S: Home Basin 23


Runoff = 0.26 cfs @ 7.98 hrs, Volume= 0.087 af, Depth= 3.71"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN I	Description						
*	,	12,271	93	70% Lot Coverage Weighted						
_	12,271 93 100.00% Pervious Area									
		Tc Length Slope Velocity Capacity Descriptio				Description				
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10 0					Direct Entry				

Subcatchment 91S: Home Basin 23

Type IA 24-hr 100-Year Rainfall=4.50"

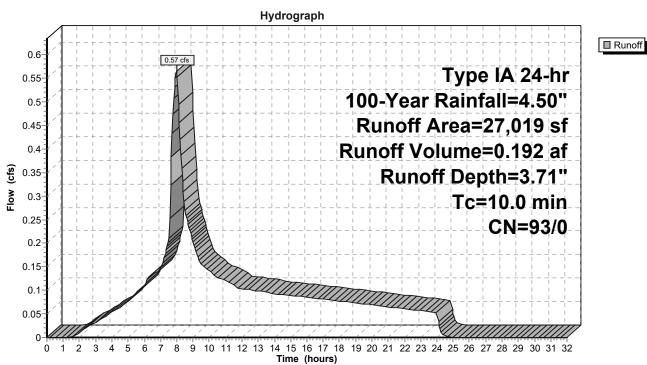
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 739

Summary for Subcatchment 92S: Home Basin 21


Runoff = 0.57 cfs @ 7.98 hrs, Volume= 0.192 af, Depth= 3.71"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description						
*		27,019	93	70% Lot Coverage Weighted						
		27,019	93	100.00% Pervious Area						
	Тс	9	Slope	,	. ,	Description				
_	(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 92S: Home Basin 21

Type IA 24-hr 100-Year Rainfall=4.50"

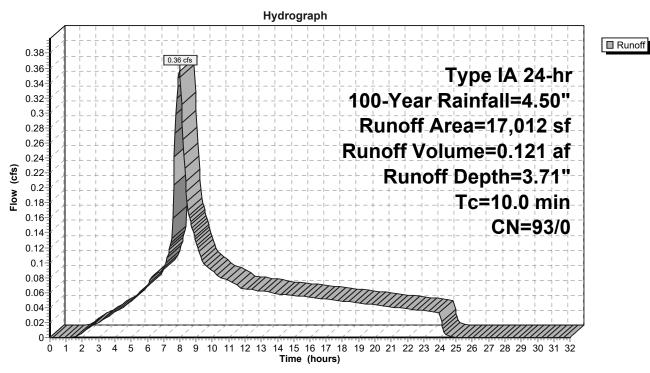
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 740

Summary for Subcatchment 93S: Home Basin 25


Runoff = 0.36 cfs @ 7.98 hrs, Volume= 0.121 af, Depth= 3.71"

Routed to Reach 136R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description						
*		17,012	93	70% Lot Coverage Weighted						
		17,012	93	100.00% Pervious Area						
	Тс	Length	Slope	e Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry,				

Subcatchment 93S: Home Basin 25

Type IA 24-hr 100-Year Rainfall=4.50"

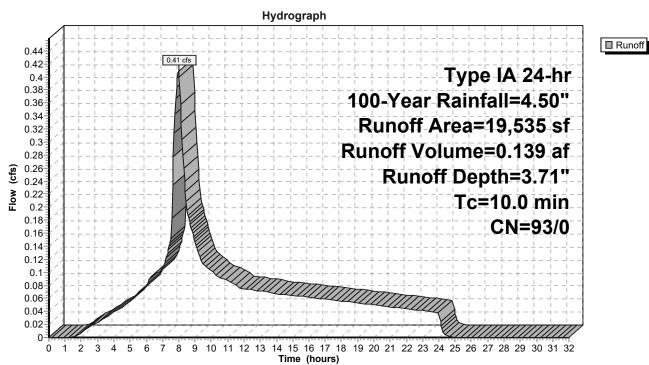
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 741

Summary for Subcatchment 94S: Home Basin 4


Runoff = 0.41 cfs @ 7.98 hrs, Volume= 0.139 af, Depth= 3.71"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN [Description						
*	•	19,535	93 7	70% Lot Coverage Weighted						
_		19,535	93 ′	100.00% Pervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 94S: Home Basin 4

Type IA 24-hr 100-Year Rainfall=4.50"

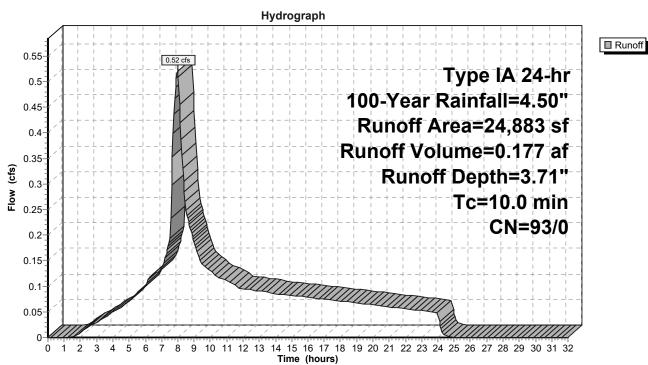
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 742

Summary for Subcatchment 95S: Home Basin 31


Runoff = 0.52 cfs @ 7.98 hrs, Volume= 0.177 af, Depth= 3.71"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN I	Description						
*		24,883	93	70% Lot Coverage Weighted						
		24,883 93 100.00% Pervious Area								
		Length	•	•		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 95S: Home Basin 31

Type IA 24-hr 100-Year Rainfall=4.50"

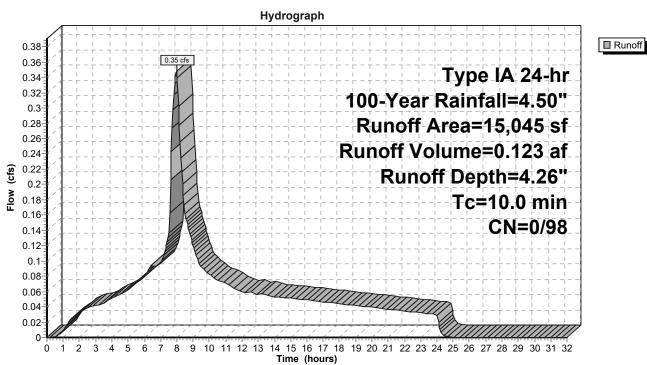
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 743

Summary for Subcatchment 96S: Basin 1


Runoff = 0.35 cfs @ 7.98 hrs, Volume= 0.123 af, Depth= 4.26"

Routed to Reach 133R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

	Aı	rea (sf)	CN	Description						
		15,045	98	Paved roads w/curbs & sewers, HSG D						
		15,045 98 100.00% Impervious Area								
	Tc in)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description				
10	0.0					Direct Entry,				

Subcatchment 96S: Basin 1

Type IA 24-hr 100-Year Rainfall=4.50"

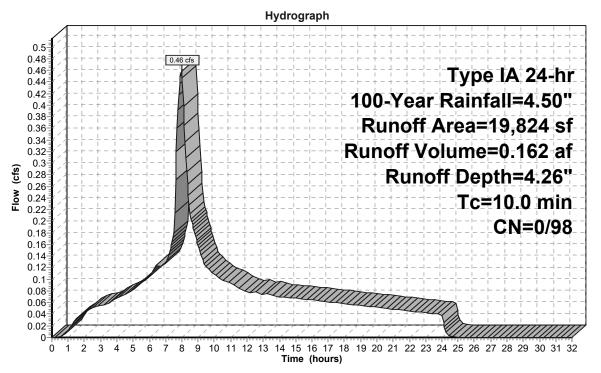
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 744

Summary for Subcatchment 97S: Basin 2


Runoff = 0.46 cfs @ 7.98 hrs, Volume= 0.162 af, Depth= 4.26"

Routed to Reach 132R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

Ar	rea (sf)	CN [Description						
	19,824	98 F	Paved roads w/curbs & sewers, HSG D						
•	19,824 98 100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0					Direct Entry,				

Subcatchment 97S: Basin 2

■ Runoff

Type IA 24-hr 100-Year Rainfall=4.50"

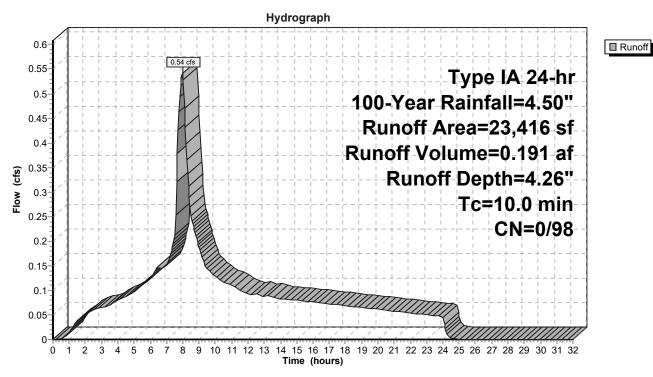
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 745

Summary for Subcatchment 98S: Basin 3


Runoff = 0.54 cfs @ 7.98 hrs, Volume= 0.191 af, Depth= 4.26"

Routed to Reach 131R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description						
	23,416 98 Paved roads w/curbs & sewers, HSG D									
	23,416 98 100.00% Impervious Area									
_	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	10.0					Direct Entry.				

Subcatchment 98S: Basin 3

Type IA 24-hr 100-Year Rainfall=4.50"

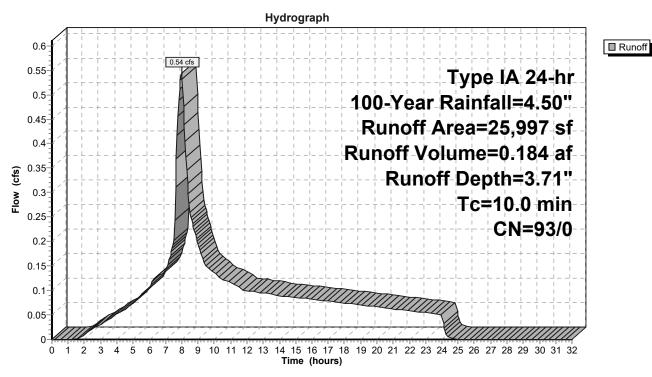
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 746

Summary for Subcatchment 99S: Home Basin 6


Runoff = 0.54 cfs @ 7.98 hrs, Volume= 0.184 af, Depth= 3.71"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN [Description						
*	,	25,997	93 7	70% Lot Coverage Weighted						
_	25,997 93 100.00% Pervious Area									
	Тс	Length	•	•	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 99S: Home Basin 6

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 747

Summary for Subcatchment 100S: Basin 4

Runoff = 0.08 cfs @ 7.98 hrs, Volume= 0.030 af, Depth= 4.26"

Routed to Pond 60P: Stormwater Swale 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

A	rea (sf)	CN I	Description					
	3,650	98 F	Paved roads w/curbs & sewers, HSG D					
	3,650	98	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
10.0					Direct Entry,			

Subcatchment 100S: Basin 4

■ Runoff

Type IA 24-hr 100-Year Rainfall=4.50"

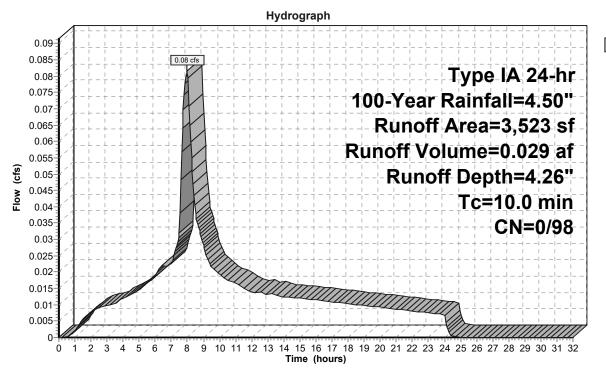
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 748

Summary for Subcatchment 101S: Basin 5


Runoff = 0.08 cfs @ 7.98 hrs, Volume= 0.029 af, Depth= 4.26"

Routed to Pond 54P: Stormwater Swale 2

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

A	rea (sf)	CN [Description					
	3,523	98 F	Paved roads w/curbs & sewers, HSG D					
	3,523	98 1	100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
10.0					Direct Entry,			

Subcatchment 101S: Basin 5

■ Runoff

Type IA 24-hr 100-Year Rainfall=4.50"

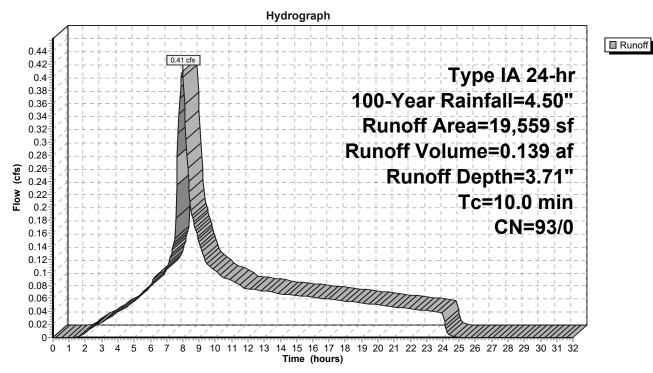
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 749

Summary for Subcatchment 102S: Home Basin 3


Runoff = 0.41 cfs @ 7.98 hrs, Volume= 0.139 af, Depth= 3.71"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description						
*		19,559	93	70% Lot Coverage Weighted						
		19,559	93	100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
_	10.0	•	• •	,	, ,	Direct Entry,				

Subcatchment 102S: Home Basin 3

Type IA 24-hr 100-Year Rainfall=4.50"

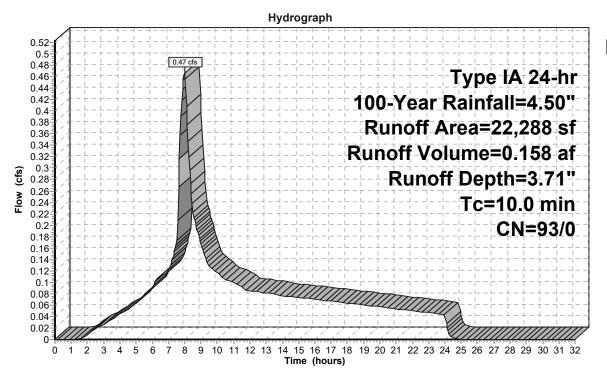
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 750

Summary for Subcatchment 103S: Home Basin 1


Runoff = 0.47 cfs @ 7.98 hrs, Volume= 0.158 af, Depth= 3.71"

Routed to Reach 137R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

	Α	rea (sf)	CN I	Description						
3	k	22,288	93	70% Lot Coverage Weighted						
		22,288	2,288 93 100.00% Pervious Area							
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.0					Direct Entry				

Subcatchment 103S: Home Basin 1

■ Runoff

Type IA 24-hr 100-Year Rainfall=4.50"

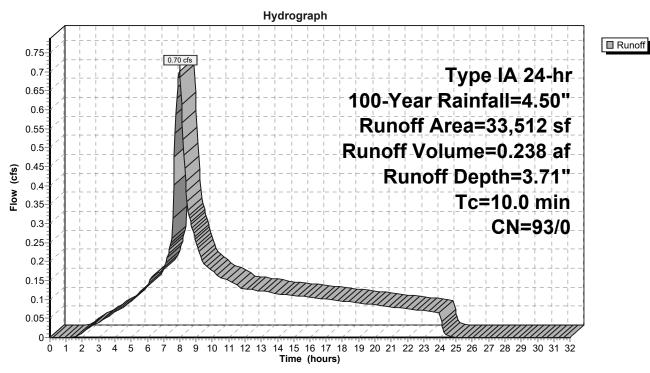
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 751

Summary for Subcatchment 104S: Home Basin 5


Runoff = 0.70 cfs @ 7.98 hrs, Volume= 0.238 af, Depth= 3.71"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN [Description							
*		33,512	93 7	70% Lot Coverage Weighted							
		33,512	93 ′	93 100.00% Pervious Area							
		Length		,		Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	10.0		Direct Entry								

Subcatchment 104S: Home Basin 5

Type IA 24-hr 100-Year Rainfall=4.50"

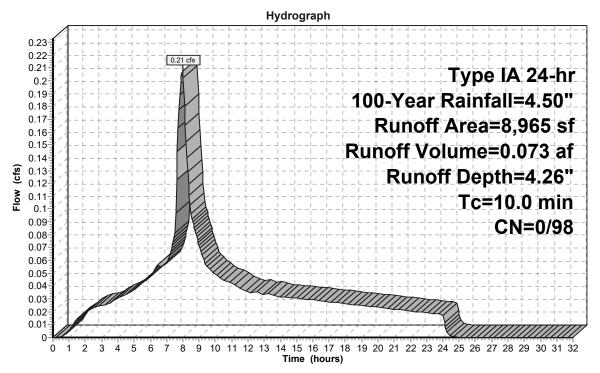
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 752

Summary for Subcatchment 105S: Basin 6


Runoff = 0.21 cfs @ 7.98 hrs, Volume= 0.073 af, Depth= 4.26"

Routed to Reach 138R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description							
		8,965	98	Paved roads w/curbs & sewers, HSG D							
		8,965	98	100.00% Impervious Area							
	-		01								
		Length	Slope	,		Description					
_	(min)	(feet)	(ft/ft)	ft) (ft/sec) (cfs)							
	10.0			Direct Entry.							

Subcatchment 105S: Basin 6

■ Runoff

Type IA 24-hr 100-Year Rainfall=4.50"

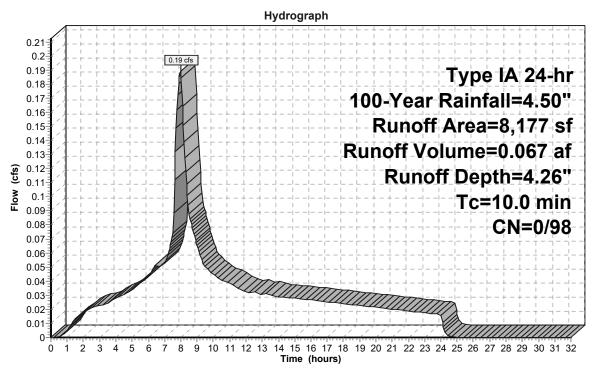
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 753

Summary for Subcatchment 107S: Basin 8


Runoff = 0.19 cfs @ 7.98 hrs, Volume= 0.067 af, Depth= 4.26"

Routed to Reach 158R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	A	rea (sf)	CN I	Description						
8,177 98 Paved roads w/curbs & sewers, HSG D										
_		8,177	98	98 100.00% Impervious Area						
	-	1 41.	01							
	Tc (min)	Length (feet)	Slope (ft/ft)							
-	10.0	(100t)	(10/10)	Direct Entry,						

Subcatchment 107S: Basin 8

■ Runoff

Type IA 24-hr 100-Year Rainfall=4.50"

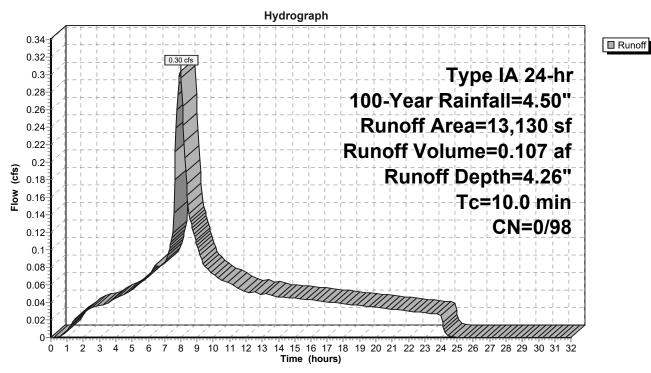
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 754

Summary for Subcatchment 108S: Basin 9


Runoff = 0.30 cfs @ 7.98 hrs, Volume= 0.107 af, Depth= 4.26"

Routed to Reach 135R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN I	Description						
		13,130	98 Paved roads w/curbs & sewers, HSG D							
		13,130 98 100.00% Impervious Area								
	To London Clara Valority Consoity December									
	Tc (min)	Length (feet)								
_	10.0	,	Direct Entry,							

Subcatchment 108S: Basin 9

Type IA 24-hr 100-Year Rainfall=4.50"

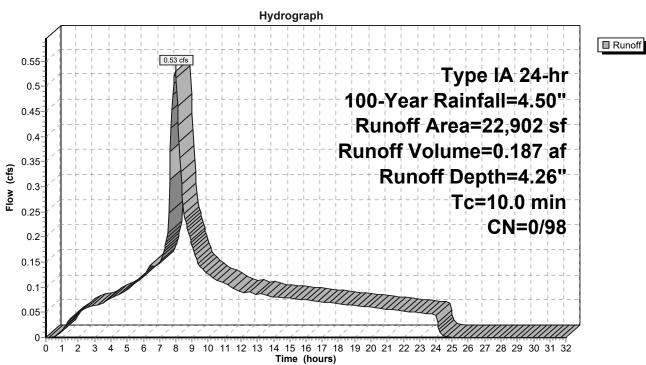
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 755

Summary for Subcatchment 109S: Basin 10


Runoff = 0.53 cfs @ 7.98 hrs, Volume= 0.187 af, Depth= 4.26"

Routed to Reach 137R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

	Α	rea (sf)	CN	Description						
		22,902	98 Paved roads w/curbs & sewers, HSG D							
	22,902 98 100.00% Impervious Area									
		Length	•	,	Capacity	Description				
	(min)	min) (feet) (ft/ft) (ft/sec) (cfs)								
	10.0			Direct Entry.						

Subcatchment 109S: Basin 10

Type IA 24-hr 100-Year Rainfall=4.50"

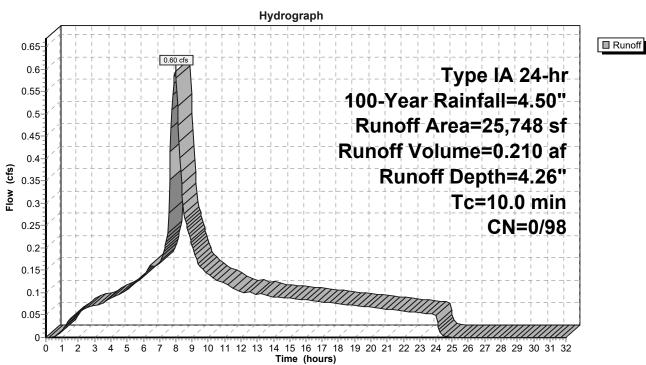
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 756

Summary for Subcatchment 110S: Basin 11


Runoff = 0.60 cfs @ 7.98 hrs, Volume= 0.210 af, Depth= 4.26"

Routed to Reach 145R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

Are	ea (sf)	CN [Description							
2	25,748	98 F	Paved roads w/curbs & sewers, HSG D							
2	25,748 98 100.00% Impervious Area									
Tc (min)										
10.0		Direct Entry,								

Subcatchment 110S: Basin 11

Type IA 24-hr 100-Year Rainfall=4.50"

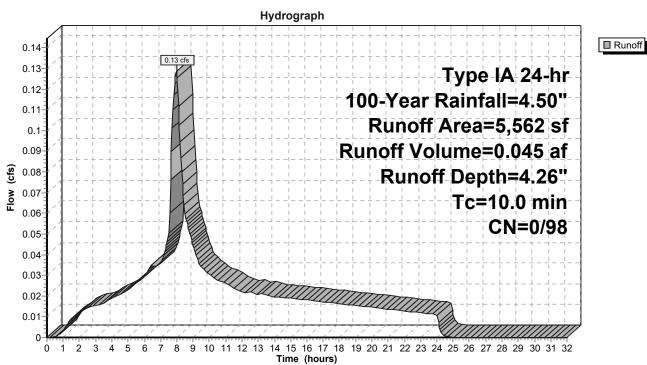
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 757

Summary for Subcatchment 111S: Basin 12


Runoff = 0.13 cfs @ 7.98 hrs, Volume= 0.045 af, Depth= 4.26"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

A	rea (sf)	CN [Description						
	5,562	98 F	Paved roads w/curbs & sewers, HSG D						
	5,562	98 1	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0			Direct Entry,						

Subcatchment 111S: Basin 12

Type IA 24-hr 100-Year Rainfall=4.50"

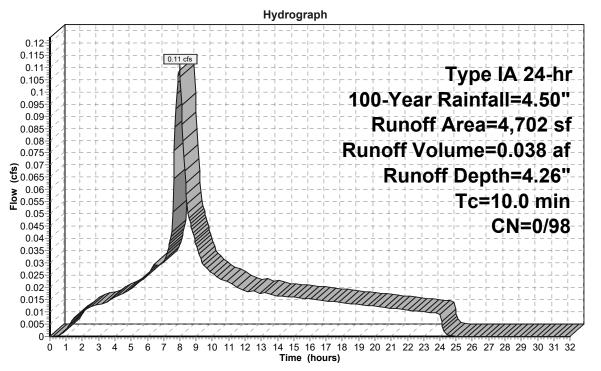
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 758

Summary for Subcatchment 112S: Basin 13


Runoff = 0.11 cfs @ 7.98 hrs, Volume= 0.038 af, Depth= 4.26"

Routed to Reach 158R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

	Area (sf)	CN [Description							
	4,702	98 F	Paved roads w/curbs & sewers, HSG D							
	4,702	98 ′	100.00% Impervious Area							
To (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0			Direct Entry,							

Subcatchment 112S: Basin 13

■ Runoff

Type IA 24-hr 100-Year Rainfall=4.50"

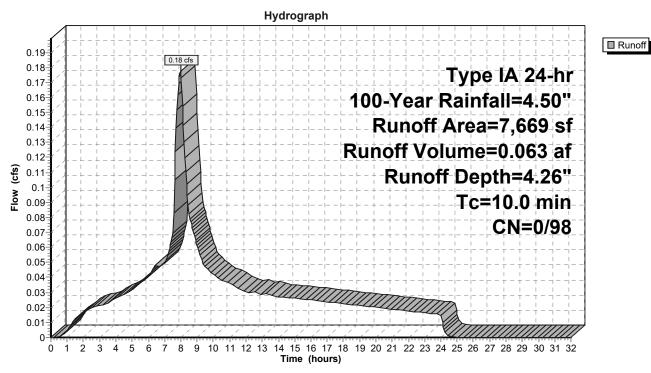
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 759

Summary for Subcatchment 113S: Basin 14


Runoff = 0.18 cfs @ 7.98 hrs, Volume= 0.063 af, Depth= 4.26"

Routed to Reach 159R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

A	rea (sf)	CN [Description						
	7,669	98 F	Paved roads w/curbs & sewers, HSG D						
	7,669	98 ′	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0			Direct Entry,						

Subcatchment 113S: Basin 14

Type IA 24-hr 100-Year Rainfall=4.50"

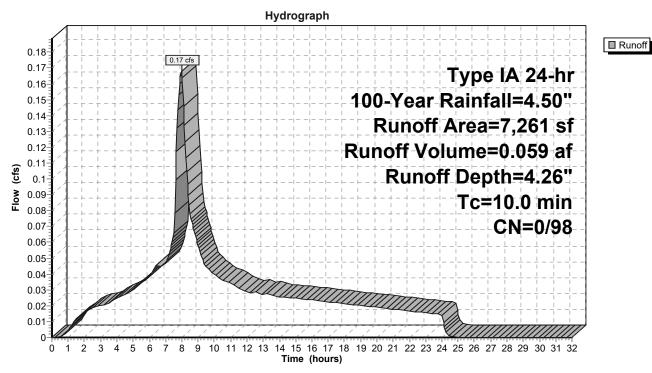
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 760

Summary for Subcatchment 114S: Basin 15


Runoff = 0.17 cfs @ 7.98 hrs, Volume= 0.059 af, Depth= 4.26"

Routed to Reach 143R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

A	rea (sf)	CN [Description							
	7,261	98 F	Paved roads w/curbs & sewers, HSG D							
	7,261	98 1	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0			Direct Entry,							

Subcatchment 114S: Basin 15

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 761

Summary for Subcatchment 115S: Basin 16

Runoff = 0.16 cfs @ 7.98 hrs, Volume= 0.058 af, Depth= 4.26"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

A	rea (sf)	CN [Description						
	7,066	98 F	Paved roads w/curbs & sewers, HSG D						
	7,066	98 1	100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
10.0			Direct Entry,						

Subcatchment 115S: Basin 16

Type IA 24-hr 100-Year Rainfall=4.50"

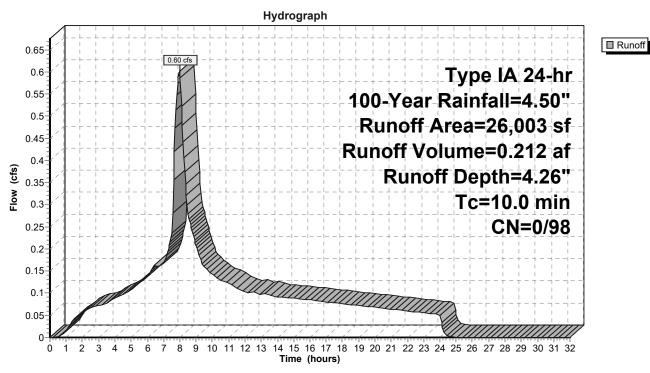
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 762

Summary for Subcatchment 116S: Basin 17


Runoff = 0.60 cfs @ 7.98 hrs, Volume= 0.212 af, Depth= 4.26"

Routed to Reach 151R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

	Α	rea (sf)	CN	Description							
		26,003	98	Paved roads w/curbs & sewers, HSG D							
		26,003 98 100.00% Impervious Area									
		Length	Slope								
_	(min)	(feet)	(ft/ft)	t) (ft/sec) (cfs)							
	10.0			Direct Entry.							

Subcatchment 116S: Basin 17

Type IA 24-hr 100-Year Rainfall=4.50"

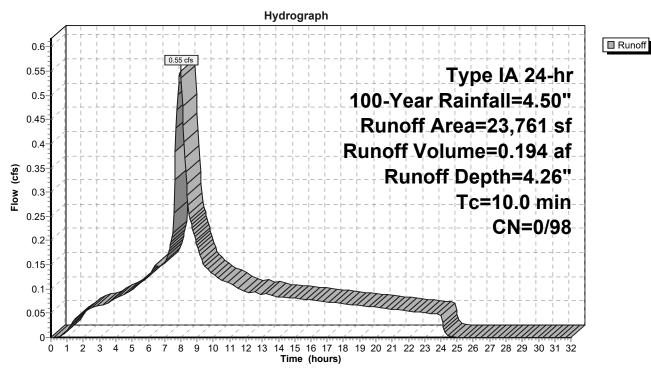
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 763

Summary for Subcatchment 117S: Basin 18


Runoff = 0.55 cfs @ 7.98 hrs, Volume= 0.194 af, Depth= 4.26"

Routed to Reach 160R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

Area (sf) CN	Description	Description							
23,76	98	Paved roads w/curbs & sewers, HSG D								
23,76	98	8 100.00% Impervious Area								
Tc Leng		•	Capacity (cfs)	Description						
10.0				Direct Entry,						

Subcatchment 117S: Basin 18

Type IA 24-hr 100-Year Rainfall=4.50"

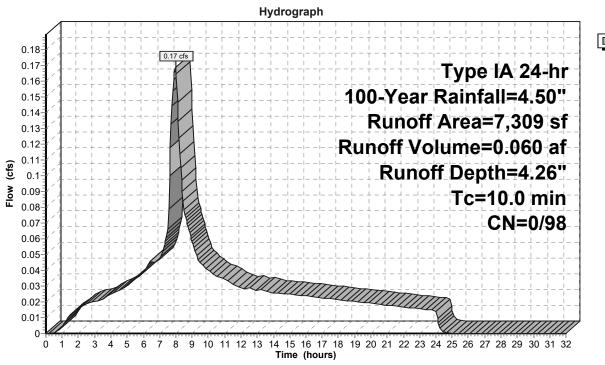
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 764

Summary for Subcatchment 118S: Basin 19


Runoff = 0.17 cfs @ 7.98 hrs, Volume= 0.060 af, Depth= 4.26"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

A	rea (sf)	CN [Description								
	7,309	98 F	Paved roads w/curbs & sewers, HSG D								
	7,309	98 1	100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
10.0					Direct Entry,						

Subcatchment 118S: Basin 19

■ Runoff

Type IA 24-hr 100-Year Rainfall=4.50"

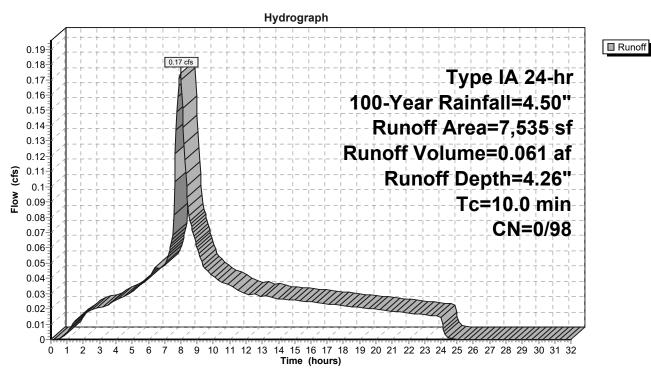
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 765

Summary for Subcatchment 119S: Basin 20


Runoff = 0.17 cfs @ 7.98 hrs, Volume= 0.061 af, Depth= 4.26"

Routed to Reach 149R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN [Description								
_		7,535	98 F	Paved roads w/curbs & sewers, HSG D								
_		7,535	98 ′	100.00% Impervious Area								
	Tc	Length	Slope	Velocity	Capacity	Description						
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	10.0					Direct Entry						

Subcatchment 119S: Basin 20

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 766

Summary for Subcatchment 120S: Basin 21

Runoff = 0.16 cfs @ 7.98 hrs, Volume= 0.056 af, Depth= 4.26"

Routed to Reach 148R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

A	rea (sf)	CN [Description								
	6,846	98 F	Paved roads w/curbs & sewers, HSG D								
	6,846	98 1	100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
10.0					Direct Entry,						

Subcatchment 120S: Basin 21

Type IA 24-hr 100-Year Rainfall=4.50"

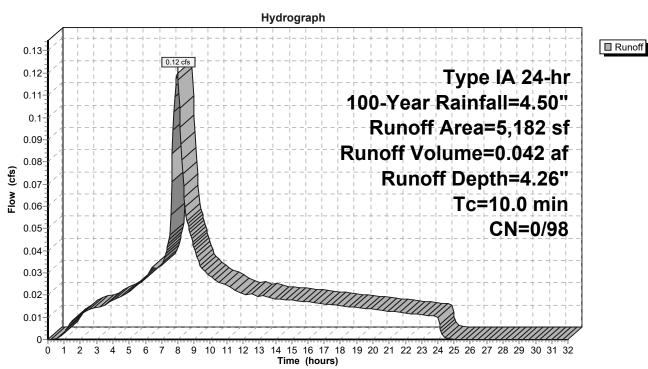
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 767

Summary for Subcatchment 121S: Basin 22


Runoff = 0.12 cfs @ 7.98 hrs, Volume= 0.042 af, Depth= 4.26"

Routed to Reach 154R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

	Α	rea (sf)	CN I	Description								
		5,182	98 I	Paved roads w/curbs & sewers, HSG D								
		5,182	98	00.00% Impervious Area								
	_				_							
	Tc	Length	Slope	Velocity	Capacity	Description						
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
_	10.0					Direct Entry.						

Subcatchment 121S: Basin 22

Type IA 24-hr 100-Year Rainfall=4.50"

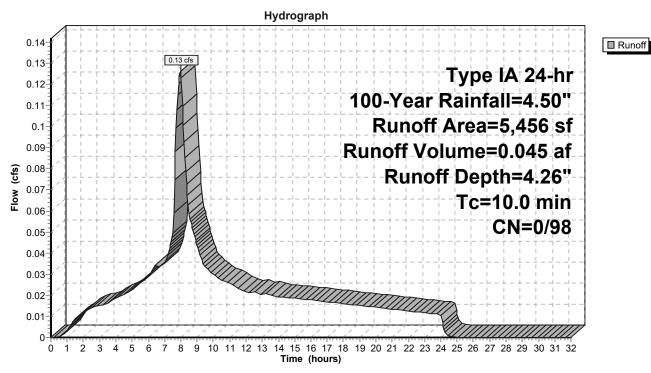
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 768

Summary for Subcatchment 122S: Basin 23


Runoff = 0.13 cfs @ 7.98 hrs, Volume= 0.045 af, Depth= 4.26"

Routed to Reach 155R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

A	rea (sf)	CN [Description							
	5,456	98 F	Paved roads w/curbs & sewers, HSG D							
•	5,456	98 1	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 122S: Basin 23

Type IA 24-hr 100-Year Rainfall=4.50"

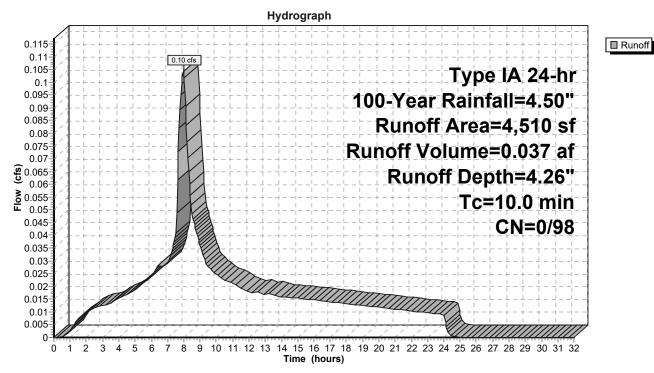
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 769

Summary for Subcatchment 123S: Basin 24


Runoff = 0.10 cfs @ 7.98 hrs, Volume= 0.037 af, Depth= 4.26"

Routed to Reach 162R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

	Area (sf)	CN	Description									
	4,510	98	Paved road	Paved roads w/curbs & sewers, HSG D								
	4,510	98	100.00% Impervious Area									
(mi	Гс Length n) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description							
10	.0				Direct Entry,							

Subcatchment 123S: Basin 24

Type IA 24-hr 100-Year Rainfall=4.50"

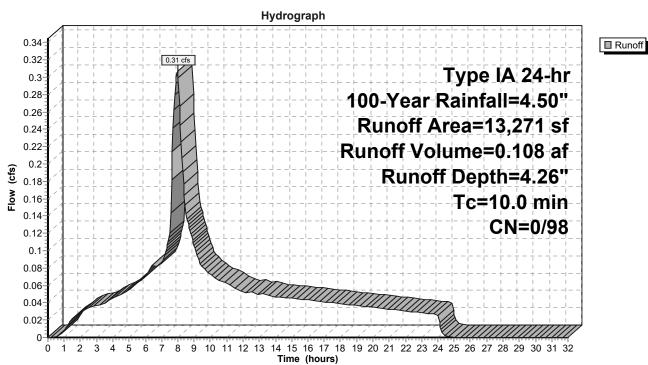
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 770

Summary for Subcatchment 124S: Basin 25


Runoff = 0.31 cfs @ 7.98 hrs, Volume= 0.108 af, Depth= 4.26"

Routed to Reach 163R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

Are	ea (sf)	CN [Description							
1	3,271	98 F	Paved roads w/curbs & sewers, HSG D							
1	3,271	98 1	100.00% Impervious Area							
Tc I (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 124S: Basin 25

Type IA 24-hr 100-Year Rainfall=4.50"

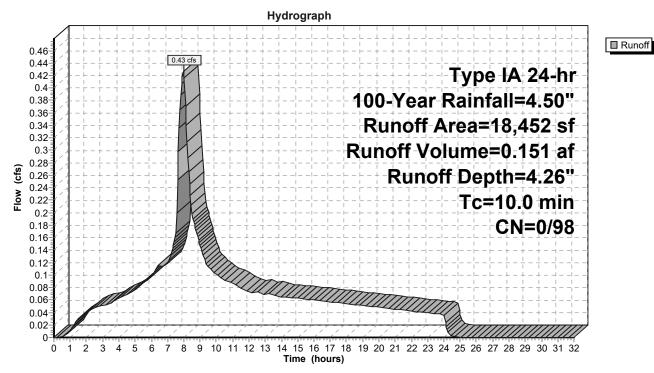
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 771

Summary for Subcatchment 125S: Basin 26


Runoff = 0.43 cfs @ 7.98 hrs, Volume= 0.151 af, Depth= 4.26"

Routed to Reach 165R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

A	rea (sf)	CN [Description							
	18,452	98 F	Paved roads w/curbs & sewers, HSG D							
•	18,452	98 ′	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
10.0					Direct Entry,					

Subcatchment 125S: Basin 26

Type IA 24-hr 100-Year Rainfall=4.50"

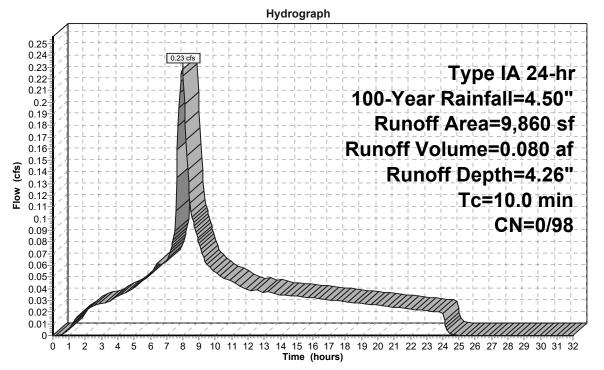
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 772

Summary for Subcatchment 126S: Alley Basin 1


Runoff = 0.23 cfs @ 7.98 hrs, Volume= 0.080 af, Depth= 4.26"

Routed to Reach 140R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

A	rea (sf)	CN [Description								
	9,860	98 F	Paved roads w/curbs & sewers, HSG D								
	9,860	98 1	100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
10.0					Direct Entry,						

Subcatchment 126S: Alley Basin 1

■ Runoff

Type IA 24-hr 100-Year Rainfall=4.50"

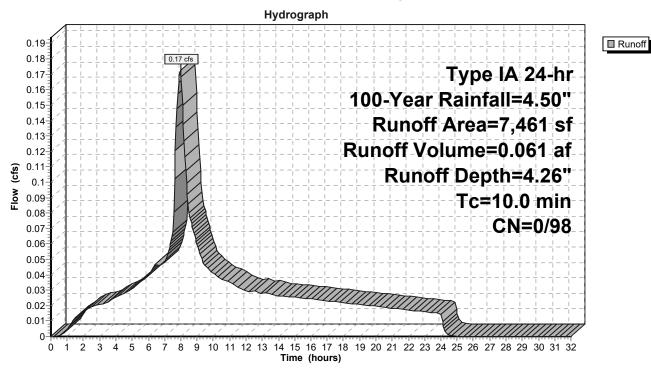
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 773

Summary for Subcatchment 127S: Alley Basin 2


Runoff = 0.17 cfs @ 7.98 hrs, Volume= 0.061 af, Depth= 4.26"

Routed to Reach 141R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

Α	rea (sf)	CN [Description								
	7,461	98 F	Paved roads w/curbs & sewers, HSG D								
	7,461	98 ′	100.00% Impervious Area								
Tc	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
10.0					Direct Entry.						

Subcatchment 127S: Alley Basin 2

Type IA 24-hr 100-Year Rainfall=4.50"

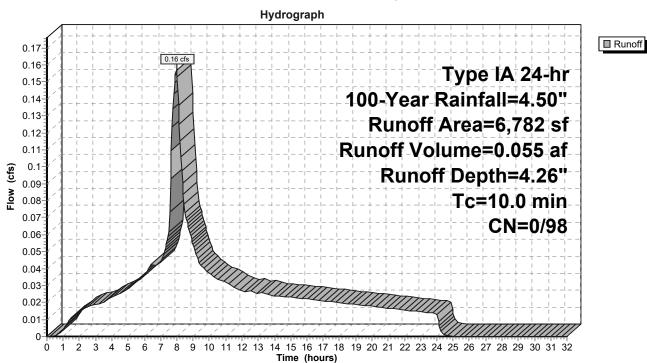
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 774

Summary for Subcatchment 128S: Alley Basin 3


Runoff = 0.16 cfs @ 7.98 hrs, Volume= 0.055 af, Depth= 4.26"

Routed to Reach 147R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

A	rea (sf)	CN [Description								
	6,782	98 F	Paved roads w/curbs & sewers, HSG D								
	6,782	98 ′	100.00% Impervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
10.0					Direct Entry,						

Subcatchment 128S: Alley Basin 3

Type IA 24-hr 100-Year Rainfall=4.50"

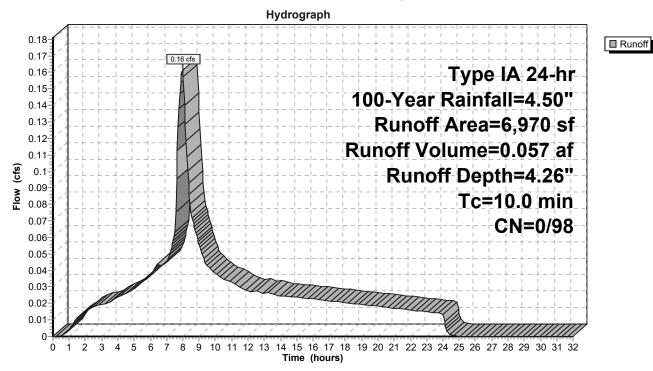
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 775

Summary for Subcatchment 129S: Alley Basin 4


Runoff = 0.16 cfs @ 7.98 hrs, Volume= 0.057 af, Depth= 4.26"

Routed to Reach 153R: 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

_	Α	rea (sf)	CN	Description		
		6,970	98	Paved road	s w/curbs &	& sewers, HSG D
		6,970	98	100.00% In	npervious A	rea
	_					-
	lc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.0		•	•		Direct Entry.

Subcatchment 129S: Alley Basin 4

Type IA 24-hr 100-Year Rainfall=4.50"

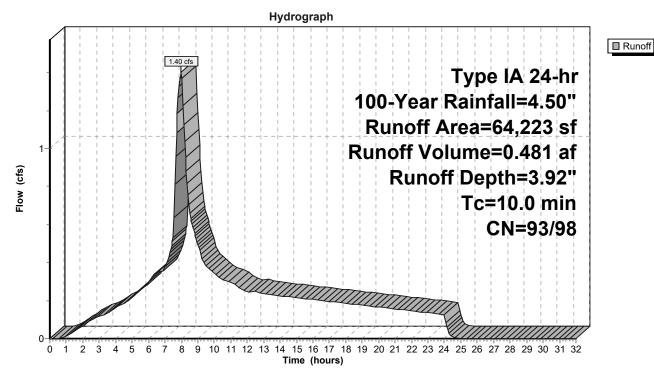
Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 776

Summary for Subcatchment 168S: Future Lots


Runoff = 1.40 cfs @ 7.98 hrs, Volume= 0.481 af, Depth= 3.92"

Routed to Reach 166R: Basin Future

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

	Area (sf)	CN	Description
4	39,915	93	70% Lot Coverage Weighted
	24,308	98	Paved roads w/curbs & sewers, HSG D
	64,223	95	Weighted Average
	39,915	93	62.15% Pervious Area
	24,308	98	37.85% Impervious Area
_	Tc Length (min) (feet)	Slo _l (ft/	
	10.0		Direct Entry,

Subcatchment 168S: Future Lots

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

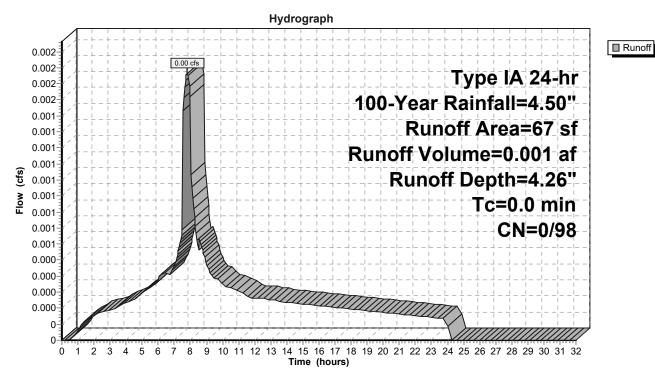
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 777

Summary for Subcatchment 169S: Swale 2

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 0.00 cfs @ 7.80 hrs, Volume=


0.001 af, Depth= 4.26"

Routed to Pond 54P: Stormwater Swale 2

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

 Area (sf)	CN	Description
67	98	Water Surface, HSG D
 67	98	100.00% Impervious Area

Subcatchment 169S: Swale 2

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

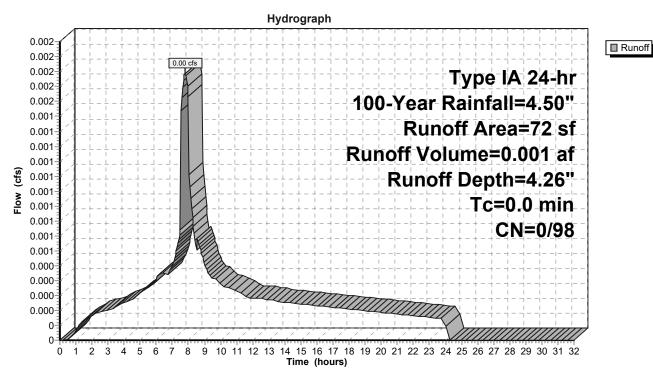
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 778

Summary for Subcatchment 170S: Swale 1

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 0.00 cfs @ 7.80 hrs, Volume= 0


0.001 af, Depth= 4.26"

Routed to Pond 60P: Stormwater Swale 1

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Type IA 24-hr 100-Year Rainfall=4.50"

Area (sf)	CN	Description
72	98	Water Surface, HSG D
72	98	100 00% Impervious Area

Subcatchment 170S: Swale 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

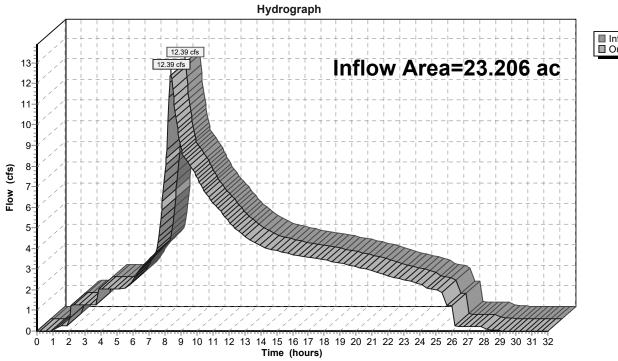
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 779

Summary for Reach 39R: Post-Construction Peak Flow

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 23.206 ac, 36.84% Impervious, Inflow Depth > 3.91" for 100-Year event

Inflow 7.565 af

Outflow 12.39 cfs @ 8.37 hrs, Volume= 7.565 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 39R: Post-Construction Peak Flow

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

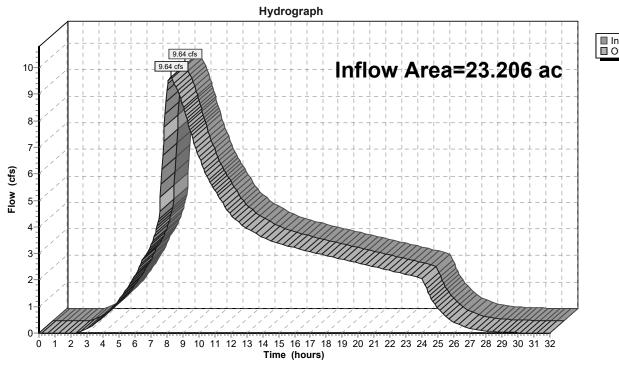
Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 780

Summary for Reach 42R: Pre-Construction Peak Flow

[40] Hint: Not Described (Outflow=Inflow)


Inflow Area = 23.206 ac, 0.00% Impervious, Inflow Depth > 3.30" for 100-Year event

Inflow = 9.64 cfs @ 8.24 hrs, Volume= 6.372 af

Outflow = 9.64 cfs @ 8.24 hrs, Volume= 6.372 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 42R: Pre-Construction Peak Flow

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

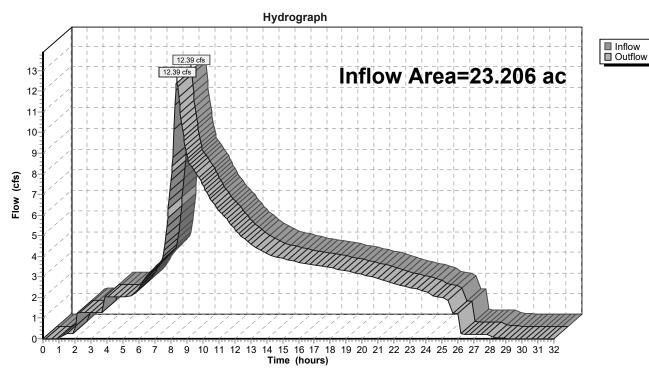
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 781

Summary for Reach 58R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 23.206 ac, 36.84% Impervious, Inflow Depth > 3.91" for 100-Year event


Inflow = 12.39 cfs @ 8.37 hrs, Volume= 7.565 af

Outflow = 12.39 cfs @ 8.37 hrs, Volume= 7.565 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 39R: Post-Construction Peak Flow

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 58R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

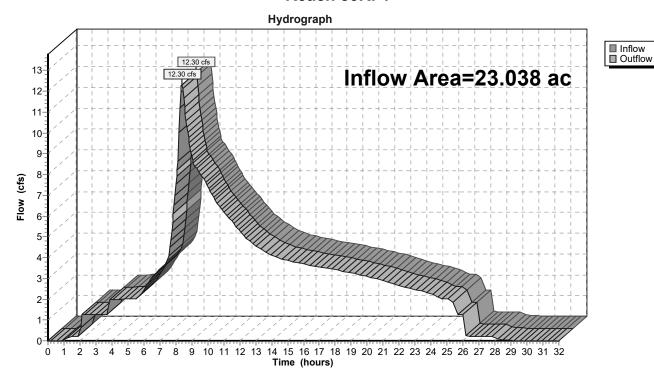
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 782

Summary for Reach 85R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 23.038 ac, 36.38% Impervious, Inflow Depth > 3.91" for 100-Year event


Inflow = 12.30 cfs @ 8.37 hrs, Volume= 7.506 af

Outflow = 12.30 cfs @ 8.37 hrs, Volume= 7.506 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 85R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

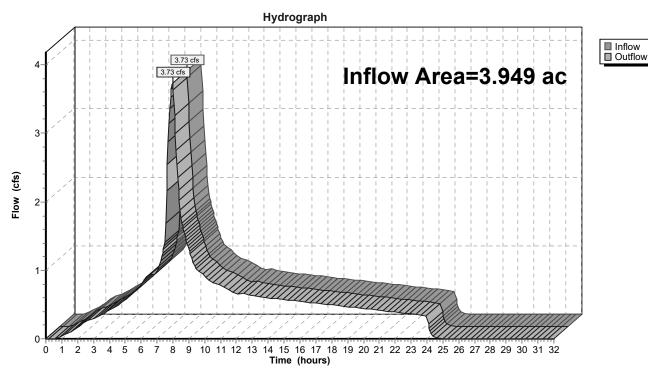
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 783

Summary for Reach 130R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.949 ac, 33.88% Impervious, Inflow Depth = 3.90" for 100-Year event


Inflow = 3.73 cfs @ 7.98 hrs, Volume= 1.282 af

Outflow = 3.73 cfs @ 7.98 hrs, Volume= 1.282 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 130R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

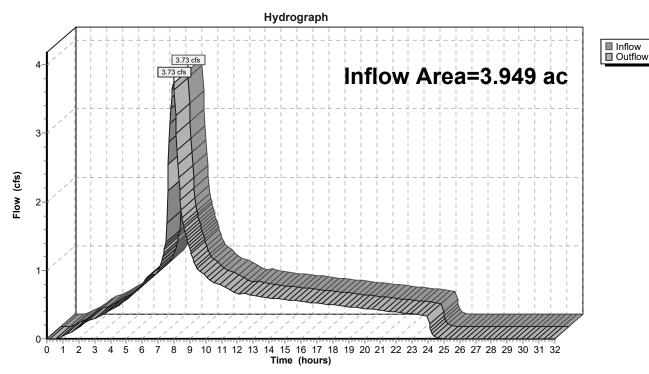
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 784

Summary for Reach 131R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.949 ac, 33.88% Impervious, Inflow Depth = 3.90" for 100-Year event


Inflow = 3.73 cfs @ 7.98 hrs, Volume= 1.282 af

Outflow = 3.73 cfs @ 7.98 hrs, Volume= 1.282 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 130R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 131R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

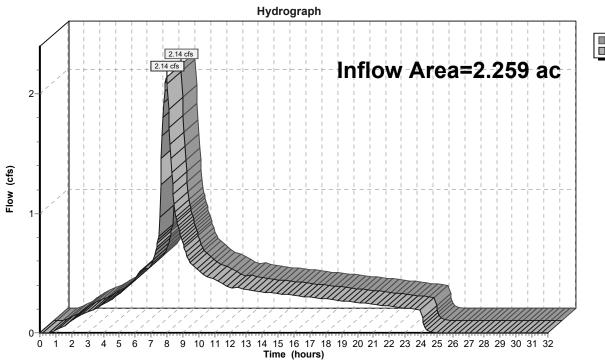
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 785

Summary for Reach 132R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.259 ac, 35.43% Impervious, Inflow Depth = 3.90" for 100-Year event


Inflow = 2.14 cfs @ 7.98 hrs, Volume= 0.735 af

Outflow = 2.14 cfs @ 7.98 hrs, Volume= 0.735 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 131R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 132R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

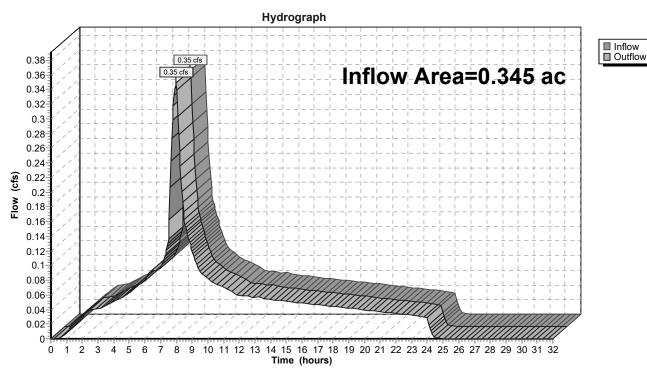
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 786

Summary for Reach 133R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.345 ac,100.00% Impervious, Inflow Depth = 4.26" for 100-Year event


Inflow = 0.35 cfs @ 7.98 hrs, Volume= 0.123 af

Outflow = 0.35 cfs @ 7.98 hrs, Volume= 0.123 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 132R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 133R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

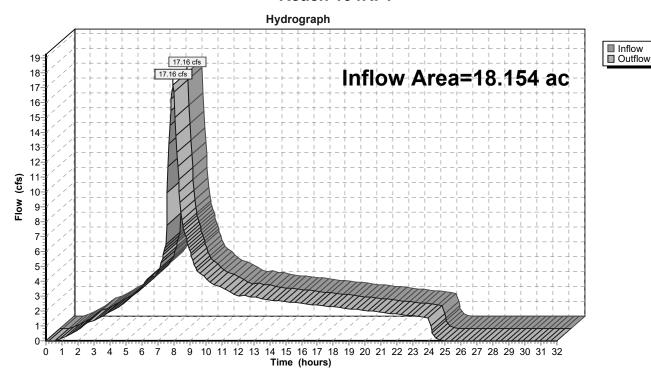
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 787

Summary for Reach 134R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 18.154 ac, 33.65% Impervious, Inflow Depth = 3.89" for 100-Year event


Inflow = 17.16 cfs @ 7.98 hrs, Volume= 5.892 af

Outflow = 17.16 cfs @ 7.98 hrs, Volume= 5.892 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 134R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

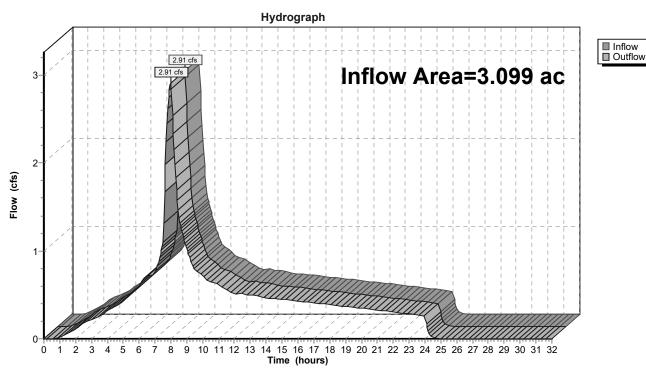
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 788

Summary for Reach 135R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 3.099 ac, 26.69% Impervious, Inflow Depth = 3.86" for 100-Year event


Inflow = 2.91 cfs @ 7.98 hrs, Volume= 0.996 af

Outflow = 2.91 cfs @ 7.98 hrs, Volume= 0.996 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 134R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 135R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

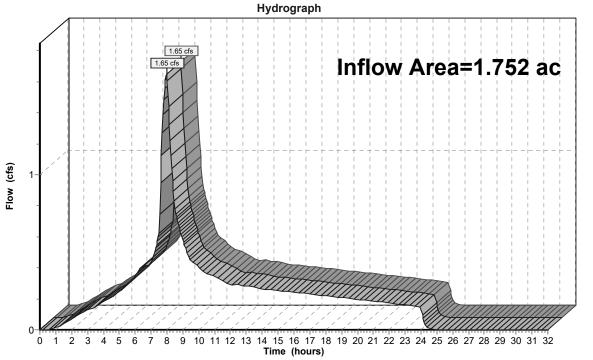
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 789

Summary for Reach 136R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.752 ac, 30.00% Impervious, Inflow Depth = 3.87" for 100-Year event


Inflow = 1.65 cfs @ 7.98 hrs, Volume= 0.566 af

Outflow = 1.65 cfs @ 7.98 hrs, Volume= 0.566 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 135R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 136R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

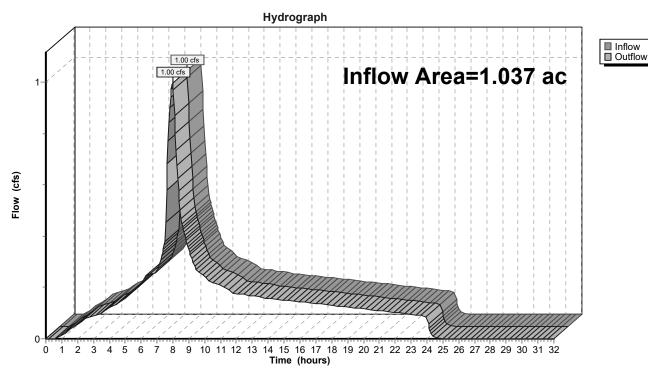
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 790

Summary for Reach 137R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.037 ac, 50.68% Impervious, Inflow Depth = 3.99" for 100-Year event


Inflow = 1.00 cfs @ 7.98 hrs, Volume= 0.345 af

Outflow = 1.00 cfs @ 7.98 hrs, Volume= 0.345 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 136R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 137R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

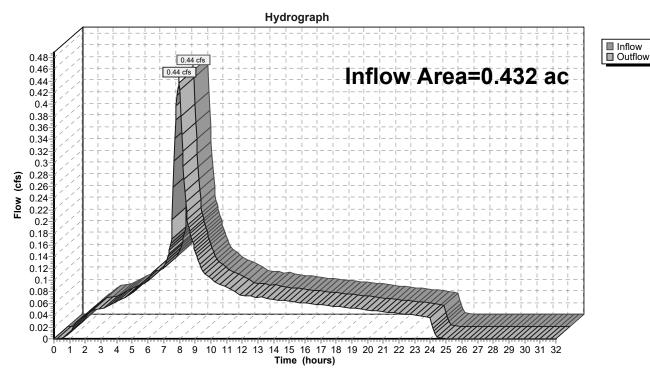
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 791

Summary for Reach 138R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.432 ac,100.00% Impervious, Inflow Depth = 4.26" for 100-Year event


Inflow = 0.44 cfs @ 7.98 hrs, Volume= 0.154 af

Outflow = 0.44 cfs @ 7.98 hrs, Volume= 0.154 af, Atten= 0%, Lag= 0.0 min

Routed to Pond 63P: Detention Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 138R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

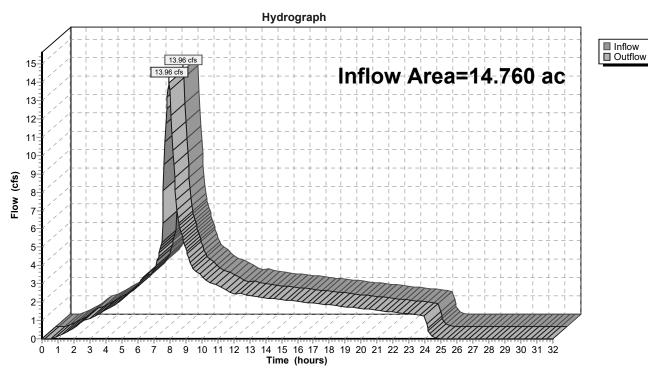
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 792

Summary for Reach 139R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.760 ac, 33.78% Impervious, Inflow Depth = 3.90" for 100-Year event


Inflow = 13.96 cfs @ 7.98 hrs, Volume= 4.792 af

Outflow = 13.96 cfs @ 7.98 hrs, Volume= 4.792 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 158R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 139R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

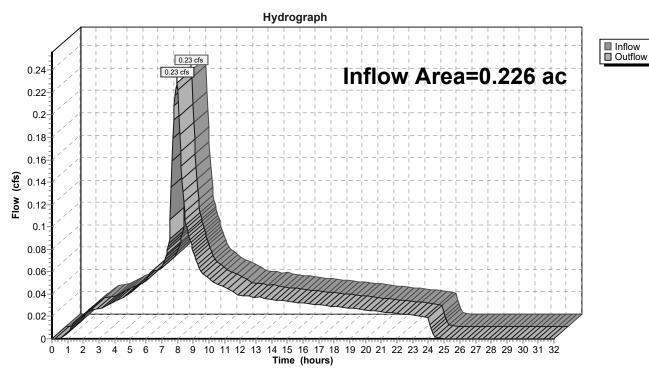
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 793

Summary for Reach 140R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.226 ac,100.00% Impervious, Inflow Depth = 4.26" for 100-Year event


Inflow = 0.23 cfs @ 7.98 hrs, Volume= 0.080 af

Outflow = 0.23 cfs @ 7.98 hrs, Volume= 0.080 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 138R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 140R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

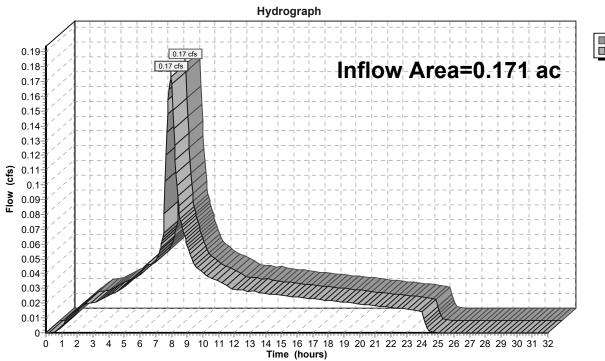
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 794

Summary for Reach 141R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.171 ac,100.00% Impervious, Inflow Depth = 4.26" for 100-Year event


Inflow = 0.17 cfs @ 7.98 hrs, Volume= 0.061 af

Outflow = 0.17 cfs @ 7.98 hrs, Volume= 0.061 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 139R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 141R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

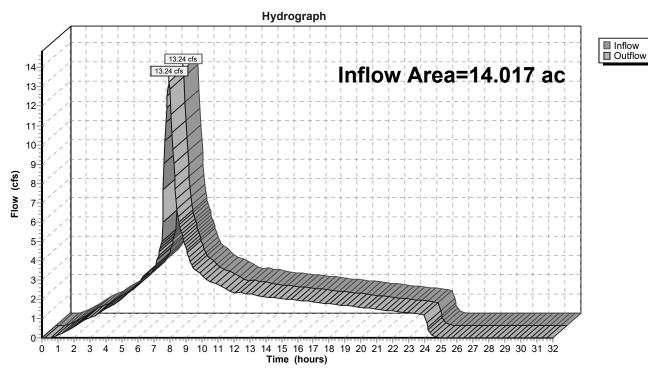
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 795

Summary for Reach 142R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.017 ac, 33.09% Impervious, Inflow Depth = 3.89" for 100-Year event


Inflow = 13.24 cfs @ 7.98 hrs, Volume= 4.546 af

Outflow = 13.24 cfs @ 7.98 hrs, Volume= 4.546 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 159R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 142R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

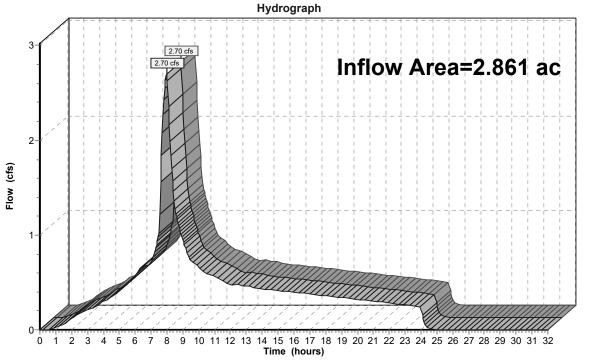
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 796

Summary for Reach 143R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.861 ac, 30.95% Impervious, Inflow Depth = 3.88" for 100-Year event


Inflow = 2.70 cfs @ 7.98 hrs, Volume= 0.925 af

Outflow = 2.70 cfs @ 7.98 hrs, Volume= 0.925 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 142R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 143R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

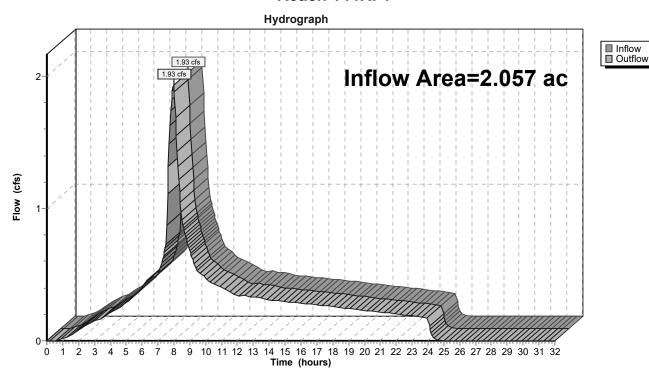
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 797

Summary for Reach 144R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.057 ac, 28.74% Impervious, Inflow Depth = 3.87" for 100-Year event


Inflow = 1.93 cfs @ 7.98 hrs, Volume= 0.663 af

Outflow = 1.93 cfs @ 7.98 hrs, Volume= 0.663 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 143R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 144R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

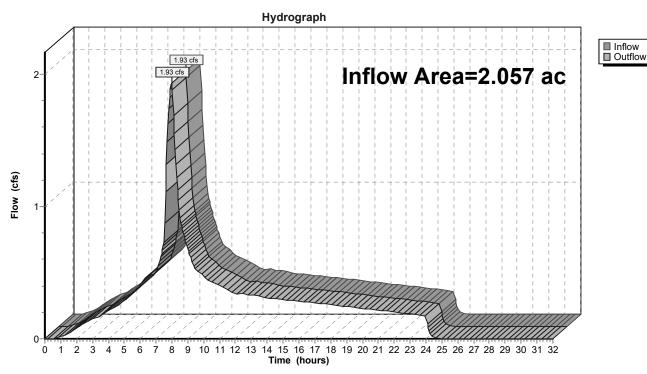
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 798

Summary for Reach 145R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.057 ac, 28.74% Impervious, Inflow Depth = 3.87" for 100-Year event


Inflow = 1.93 cfs @ 7.98 hrs, Volume= 0.663 af

Outflow = 1.93 cfs @ 7.98 hrs, Volume= 0.663 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 144R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 145R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 799

Summary for Reach 146R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 11.156 ac, 33.63% Impervious, Inflow Depth = 3.89" for 100-Year event


Inflow = 10.55 cfs @ 7.98 hrs, Volume= 3.621 af

Outflow = 10.55 cfs @ 7.98 hrs, Volume= 3.621 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 142R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 146R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

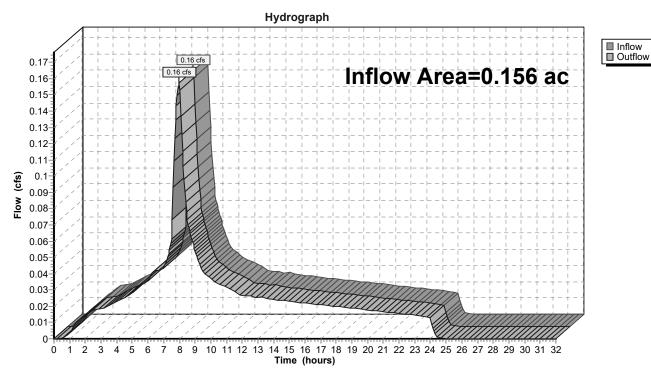
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 800

Summary for Reach 147R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.156 ac,100.00% Impervious, Inflow Depth = 4.26" for 100-Year event


Inflow = 0.16 cfs @ 7.98 hrs, Volume= 0.055 af

Outflow = 0.16 cfs @ 7.98 hrs, Volume= 0.055 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 146R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 147R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

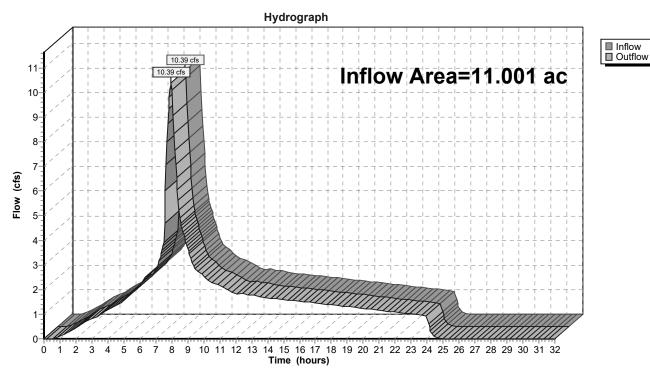
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 801

Summary for Reach 148R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 11.001 ac, 32.69% Impervious, Inflow Depth = 3.89" for 100-Year event


Inflow = 10.39 cfs @ 7.98 hrs, Volume= 3.566 af

Outflow = 10.39 cfs @ 7.98 hrs, Volume= 3.566 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 146R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 148R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

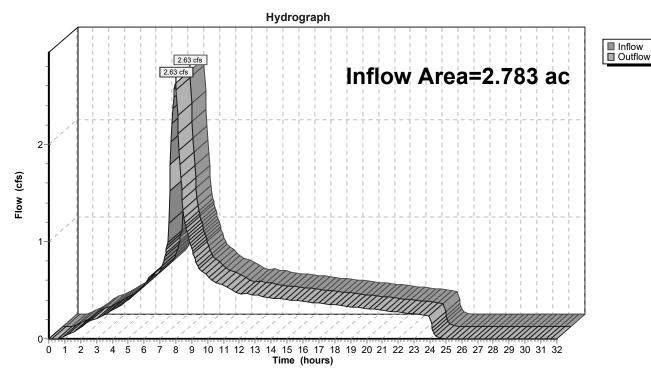
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 802

Summary for Reach 149R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.783 ac, 33.49% Impervious, Inflow Depth = 3.89" for 100-Year event


Inflow = 2.63 cfs @ 7.98 hrs, Volume= 0.903 af

Outflow = 2.63 cfs @ 7.98 hrs, Volume= 0.903 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 148R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 149R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

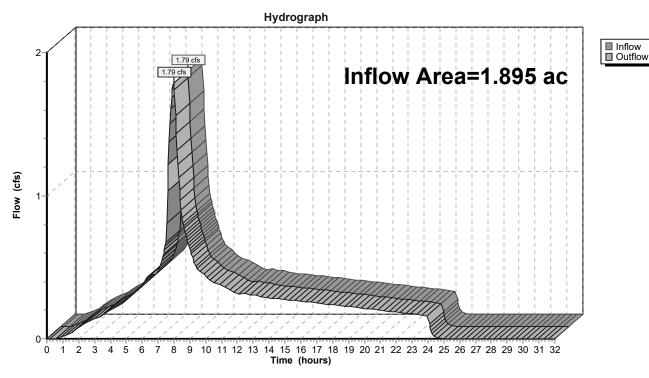
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 803

Summary for Reach 150R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.895 ac, 31.51% Impervious, Inflow Depth = 3.88" for 100-Year event


Inflow = 1.79 cfs @ 7.98 hrs, Volume= 0.613 af

Outflow = 1.79 cfs @ 7.98 hrs, Volume= 0.613 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 149R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 150R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

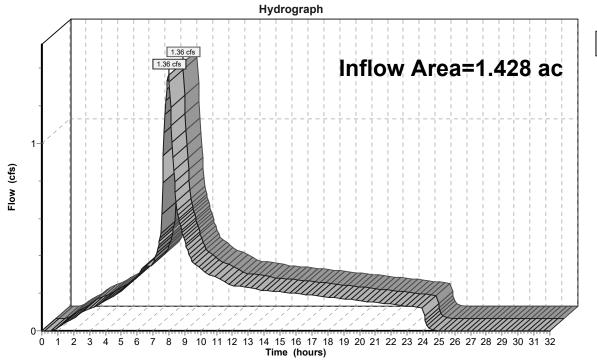
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 804

Summary for Reach 151R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.428 ac, 41.79% Impervious, Inflow Depth = 3.94" for 100-Year event


Inflow = 1.36 cfs @ 7.98 hrs, Volume= 0.469 af

Outflow = 1.36 cfs @ 7.98 hrs, Volume= 0.469 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 150R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 151R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

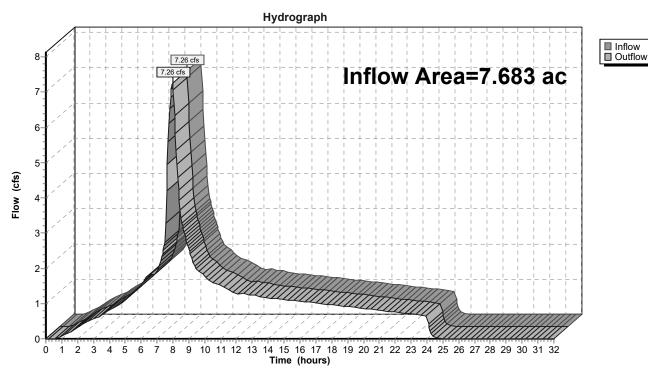
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 805

Summary for Reach 152R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 7.683 ac, 32.64% Impervious, Inflow Depth = 3.89" for 100-Year event


Inflow = 7.26 cfs @ 7.98 hrs, Volume= 2.490 af

Outflow = 7.26 cfs @ 7.98 hrs, Volume= 2.490 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 148R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 152R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

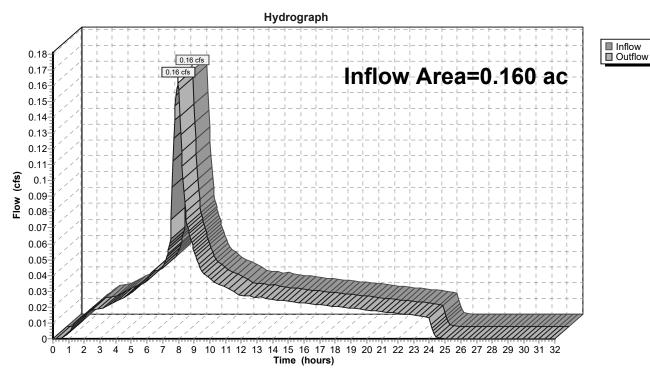
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 806

Summary for Reach 153R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 0.160 ac,100.00% Impervious, Inflow Depth = 4.26" for 100-Year event


Inflow = 0.16 cfs @ 7.98 hrs, Volume= 0.057 af

Outflow = $0.16 \text{ cfs } \overline{\textcircled{0}}$ 7.98 hrs, Volume= 0.057 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 152R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 153R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

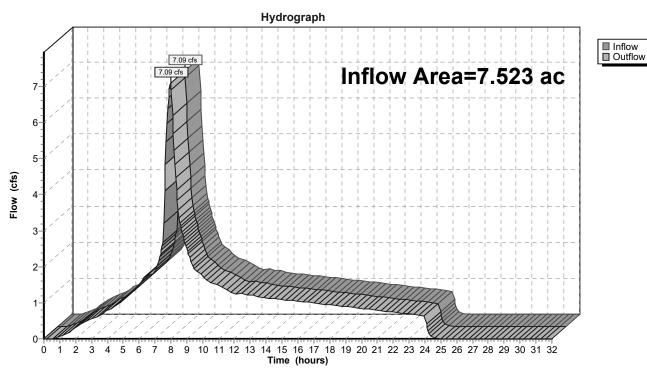
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 807

Summary for Reach 154R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 7.523 ac, 31.20% Impervious, Inflow Depth = 3.88" for 100-Year event


Inflow = 7.09 cfs @ 7.98 hrs, Volume= 2.433 af

Outflow = 7.09 cfs @ 7.98 hrs, Volume= 2.433 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 152R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 154R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

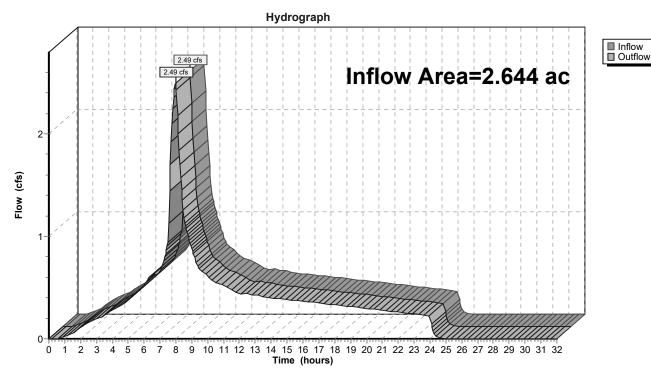
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 808

Summary for Reach 155R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 2.644 ac, 31.72% Impervious, Inflow Depth = 3.88" for 100-Year event


Inflow = 2.49 cfs @ 7.98 hrs, Volume= 0.856 af

Outflow = 2.49 cfs @ 7.98 hrs, Volume= 0.856 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 154R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 155R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

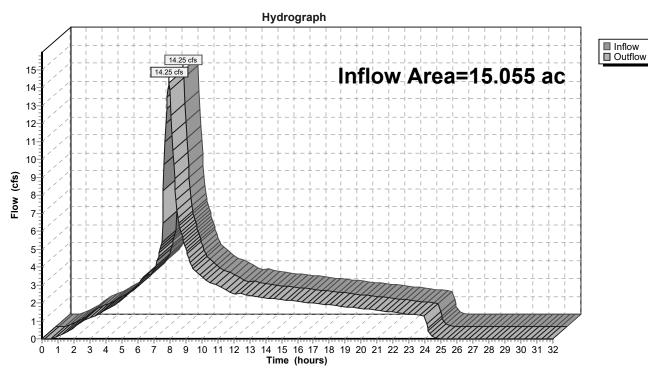
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 809

Summary for Reach 158R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 15.055 ac, 35.08% Impervious, Inflow Depth = 3.90" for 100-Year event


Inflow = 14.25 cfs @ 7.98 hrs, Volume= 4.897 af

Outflow = 14.25 cfs @ 7.98 hrs, Volume= 4.897 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 134R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 158R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

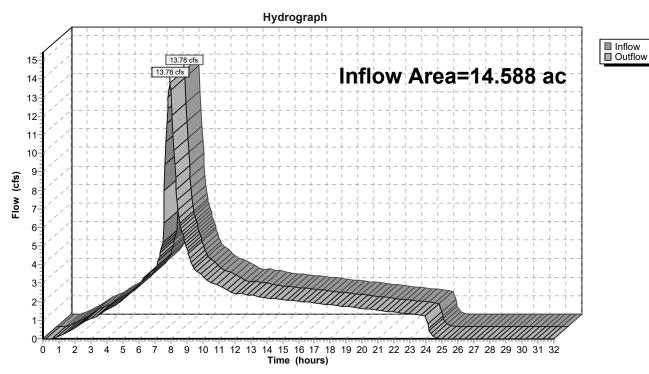
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 810

Summary for Reach 159R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 14.588 ac, 33.00% Impervious, Inflow Depth = 3.89" for 100-Year event


Inflow = 13.78 cfs @ 7.98 hrs, Volume= 4.731 af

Outflow = 13.78 cfs @ 7.98 hrs, Volume= 4.731 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 139R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 159R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

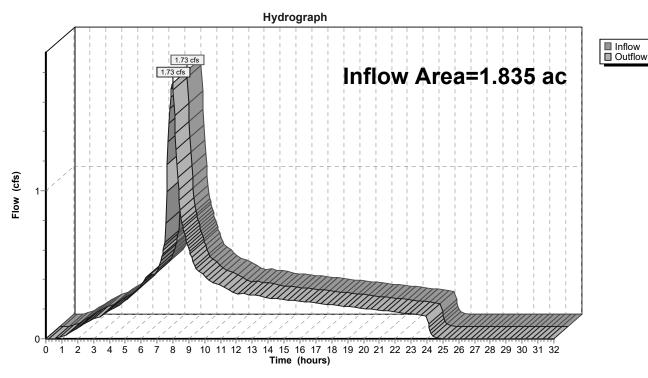
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 811

Summary for Reach 160R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.835 ac, 29.73% Impervious, Inflow Depth = 3.87" for 100-Year event


Inflow = 1.73 cfs @ 7.98 hrs, Volume= 0.592 af

Outflow = 1.73 cfs @ 7.98 hrs, Volume= 0.592 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 155R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 160R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

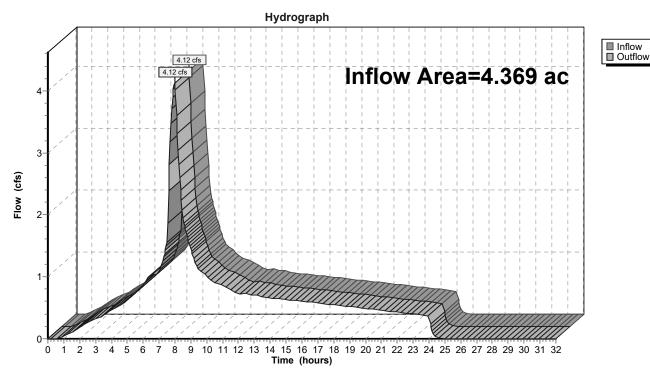
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 812

Summary for Reach 162R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.369 ac, 31.81% Impervious, Inflow Depth = 3.88" for 100-Year event


Inflow = 4.12 cfs @ 7.98 hrs, Volume= 1.414 af

Outflow = 4.12 cfs @ 7.98 hrs, Volume= 1.414 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 154R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 162R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

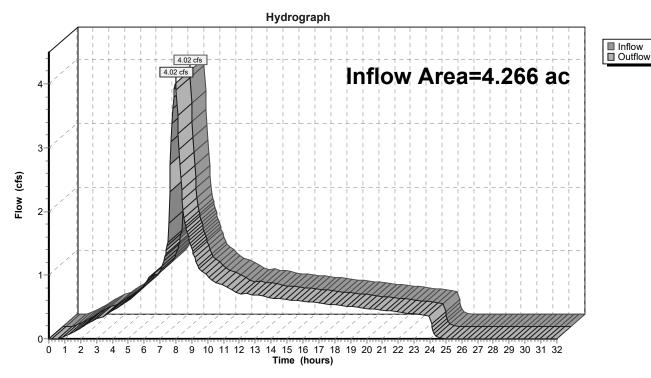
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 813

Summary for Reach 163R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 4.266 ac, 30.15% Impervious, Inflow Depth = 3.88" for 100-Year event


Inflow = 4.02 cfs @ 7.98 hrs, Volume= 1.378 af

Outflow = 4.02 cfs @ 7.98 hrs, Volume= 1.378 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 162R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 163R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

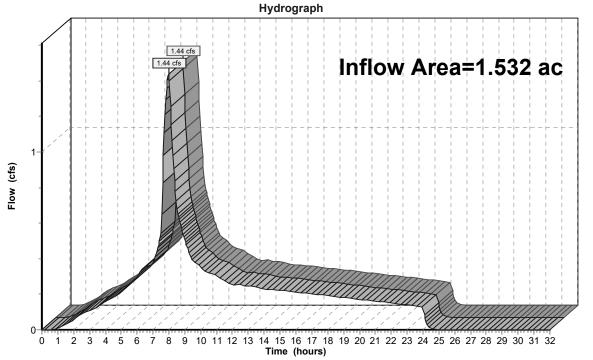
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 814

Summary for Reach 165R: 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 1.532 ac, 27.64% Impervious, Inflow Depth = 3.86" for 100-Year event


Inflow = 1.44 cfs @ 7.98 hrs, Volume= 0.493 af

Outflow = 1.44 cfs @ 7.98 hrs, Volume= 0.493 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 163R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 165R: 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

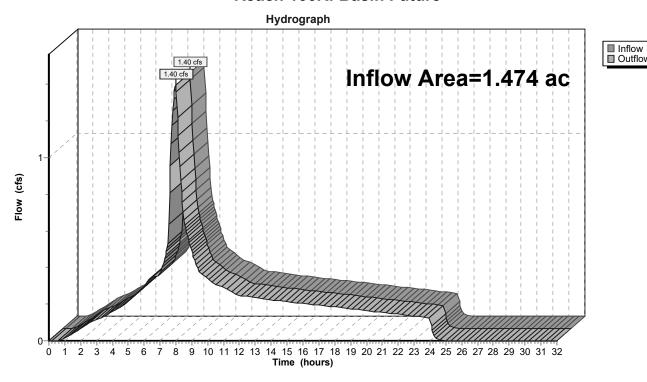
Page 815

Outflow

Summary for Reach 166R: Basin Future

[40] Hint: Not Described (Outflow=Inflow)

1.474 ac, 37.85% Impervious, Inflow Depth = 3.92" for 100-Year event Inflow Area =


Inflow 1.40 cfs @ 7.98 hrs, Volume= 0.481 af

Outflow 1.40 cfs @ 7.98 hrs, Volume= 0.481 af, Atten= 0%, Lag= 0.0 min

Routed to Reach 163R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Reach 166R: Basin Future

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 816

Summary for Pond 54P: Stormwater Swale 2

Inflow Area = 0.082 ac,100.00% Impervious, Inflow Depth = 4.26" for 100-Year event

Inflow = 0.08 cfs @ 7.98 hrs, Volume= 0.029 af

Outflow = 0.08 cfs @ 7.98 hrs, Volume= 0.029 af, Atten= 0%, Lag= 0.4 min

Primary = 0.08 cfs @ 7.98 hrs, Volume= 0.029 af

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Peak Elev= 222.44' @ 7.98 hrs Surf.Area= 185 sf Storage= 33 cf

Flood Elev= 223.30' Surf.Area= 192 sf Storage= 88 cf

Plug-Flow detention time= 29.1 min calculated for 0.029 af (100% of inflow)

Center-of-Mass det. time= 29.4 min (692.3 - 662.9)

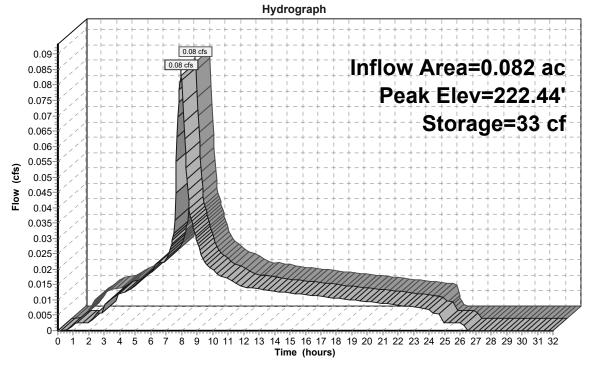
Volume	Inv	ert Avai	l.Storage	Storage Descripti	ion		
#1 #2	222.3 220.8		63 cf 10 cf		rregular)Listed be regular)Listed bel 10.0% Voids		
#3	220.0	05'	15 cf	-	(Irregular)Listed b	elow (Recalc)	
			88 cf	Total Available S	torage		
Elevatior (feet		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
222.30 223.30	_	59 67	33.0 34.0	0 63	0 63	59 93	
Elevatior (feet		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
220.80 222.30		67 67	34.0 34.0	0 101	0 101	67 118	
Elevatior (feet		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
220.05 220.80	_	58 58	33.0 33.0	0 44	0 44	58 83	
Device	Routing	In	vert Outl	et Devices			
	Primary Primary		.05' 4.0''	0 in/hr Perf Pipes Horiz. 4"Overflow ted to weir flow at l	w Pipe C= 0.600	ea	
#3	Primary	222	.30' 10.0	" Vert. 10" Outflo ted to weir flow at	w Pipe C= 0.600		

Primary OutFlow Max=0.08 cfs @ 7.98 hrs HW=222.44' TW=0.00' (Dynamic Tailwater)

—1=Perf Pipes (Exfiltration Controls 0.01 cfs)

-2=4"Overflow Pipe (Controls 0.00 cfs)

-3=10" Outflow Pipe (Orifice Controls 0.07 cfs @ 1.26 fps)


Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC
HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Printed 9/6/2023

Page 817

Pond 54P: Stormwater Swale 2

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 818

Summary for Pond 60P: Stormwater Swale 1

Inflow Area = 0.085 ac,100.00% Impervious, Inflow Depth = 4.26" for 100-Year event

Inflow = 0.09 cfs @ 7.98 hrs, Volume= 0.030 af

Outflow = 0.09 cfs @ 7.98 hrs, Volume= 0.030 af, Atten= 0%, Lag= 0.4 min

Primary = 0.09 cfs @ 7.98 hrs, Volume= 0.030 af

Routed to Reach 58R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs

Peak Elev= 222.09' @ 7.98 hrs Surf.Area= 195 sf Storage= 35 cf

Flood Elev= 222.95' Surf.Area= 204 sf Storage= 93 cf

Plug-Flow detention time= 29.5 min calculated for 0.030 af (100% of inflow)

Center-of-Mass det. time= 29.6 min (692.6 - 662.9)

Volume	Inve	ert Avai	l.Storage	Storage Descripti	on		
#1 #2	221.9 220.4	-	67 cf 11 cf		rregular)Listed bel regular)Listed bel 10.0% Voids		
#3	219.7	70'	16 cf		Irregular)Listed be	elow (Recalc)	
			93 cf	Total Available S	torage		
Elevation (feet)		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
221.95 222.95		62 72	34.0 36.0	0 67	0 67	62 99	
Elevation (feet)		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
220.45 221.95		72 72	36.0 36.0	0 108	0 108	72 126	
Elevation (feet)		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
219.70 220.45		60 60	34.0 34.0	0 45	0 45	60 86	
Device R	Routing	In	vert Outl	et Devices			
	rimary rimary	219 222	.70' 4.0"	0 in/hr Perf Pipes Horiz. 4"Overflo v ted to weir flow at l		ea	
#3 P	rimary	221	.95' 10.0		w Pipe C= 0.600		

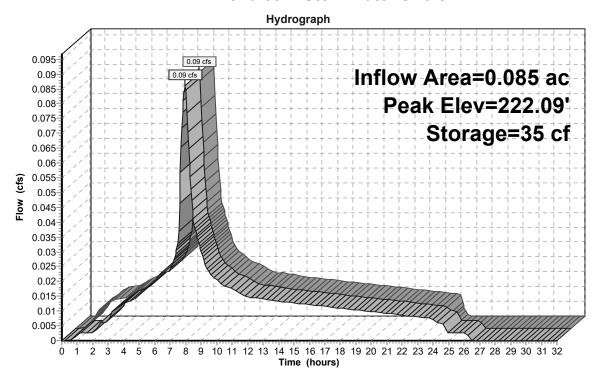
Primary OutFlow Max=0.09 cfs @ 7.98 hrs HW=222.09' TW=0.00' (Dynamic Tailwater)

1=Perf Pipes (Exfiltration Controls 0.01 cfs)

-2=4"Overflow Pipe (Controls 0.00 cfs)

-3=10" Outflow Pipe (Orifice Controls 0.08 cfs @ 1.27 fps)

Type IA 24-hr 100-Year Rainfall=4.50"


Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 819

Pond 60P: Stormwater Swale 1

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

Page 820

Summary for Pond 63P: Detention Pond

Inflow Area = 23.038 ac, 36.38% Impervious, Inflow Depth = 3.91" for 100-Year event

Inflow 21.86 cfs @ 7.98 hrs, Volume= 7.507 af

8.37 hrs, Volume= Outflow 12.30 cfs @ 7.506 af, Atten= 44%, Lag= 23.6 min

Primary 12.30 cfs @ 8.37 hrs, Volume= 7.506 af

Routed to Reach 85R: 1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-32.00 hrs, dt= 0.05 hrs Peak Elev= 224.51' @ 8.37 hrs Surf.Area= 47,350 sf Storage= 60,024 cf

Flood Elev= 225.50' Surf.Area= 48,838 sf Storage= 80,897 cf

Plug-Flow detention time= 107.5 min calculated for 7.494 af (100% of inflow)

Center-of-Mass det. time= 107.6 min (797.7 - 690.1)

Volume	Invert	Avail.Storage	Storage Description
#1	221.50'	75,859 cf	Open Storage (Irregular)Listed below (Recalc)
#2	220.00'	3,288 cf	Growing Medium (Irregular)Listed below (Recalc)
			32,879 cf Overall x 10.0% Voids
#3	219.00'	1,750 cf	Rock Chamber (Prismatic)Listed below (Recalc)
			5,000 cf Overall x 35.0% Voids

	8	0,897 cf	Total Available Stor	rage	
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
221.50	16,108	696.8	0	0	16,108
222.50	17,511	717.0	16,805	16,805	18,488
223.50	18,943	738.5	18,222	35,027	21,082
224.50	20,410	754.7	19,672	54,699	23,147
225.50	21,919	770.9	21,160	75,859	25,257
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
			(64516 1661)		
//U UU	21 919	770.9	0	0	21 919
220.00 221.50	21,919 21,919	770.9 770.9	0 32,879	0 32,879	21,919 23,075
	,	770.9 Inc		32,879 tore	•
221.50 Elevation	21,919 Surf.Area	770.9 Inc	32,879 .Store Cum.S	32,879 tore	•
221.50 Elevation (feet)	21,919 Surf.Area (sq-ft)	770.9 Inc	.Store Cum.Sic-feet) (cubic-feet)	32,879 tore <u>eet)</u>	•

Device	Routing	Invert	Outlet Devices
#1	Primary	219.00'	24.0" Round 24" Pipe
	•		L= 100.0' CPP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 219.00' / 218.80' S= 0.0020 '/' Cc= 0.900
			n= 0.010, Flow Area= 3.14 sf
#2	Device 1	219.00'	2.000 in/hr 4" Perf Pipes over Surface area
#3	Device 1	221.85'	6.0" Vert. 2x6" Orifice X 2.00 C= 0.600
			Limited to weir flow at low heads
#4	Device 1	222.78'	6.0" Vert. 6" Orifice C= 0.600 Limited to weir flow at low heads
#5	Device 1	222.95'	6.0" Vert. 6" Orifice C= 0.600 Limited to weir flow at low heads

Type IA 24-hr 100-Year Rainfall=4.50"

Prepared by A&O Engineering LLC

Printed 9/6/2023

HydroCAD® 10.20-2g s/n 04993 © 2022 HydroCAD Software Solutions LLC

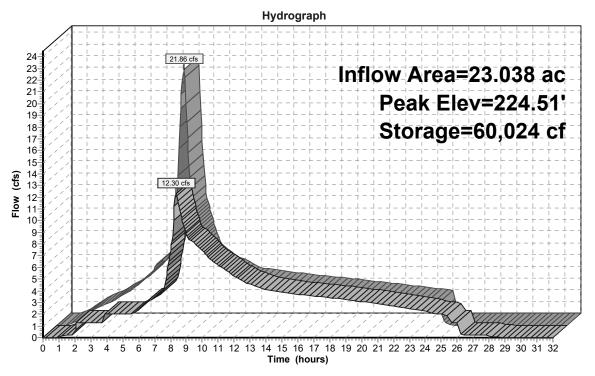
Page 821

#6	Device 1	223.25'	4.0" Vert. 4" Orifice C= 0.600 Limited to weir flow at low heads
#7	Device 1	223.55'	4.0" Vert. 4" Orifice C= 0.600 Limited to weir flow at low heads
#8	Device 1	223.77'	4.0" Vert. 2x4" Orifice X 2.00 C= 0.600
			Limited to weir flow at low heads
#9	Device 1	224.35'	48.0" x 48.0" Horiz. 48" Overflow C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=12.26 cfs @ 8.37 hrs HW=224.51' TW=0.00' (Dynamic Tailwater)

1=24" Pipe (Passes 12.26 cfs of 28.35 cfs potential flow)
2=4" Perf Pipes (Exfiltration Controls 2.19 cfs)
3=2x6" Orifice (Orifice Controls 2.94 cfs @ 7.48 fps)
4=6" Orifice (Orifice Controls 1.15 cfs @ 5.86 fps)

-5=6" Orifice (Orifice Controls 1.08 cfs @ 5.52 fps)


-6=4" Orifice (Orifice Controls 0.44 cfs @ 5.04 fps)

-7=4" Orifice (Orifice Controls 0.37 cfs @ 4.30 fps)

-8=2x4" Orifice (Orifice Controls 0.64 cfs @ 3.65 fps)

-9=48" Overflow (Weir Controls 3.44 cfs @ 1.32 fps)

Pond 63P: Detention Pond

Geotechnical Report

Meadowlark Subdivision Lochner Road Albany, Oregon

October 29, 2020

Prepared for:

A & O Engineering, LLC

Prepared by:

Scott Morris, PE A & O Engineering, LLC 380 Q Street, #200 Springfield, Oregon 97477

October 29, 2020

Re: Meadowlark Subdivision

Lochner Road Albany, Oregon

Subject: Geotechnical Report

Project No. 2205031

Dear Mr. Morris:

FEI Testing and Inspection, Inc. has completed the requested geotechnical services for the proposed Meadowlark Subdivision on Lochner Road in Albany, Oregon. This report includes a description of our work, a discussion of site conditions and a summary of geotechnical recommendations for design and construction of the proposed improvements. The site includes alluvial soil conditions that include an upper loosely structured topsoil layer followed by silt and clay. The improvements are expected to require reprocessing and compaction of the upper soft soils throughout the improvement area. We believe the site is adequate to support the planned grading using conventional construction methods, provided the site work is completed in accordance with our recommendations. Geotechnical recommendations for design of foundations and considerations for earthwork at the site are provided herein.

We trust this information meets your current needs. It has been a pleasure assisting you with this phase of your project. Please call if you have any questions or need additional assistance.

Sincerely,

FEI Testing and Inspection, Inc.

Mel McCracken, PE, GE Geotechnical Engineer

Ml Mel

Geotechnical Report Meadowlark Subdivision Lochner Road Albany, Oregon

PROJECT INFORMATION

A new residential subdivision development is being considered at a currently vacant portion of a parcel on the east side of Lochner Road in Albany, Oregon. The site location is shown on the Vicinity Map (Figure 1), included in Appendix A. The parcel includes an existing residential structure as well as several outbuildings that will remain outside the limits of the proposed development. The development is expected to include ±92 residential lots. The development will also include construction of residential streets and associated utilities. Minor site grading using on-site soils is expected for construction of the infrastructure improvements over the slightly sloping terrain.

FEI Testing and Inspection is providing geotechnical engineering services at the request of A & O Engineering, LLC for the proposed improvements. Our work has included observation of subsurface exploration, laboratory testing, geotechnical analysis work and preparation of this summary report. A & O Engineering, LLC is providing civil design services for the proposed development.

FIELD EXPLORATION

The field exploration focused on characterization of the upper soils at the site that will be involved in the proposed site grading. We visited the site on October 8, 2020 to observe subsurface explorations. During our visit we conducted a brief surface reconnaissance of the proposed development area. The subsurface exploration included digging eleven test pits using a small excavator. The approximate locations of the test pits are shown on the attached Site Plan (Figure 2, Appendix A). The test pits were advanced to a maximum depth of ±11 feet. The soil profiles in each test pit were logged and samples were collected from some locations. The test pits were backfilled with excavated material and the surface graded relatively smooth. The soil profiles are summarized on the narrative test pit logs attached in Appendix B. Our surface and subsurface observations are summarized in the following sections.

SITE CONDITIONS

Surface Conditions:

The bulk of the parcel is elevated slightly above Lochner Road. The southwest portion of the parcel is lower with Oak Creek located immediately to the south of the site. An existing power line and utility easement is located along the north portion of the parcel. We understand that portions of the parcel, including the area east of the development

limits include wetlands. The bulk of the proposed development area is covered with grass and has been used for agricultural purposes. An existing gravel drive crosses the site. The residential structure and outbuildings include some landscaping and trees along the south side of the development area.

Subsurface Conditions:

Subsurface conditions were evaluated using the test pit explorations. The approximate test pit locations are shown on the Site Plan (Figure 2, Appendix A). Ground water was not observed in any of the excavations; however, the exploration work was completed during dry weather months and we anticipate that the site includes relatively shallow ground water levels during wet portions of the year. The adjoining wetland areas suggest that surface water may perch on some of the upper silt and clay.

Individual test pit summaries for the exploration completed are included in Appendix B (TP-1 through TP-11). Subsurface conditions observed at the site as part of our field exploration typically included the following strata:

Topsoil.

The exploration across the site encountered topsoil in the upper ±1 to 1.5 feet of the soil profile. The topsoil typically consists of soft and loosely structured silt with some clay and organics. The upper topsoil is typically brown, dry to slightly moist and has low plasticity with fine roots. The topsoil layer appears to correspond with the plow depth of the field.

Clayey Silt/Silty Clay.

The upper topsoil grades to medium stiff clayey silt to silty clay. The silt and clay include trace organics at some locations and is grey and dry to slightly moist. The clay and silt typically has medium plasticity with some variability in plasticity with location.

Clayey Silt with sand.

The upper silt and clay grades to predominately silt that includes some sand below depths of 2 to 3.4 feet. The clayey silt with sand is moist grading to very moist and is medium stiff. The sand content also typically increases with depth.

LABORATORY TESTING

Laboratory testing was completed on selected samples from the field exploration. Organic content tests were completed on samples S-1-1 and S-10-1 and suggest that these upper soils contain 6% and 4% organics, respectively. Atterberg limits testing (Figure 3, Appendix A) suggests that the silt and clay vary from low to medium plasticity. A moisture density relationship test (ASTM D 698) was completed on sample S-1-1 (Figure 4, Appendix A). The test suggests that the upper soils at the site are expected to have an optimum moisture content of ±20% and a maximum dry density of ±98 pcf. We also completed an expansion index test on the sample from S-1-1 to evaluate the shrink/swell susceptibility of the upper soils across the site. The expansion index was

completed on a recompacted sample of the soil at an initial water content of 14%. An expansion index of 9 was recorded for the sample suggesting the upper soils have very low expansion potential.

INFILTRATION TESTING

The proposed site improvements will include construction of new storm water infrastructure that will infiltrate into the soils. The stormwater infiltration system may include features at various points throughout the site. Five locations were identified for testing (P-1 through P-5). The testing was typically completed at depths of ±3.5 to 4 feet below existing grades, except at P-5, which is located in an area of lower lying terrain.

Infiltration testing was conducted at five locations across the site to estimate the hydraulic conductivity of the soil. The testing was completed based on the Falling Head Percolation Test Procedure, which is used for stormwater design by several surrounding municipalities. The approximate test locations (P-1 through P-5) are shown on Figure 2. Our excavation typically encountered a soil profile that includes an upper topsoil stratum followed by medium stiff silty clay grading to clayey silt with some sand. The soils at each of the test sites were presoaked following excavation.

The testing was completed after a 24-hour presoak period. Testing was completed under low head conditions (<6-inch water depth) and was repeated to establish the estimated steady state infiltration rate for the soils at the base of the excavation. Measured infiltration rates are summarized on Table 1. We recommend that a factor of safety of at least 2 be applied to the measured rates for use in estimating actual infiltration rates for design of the storm system.

Table 1. Infiltration Testing Summary

Test	Test	Soil Type	Measured
Number	Depth		Infiltration
	(inches)		Rate
			(in./hr.)
P-1	47	Clayey Silt with sand	2.0
P-2	42	Clayey Silt with sand	1.0
P-3	42	Silty Clay with sand	0.2
P-4	49	Clayey Silt with sand	2.0
P-5	25	Silty Clay	0.1

DISCUSION OF GEOTECHNICAL CONSIDERATIONS

The site terrain suggest that the infrastructure development will include roadways constructed in areas of cut and fill. Finished site grades are expected to be relatively close to the existing site grades with permanent cut and fill depths expected to typically be ±6 feet or less. Geotechnical issues including grading requirements and limitations, foundation embedment and drainage parameters will need to be addressed for the

October 29, 2020 Page 4 of 9

residential development on the parcels. Based on the anticipated earthwork and soft conditions in the upper portion of the soil profile, we have assumed that all roadway and residential lot areas will be prepared by stripping of the upper organic topsoil and compaction of the site soils. A brief summary of the geotechnical evaluation conducted for the proposed improvements are provided in the following sections.

Weather Conditions:

Development of the site will require site grading using on-site materials. The use of onsite soils will only be practical during dry weather conditions when the moisture content of the silt and clay soils can be controlled by drying or wetting. The weather conditions are expected to have significant impacts on the site preparation work since the upper soils throughout the site consist of silt and clay.

Shallow ground water conditions and perched water at the surface are expected during winter and spring months. Therefore, excavation and site grading work will need to account for the required site drainage. We anticipate that the improvements will include construction of a storm water system that does not rely exclusively on infiltration into the existing soils.

General Earthwork:

Site preparation work will require removal of the upper portion of the topsoil, which contains the bulk of the organics. We anticipate that the stripping would remove the upper 4 to 6 inches of the soil and sod surface and stockpile the material outside the grading limits of the current work. In addition, we anticipate that the site preparation work will require removal of any debris or high plastic clay soils from required excavations. We anticipate that these unsuitable soils will be hauled from the site.

The site preparation in all areas that are close to required street grades or require fill should include scarification, moisture conditioning and compaction of the upper 12 to 18 inches of the soil. Embankment fills constructed over the slightly sloping terrain may require some benching of the fill into the existing slope. We anticipate that processing of the subgrade soils will include compacting the surface using a large pad foot or kneading roller with the soils near optimum moisture content. Select on-site soils may be used for embankment fill. We have assumed that high plastic clay soils, where encountered, would not be used in the required earthwork at the site and would be hauled from the development area. The select on-site soils consist of low to medium plastic clay and silt that have a plasticity index of 20 or less. These soils are moisture sensitive and will require control of the soil moisture to within ±3% of the optimum value. Use of selected on-site fill may be placed and compacted in lifts over the approved compacted subgrade soils for structural fill. Use of on-site soils will only be practical during dry weather months at the site. Therefore, we have assumed that the site preparation work will be scheduled to be completed during summer months.

Grading at the site should be completed using cut and fill slope configurations of 2(horizontal):1(vertical) or shallower. Grading at the toe of cut slopes may need to include an interceptor drain to collect surface runoff and direct it to the storm system.

October 29, 2020 Page 5 of 9

We anticipate that the grading plan will include measures to accommodate relatively shallow perched water conditions over the compacted fine-grained soils through the wet weather months.

Final grading will also include erosion control measures. We anticipate that the silt and clay will be susceptible to surface erosion, particularly as exposed in larger cut or fill slopes. Therefore, use of mulch and surface vegetation should be planned at the site.

Drainage:

The site improvements should include drainage considerations. Roadway construction will include construction of a storm system to collect surface water. Additional drainage features may be required at the toe of cut or fill slopes to collect and direct surface water. We have assumed that the residential development will also be sloped to promote surface drainage away from the structures and accommodate storm run-off. Due to poor permeability of the compacted soils at the site, we anticipate that perimeter foundation drains and retaining wall drains will be required.

Residential Bearing Capacity:

We understand that residential foundation preparation will be completed after the initial site grading. We conducted bearing capacity analysis for continuous 15-inch wide footings underlain by compacted crushed rock followed by firm, compacted silt or clay subgrade. Our analysis considered strength parameters estimated based on estimated stiffness and the assumption that a leveling course of crushed rock would be used beneath footings. The footings constructed adjacent to moderate slopes are expected to have a minimum embedment of 1.5 feet below grade and a minimum set-back of 5 feet from slopes. Our calculations suggest that using an allowable bearing capacity of 1,500 psf for the footings should provide a factor of safety greater than 3, which is acceptable.

Soil Expansion Potential:

The site includes limited areas of clay soils that have medium plasticity. These soils are expected to have potential for minor to moderate seasonal shrink/swell with variation in moisture content. Seasonal shrink/swell of these soils can result in long-term cracking faulting and differential movement of foundations and slabs. Therefore, we believe that some additional consideration of the soils is warranted during design and construction at the site. Measures to maintain the soil moisture relatively consistent throughout the year should be used at the site. Measures will also be required during construction to maintain moisture in the silt and clay subgrade. The bulk of the soils at the site and the materials that will be used for site grading consist of low plastic silt that have very low shrink/swell potential.

Settlement:

Considering the relatively light foundation loads and stiffness of the underlying alluvial soil, we do not believe that settlement will be a significant issue if the site preparation work is completed in accordance with our recommendations. Therefore, total and differential movements of ± 0.75 inches should be assumed.

Pavements:

The pavement areas will need to support construction equipment throughout site grading and construction of utilities. Therefore, we anticipate that the pavement areas would be prepared by moisture conditioning and compacting the subgrade soils in a similar manner as the lot areas. It should be noted that the compacted subgrade at the site will be sensitive to softening during wet weather, particularly under heavy construction traffic. Therefore, if the construction schedule is unable to accommodate paving of the streets by the end of October, it may be necessary to use a thicker base section and a separation geotextile to accommodate limited construction traffic into the fall months.

CONCLUSIONS AND RECOMMENDATIONS

Based on our observations, knowledge of the site and the proposed improvements, FEI Testing and Inspection believes that it will be practical to construct the proposed infrastructure improvements and residential foundations using typical construction methods. We understand that the improvements will be scheduled for construction during summer months. We have provided the following recommendations for design and construction of the improvements.

Materials:

- 1. Aggregate base as defined in this report should consist of ¾ or 1-inch minus, well graded crushed rock. The rock should be relatively clean with less than 5% (by weight) passing the #200 sieve.
- Stabilization rock, if required, should consist of clean, angular, 3-inch crushed rock. Stabilization rock should contain less than 2% (by weight) passing the #200 sieve. Use of an open-graded rock may be required for stabilization in wet, lower lying areas during late spring or early summer months.
- 3. Suitable on-site soils should consist of low to medium plastic silt and clay soils from required excavations that do not contain sod, significant organic materials, or debris. The suitable on-site soils are expected to include site soils below a depth of 4 to 6 inches across the site that include a plasticity index of ±20 or less. Higher plastic clay soils are unsuitable for reuse as structural fill at the site.
- 4. Topsoil includes organic soils that are expected in the upper 4 to 6 inches of the soil profile across the site. The topsoil should be stripped from the development area and stockpiled outside the grading limits. The topsoil may be used for landscape fill in greenspace areas that will not include future structures.
- 5. Compaction of on-site soils is expected to require use of a pad foot or kneading roller. The compaction should be completed with relatively uniform soil moisture content, which is near optimum. This is expected to require scarification of the soil. Scarification and compaction are expected to require multiple passes over the fill area for proper processing of the fine-grained soil.

- 6. Compaction of aggregate base or stabilization rock should be completed using a vibratory smooth drum roller. Compaction of trench rock backfill should be completed using an appropriately sized vibratory compactor. The lift thickness may need to be adjusted based on the compaction equipment being used. We recommend that the backfill and compaction procedure be documented and evaluated by the engineer during the initial work to develop the required procedure.
- 7. Compact and document all suitable on-site soils, aggregate base and stabilization rock for structural fill at the site. Compaction of all structural fill within the City right-of-way is expected to be completed according to City specifications. Structural fill on residential lots should be completed to at least 93% relative compaction according to ASTM D 1557 (or 95% according to ASTM D 698). Placement and compaction of structural fill should be completed using loose lifts no greater than 8 inches thick, unless specified otherwise. Field density testing and observation of placement and compaction procedure should be conducted on all structural fill to document proper compaction at regular intervals throughout the work.

General Earthwork Considerations:

- Conduct earthwork at the site during dry weather conditions. On-site soils are
 moisture sensitive and expected to be over optimum moisture levels into the late
 spring and early summer months.
- 9. Site preparation should include stripping the upper organics from the ground surface. We anticipate that the upper ±4 to 6 inches of the soil will be removed from grass surfaced areas.
- 10. The exposed subgrade material should be scarified, moisture conditioned and compacted to the specified relative compaction prior to placement of fill. The prepared subgrade should be inspected and approved prior to fill placement.
- 11. All subgrade beneath foundations, pavements and proposed fill areas should be evaluated and approved by the engineer prior to placement of structural fill or aggregate base. The subgrade stability should be evaluated by proof rolling using a loaded dump truck to identify any areas of excessive deflection, rutting or pumping.
- 12. The suitable on-site fill material should be placed and compacted in loose lifts no greater than ±12 inches thick. The fill material should be compacted using a pad foot roller to the required relative compaction.
- 13. The fill placement and compaction procedure should be documented visually periodically throughout the work. Field density testing should be conducted on individual lifts of fill material to confirm adequate compaction and moisture content throughout fill placement and compaction.

- 14. On-site soils contain abundant silt and clay that are moisture sensitive and will be susceptible to pumping and softening under heavy construction traffic. Therefore, subgrade soils and fill areas should be protected from damage due to construction traffic throughout the work. Fill areas that have excessive deflection or rutting and pumping should be stabilized by scarification and recompaction or use of stabilization rock prior to additional fill placement.
- 15. Construct permanent cut and fill slopes with slope configurations no steeper than 2(horizontal):1(vertical). Fill slopes should be overbuilt slightly to allow compaction of the outer portion of fill material. Final grading should include trimming of all loose materials from the fill slopes.
- 16. Provide erosion control for all final cut and fill slopes. Cut slopes may require use of erosion matting or drainage features to control surface water and allow vegetation to be established.
- 17. Provide shoring for all trench excavations greater than 4 feet below grade. Anticipate that minor caving of trench sidewalls may occur, even in shallow excavations.
- 18. Utility trench excavations may encounter some ground water infiltration. Therefore, dewatering and stabilization of the base of the trench may be required. Trench excavation may also encounter bedrock that varies from highly to slightly weathered. Therefore, rock excavation may be required at some locations.

Pavement Construction:

- 19. Pavement subgrade soils are moisture sensitive and will require moisture conditioning of the upper ±12 inches of the subgrade. The subgrade should be compacted using a pad foot roller to provide a stable surface prior to construction of the street section.
- 20. Proof roll the compacted subgrade using a loaded 12 cubic yard dump truck. Areas of excessive deflection or rutting should be identified and either reprocessed and recompacted or excavated and replaced with aggregate base.
- 21. If the base is expected to support construction traffic during late fall months a thicker section should be considered. We recommend that the anticipated construction schedule and required base section be reevaluated once the construction schedule is known.
- 22. Proof roll the compacted aggregate base immediately prior to paving to identify any areas of soft subgrade or contaminated base aggregate. The proof rolling should be completed using a loaded 12 cubic yard dump truck and any areas of excessive deflection or pumping should be identified. Any unstable areas should be excavated and replaced with imported aggregate base.

Residential Foundation Design:

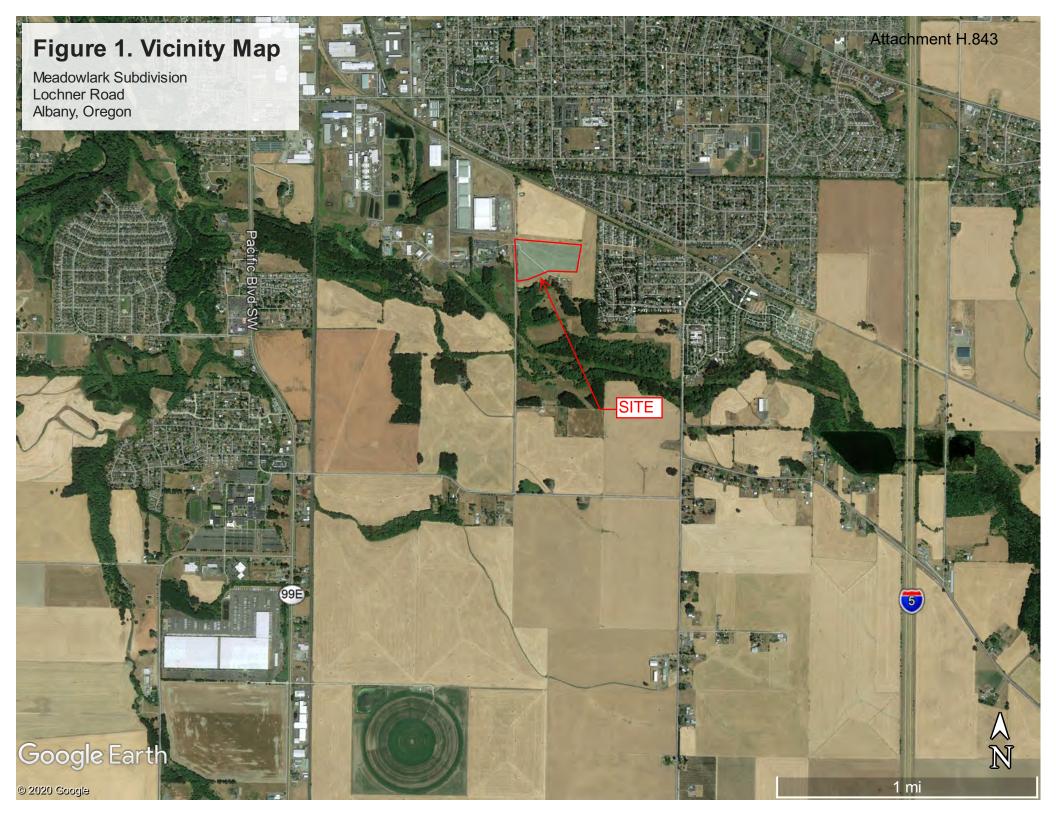
The following recommendations are intended to provide preliminary design information for the proposed residential development.

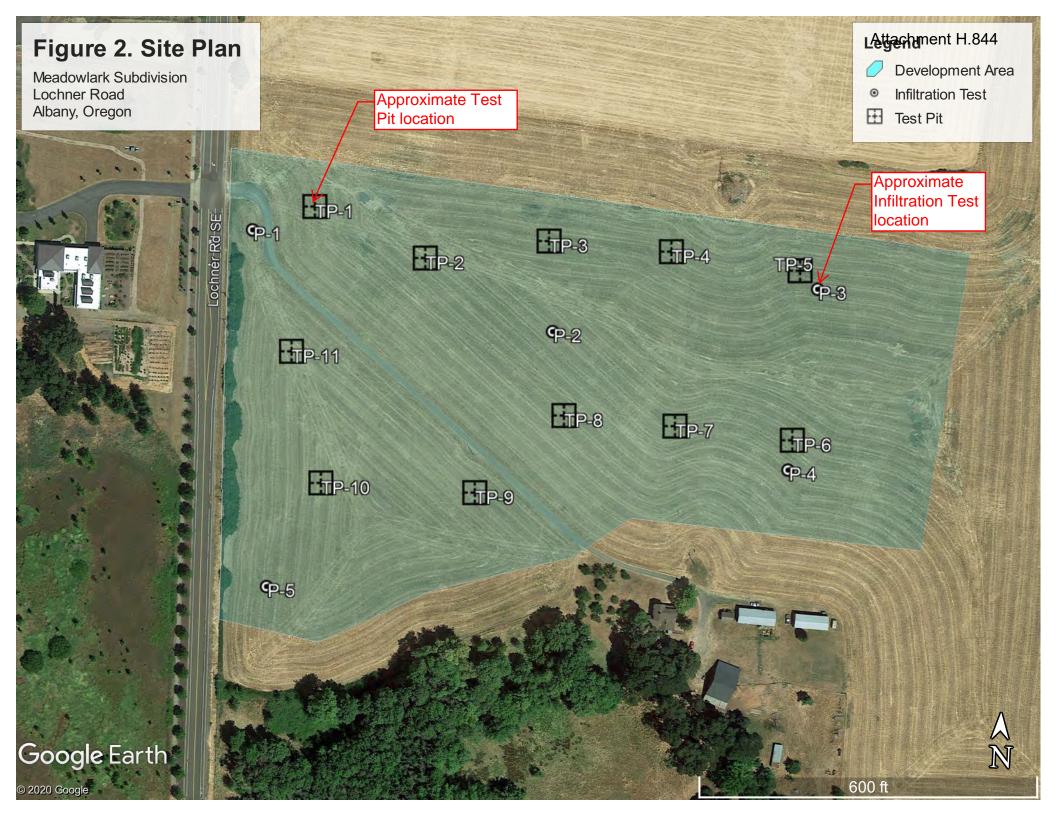
- 23. Design residential footings constructed on the approved lots using a maximum allowable bearing pressure of 1,500 psf and minimum footing width of 15 inches.
- 24. Foundation excavations should extend a minimum of ±6 inches into the compacted fill or as necessary to bypass any upper softened materials. A minimum footing embedment of 18 inches should be provided from finished exterior grades with a minimum set-back of 5 feet from moderately sloping terrain.
- 25. Use a ±6-inch thick leveling course of crushed rock (i.e., 1-inch minus) over the firm subgrade on the lots to help maintain the moisture of the underlying clay during foundation construction and minimize disturbance during wet weather conditions.
- 26. Installation of vapor barrier and foundation/crawl space drainage will be required to minimize seasonal moisture fluctuations of the clay underlying the residential foundations. We recommend that perimeter foundation drains be installed around each house to assist in drainage at the site.
- 27. Slope the grade surrounding the house away from the foundation to promote surface drainage away from the structure. We anticipate that limited landscape lot fill may be required. Landscape lot fill should be constructed with slopes no steeper than 3(horizontal):1(vertical) with a fill depth no greater than 2 feet, unless reviewed and approved by the geotechnical engineer.

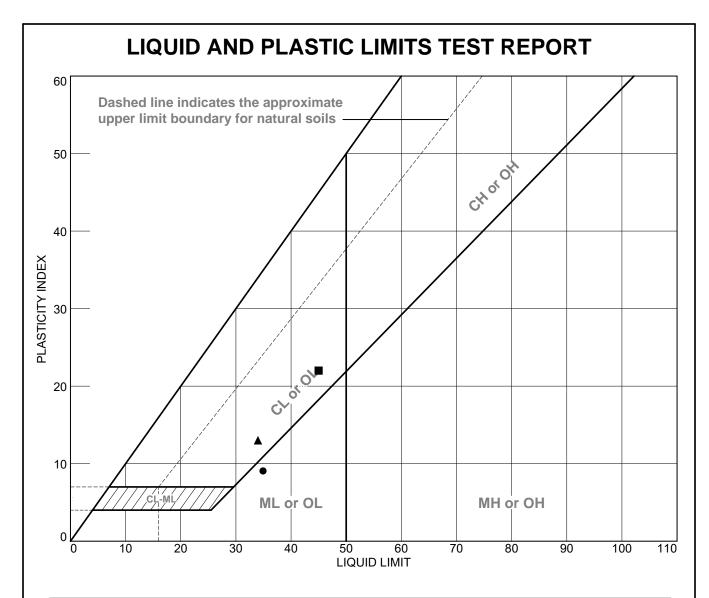
LIMITATIONS OF THIS REPORT

The analysis, conclusions and recommendations contained herein assume that the soil conditions and absence of ground water levels encountered in the test pits are representative of overall site conditions. Additional geotechnical design and construction recommendations may be required during final design of the improvements. The above recommendations assume that we will be present during construction to confirm the assumed foundation and subgrade conditions. We will assume no responsibility or liability for any engineering judgment, inspection or testing performed by others.

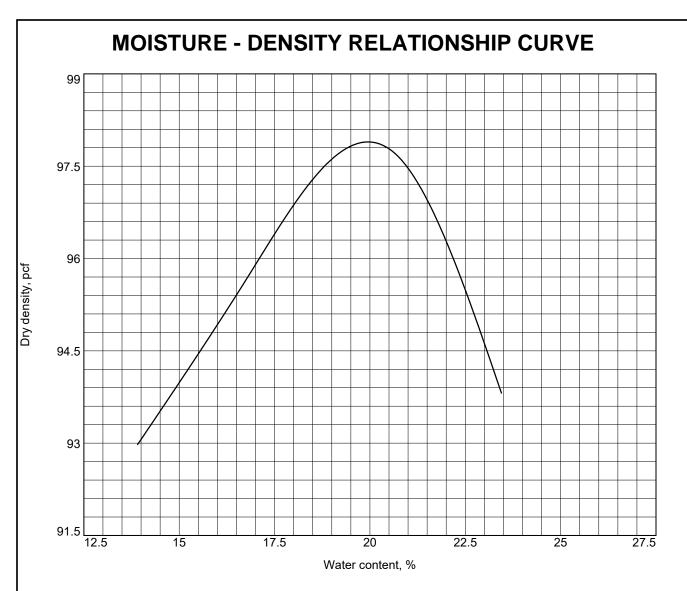
Our work was performed for the exclusive use by A&O Engineering, LLC and their design consultants for the proposed new Meadowlark Subdivision at Lochner Road in Albany, Oregon. FEI Testing and Inspection, Inc. performed our work in accordance with generally accepted professional geotechnical engineering practices in similar locations. Our services do not include any survey or assessment of potential contamination or contamination of the soil or ground water by hazardous or toxic substances. No other warranty, expressed or implied, is made.


Geotechnical Report


Meadowlark Subdivision Lochner Road Albany, Oregon


Appendix A

Figures


	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	8018	S-1-1	0.5'-1.0'	n/a	26	35	9	ML
	8018	S-9-1	2.0'-3.0'	n/a	23	45	22	CL
A	8018	S-10-1	2.0'-3.0'	13.1	21	34	13	CL

FEI Testing & Inspection, Inc.
Corvallis, OR

Client: A & O Engineering, LLC **Project:** Meadowlark Subdivision

Project No.: 2205031

Figure 3

Test specification: ASTM D 698-12 Method A Standard

Elev/	Classi	fication	Nat. Sp.G.	Nat. Sp.C. II B		PI % >		% <
Depth	USCS	AASHTO	Moist.	ορ. σ.	LL	FI	#4	No.200
0.5'-1.0'	ML		n/a		35	9	0	

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 97.9 pcf	
Optimum moisture = 20.0 %	
Project No. 2205031 Client: A & O Engineering, LLC	Remarks:
Project: Meadowlark Subdivision	Date: 10-15-2020
○Source of Sample: 8018 Sample Number: S-1-1	
FEI Testing & Inspection, Inc.	
Corvallis, OR	Figure 4

Geotechnical Report

Meadowlark Subdivision Lochner Road Albany, Oregon

Appendix B Test Pit Logs

Geotechnical Report Meadowlark Subdivision Lochner Road Albany, Oregon

APPENDIX B NARRATIVE TEST PIT SUMMARIES

Logged on October 8, 2020

Depth (feet)	Material Description	Notes/Sampling
0 to 1.3	Soft SILT with some clay and organics and trace sand; brown, dry, fine organics, low to medium plasticity, (topsoil).	Grass at surface. S-1-1 @ 0.5' – 1'
1.3 to 3.0	Medium stiff clayey SILT; grey to light brown, dry to slightly moist, medium plasticity, (alluvium).	S-1-2 @ 2' – 3'
3.0 to 9.0	Medium stiff clayey SILT with some to trace sand; brown, slightly moist grading to moist below 5 feet, medium plastic clay, (alluvium).	No ground water infiltration observed.

Depth (feet)	Material Description	Notes/Sampling
0 to 1.4	Soft SILT with some clay and organics; dark brown, dry to slightly moist, fine organics, low plasticity, (topsoil).	Grass at surface.
1.4 to 3.2	Medium stiff clayey SILT with trace sand; grey to light brown, slightly moist, medium plasticity, (alluvium).	
3.2 to 5.0	Medium stiff clayey SILT with trace sand; brown, moist, medium plastic clay, (alluvium).	No ground water infiltration observed.

Depth (feet)	Material Description	Notes/Sampling
0 to 1.1	Soft SILT with some organics and clay; brown, dry to slightly moist, fine roots, low to medium plasticity, (topsoil).	Grass at surface.
1.1 to 2.5	Medium stiff clayey SILT; grey to light brown, slightly moist, medium plasticity, (alluvium).	
2.5 to 8.0	Medium stiff clayey SILT with trace sand; brown, moist, medium plastic clay, sand content varies and typically increases with depth, (alluvium).	S-3-1 @ 3' – 4' No ground water infiltration observed.

Depth (feet)	Material Description	Notes/Sampling
0 to 1.0	Soft SILT with some clay and organics and trace sand; dark brown, dry, fine roots, medium plasticity, (topsoil).	Grass at surface.
1.0 to 2.8	Medium stiff clayey SILT; grey to light brown, dry to slightly moist, medium plasticity, (alluvium).	S-4-1 @ 1' – 2'
2.8 to 7.0	Medium stiff clayey SILT with some to trace sand; brown, moist, medium plastic clay, (alluvium).	No ground water infiltration observed.

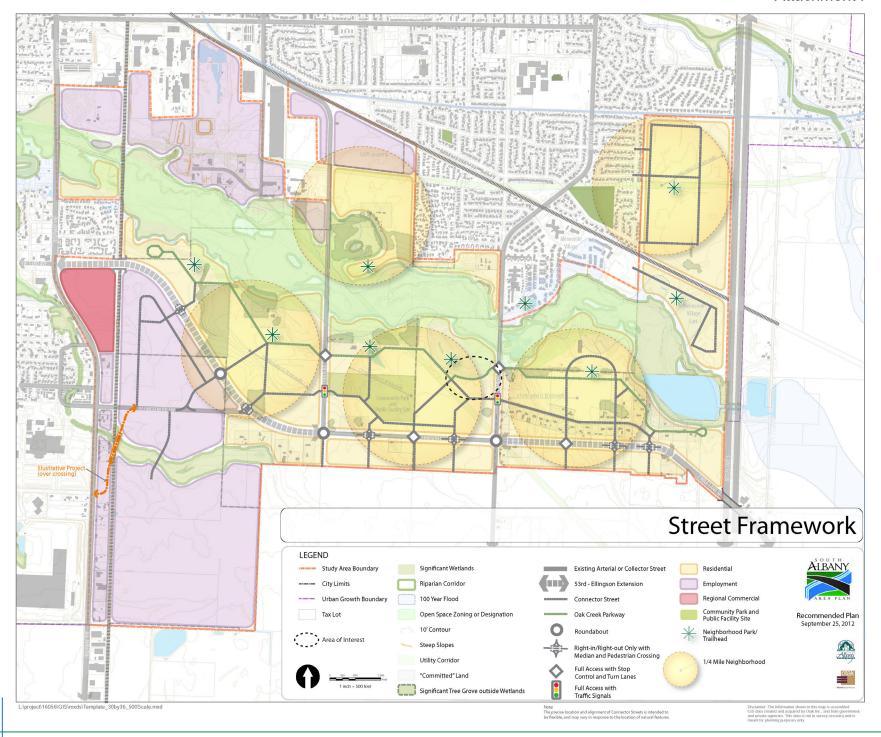
Depth (feet)	Material Description	Notes/Sampling
0 to 1.0	Soft SILT with some clay and organics and trace sand; brown, dry, fine organics, low to medium plasticity, (topsoil).	Grass at surface.
1.0 to 2.5	Medium stiff clayey SILT with trace organics; grey, dry to slightly moist, medium plasticity, (alluvium).	S-5-1 @ 1' – 2'
2.5 to 4.8	Medium stiff clayey SILT with some sand; brown, moist, medium plastic clay, fine sand, (alluvium).	No ground water infiltration observed.

Depth (feet)	Material Description	Notes/Sampling
0 to 1.5	Soft SILT with some sand and organics; dark grey, dry, fine organics, low plasticity, (topsoil).	Grass at surface.
1.5 to 3.0	Medium stiff SILT with some sand and clay; light brown, dry to slightly moist, low to medium plasticity, (alluvium).	S-6-1 @ 2' – 3'
3.0 to 8.0	Medium stiff clayey SILT with trace sand; brown, moist, medium plastic clay, (alluvium).	No ground water infiltration observed.

Depth (feet)	Material Description	Notes/Sampling
0 to 1.4	Soft clayey SILT with some organics; brown, dry, fine organics, low to medium plasticity, (topsoil).	Grass at surface.
1.4 to 2.8	Medium stiff clayey SILT; grey to light brown, dry to slightly moist, medium plasticity, (alluvium).	
2.8 to 4.0	Medium stiff clayey SILT with some sand; brown, slightly moist, medium plastic clay, (alluvium).	S-7-1 @ 3' – 4' No ground water infiltration observed.

Depth (feet)	Material Description	Notes/Sampling
0 to 1.5	Soft clayey SILT with some organics; brown, dry, fine organics, medium plasticity, (topsoil).	Grass at surface.
1.5 to 3.4	Soft to medium stiff clayey SILT with trace organics; brown, dry to slightly moist, medium plasticity, (alluvium).	S-8-1 @ 2' - 3'
3.4 to 9.5	Medium stiff to stiff clayey SILT with some sand grading to sandy SILT with some clay below 5 feet; brown, moist, medium plastic clay, (alluvium).	No ground water infiltration observed.

Depth (feet)	Material Description	Notes/Sampling
0 to 1.0	Soft SILT with some organics and clay; brown, dry, fine organics, loosely structured, (topsoil).	Recently plowed surface.
1.0 to 2.0	Medium stiff clayey SILT with trace sand; brown, dry to slightly moist, medium plasticity, (alluvium).	
2.0 to 11.0	Medium stiff clayey SILT with some sand; brown, moist grading to very moist below 9 feet, medium plastic clay, sand content increases below 6 feet, (alluvium).	S-9-1 @ 2' – 3' No ground water infiltration observed.


Depth (feet)	Material Description	Notes/Sampling
0 to 1.0	Soft SILT with some clay and organics; brown, dry, fine organics, low to medium plasticity, (topsoil).	Recently plowed surface.
1.0 to 3.0	Medium stiff silty CLAY; brown, dry, medium plasticity, loosely structured, (alluvium).	S-10-1 @ 2' – 3'
3.0 to 9.0	Medium stiff clayey SILT with some sand; brown, moist, medium plastic clay, more sand and moister below 6 feet, (alluvium).	No ground water infiltration observed.


Depth (feet)	Material Description	Notes/Sampling
0 to 1.3	Soft clayey SILT with some organics; brown, dry, fine organics, medium plasticity, blocky structure, (topsoil).	Recently plowed surface.
1.3 to 3.0	Medium stiff silty CLAY with trace organics; dark grey/brown, dry, medium plasticity, (alluvium).	
3.0 to 4.5	Medium stiff clayey SILT with some sand; brown, slightly moist, medium plastic clay, (alluvium).	No ground water infiltration observed.

Attachment I

Attachment J

NOTES TO USERS

LEGEND

TO: Jennifer Cepello, Planner

From: Lora Ratcliff, Fire Marshal

DATE: October 6, 2023

SUBJECT: SD-02-23 -3795 Lochner Rd SE- New 92-Lot Subdivision- Fire

Department Comments

The fire department has reviewed the above project for conformance to the 2022 Oregon Fire Code (OFC) per your request and has the following comments.

1. Street names approved for this development:

Blackbird Ave

Finch St

Harrier St

Flicker St

Junco St

Nuthatch St

Blue Jay Ave

Nighthawk St

- 2. Residential developments/projects of one- or two-family dwellings where the number of dwellings exceeds 30 shall be provided with at least 2 means of fire apparatus access. These access points shall be remotely separated by at least ½ the length of the maximum overall diagonal dimension of the property or area served. (OFC Appendix D107.1)
- 3. Approved fire apparatus roadways must extend to within 150 feet of all exterior portions of any structure that will be built on the new created lot as measured by an approved route of travel around the exterior of the structure with dead-end lengths not exceeding 150 feet long unless an approved turnaround is provided. (OFC 503.1.1, OFC 503.2.5 and OFC, Appendix D 103.4).
- 4. This proposed project is located within a "Protected Area" as defined by Oregon Fire Code (OFC) Appendix B, Section B102 and this area will be required to be served by a public water system. The Fire Flow required shall be as specified in Appendix B of the fire code. (OFC 507.3)
- 5. INADEQUATE FIRE APPROACH & ACCESS TO WATER SUPPLY

If the Fire Official determines that there is an inadequate fire apparatus access condition or an inadequate fire water supply for one or more parcels of the proposed division, in lieu of providing adequate fire apparatus access or supply and acting in conformance to the standards set forth in **OAR 918-480-0125**, the Uniform Alternate Construction Standard for One and Two Family Dwellings, the Building Official, will select the following standard to address the inadequacies pertaining to structures built on the affected parcels:

a. Installation of an NFPA Standard 13D fire suppression system

LAR/lar

Lora Ratcliff 541-917-7728 lora.ratcliff@cityofalbany.net